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Abstract: The combination of edge computing and deep learning helps make intelligent edge devices
that can make several conditional decisions using comparatively secured and fast machine learning
algorithms. An automated car that acts as the data-source node of an intelligent Internet of vehicles
or IoV system is one of these examples. Our motivation is to obtain more accurate and rapid object
detection using the intelligent cameras of a smart car. The competent supervision camera of the smart
automobile model utilizes multimedia data for real-time automation in real-time threat detection. The
corresponding comprehensive network combines cooperative multimedia data processing, Internet
of Things (IoT) fact handling, validation, computation, precise detection, and decision making. These
actions confront real-time delays during data offloading to the cloud and synchronizing with the
other nodes. The proposed model follows a cooperative machine learning technique, distributes the
computational load by slicing real-time object data among analogous intelligent Internet of Things
nodes, and parallel vision processing between connective edge clusters. As a result, the system
increases the computational rate and improves accuracy through responsible resource utilization
and active–passive learning. We achieved low latency and higher accuracy for object identification
through real-time multimedia data objectification.

Keywords: edge intelligence; multimedia object processing; cooperative learning; industrial Internet
of Things

1. Introduction

Human-like learning is one of the key challenges in the area of computer vision [1].
The response rate of and bypassing an accident for an adult are faster than a child, because
an adult is more experienced than a child. However, children could act better than adults
if they are trained for a certain period of time in particular circumstances. Similarly, a
machine can be more accurate through simultaneous case testing and learning procedure.
This procedure can even be more rapid if we make an intelligent edge cluster among the
present devices in the same local network. This work aims to connect all the incorporated
sensor end-devices of a smart vehicle, collecting several real-time multimedia data. The
data are processed further into the cluster using active and passive learning. In the last
decade, the assortment of edge computing and deep learning has helped to make edge
devices intelligent. Intelligent edge devices can make several conditional decisions using
machine learning algorithms that are comparatively secure and fast. In addition, data
analysis has been widely adopted and is becoming the center of big data creation in every
industrial IoT sector, such as automobile, robotics, management, and automation [2–5].
In most cases, the automation industry is remodeling predefined or existing frameworks,
instead of building a computerization model from scratch [6]. Similarly, our motivation is

Sensors 2022, 22, 4133. https://doi.org/10.3390/s22114133 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114133
https://doi.org/10.3390/s22114133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3097-6568
https://doi.org/10.3390/s22114133
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114133?type=check_update&version=2


Sensors 2022, 22, 4133 2 of 18

to design an efficient multimedia data collection and dispensation model to obtain accurate
and faster multimedia data processing for a smart vehicle. We selected an advanced
boundary box iteration model [5] and cooperative deep learning to integrate edge nodes
with similar object-detection capacities. The semantic interoperability among the intelligent
nodes makes the overall procedure time efficient.

In the case of a traditional surveillance camera in a vehicular model, the collected data
is stored on a local or remote cloud server for further utilization [4]. On the other hand, the
smart surveillance camera model utilizes the collected video data for real-time automation,
such as threat detection in industries. We decided to distribute the computational load by
slicing our object data among analogous intelligent nodes. The model produces a parallel
multimedia processing platform among the connective edge clusters. After completing
the object-detection method, the sliced tasks are stitched on the cluster head. We used the
prediction model based on the boundary box creation for multimedia data processing and
compared the accuracy and propagation time with existing solutions. As a result, we re-
duced the computational time by distributing the tasks and transferring knowledge among
interconnected edge devices. In the object detection phase, we predict the next position of
an individual object considering its prior status. The model has been trained to process
audio data processing parallel to image detection. The system increases the computational
rate and improves the accuracy through trustworthy resource utilization. Each smart
vehicle acts as a cluster of receiver ends in this procedure. The receiver ends are capable of
performing the fundamental measures toward machine learning and accomplishing the
following contributions:

• Computation and validation of received real-time data.
• Cooperative processing of multimedia data.
• IoT-facts handling, such as low light or high-frequency object finding.
• Accurate detection.
• Real-time decision making, such as avoiding accidents or not taking over an ambulance.

Therefore, the overall contributions of our proposed model in terms of an intelligent
network in industrial IoT are as follows:

• The corresponding comprehensive network combines cooperative multimedia data
processing and reduces the tension to publish/offload the data on the public cloud for
further processing.

• The ubiquitous computing structure inspires the proposed model. After reaching a
certain threshold, the computational load is distributed by slicing real-time object
data among analogous intelligent IoT nodes, and parallel vision processing between
connective edge clusters occurs.

• Cooperative machine learning helps to reduce compilation errors and increases trust
among the decision-making units.

• IoT fact-handling faces resource thrusting during manual or automatic triggers. Edge-
intelligent-based cooperative learning can significantly reduce it.

• The model increases the computational speed and validates the real-time object by
near-optimal 3D processing.

• The backbone network is ubiquitous-computing based, making the IoV connectivity
more accurate to human-like decision making.

• IoV network faces throughput deficiencies, while offloading data to third-party servers.
These actions confront real-time delays during data offloading to the cloud and syn-
chronizing with the other nodes. The proposed model helps to increase the through-
put efficiency.

• An intelligent edge cluster does not claim to block data sharing or offloading to the
distance server.

As a result, the system increases the computational rate and improves the accuracy by
responsible resource utilization and active–passive learning. At the same time, possibilities
of data breaching, data clashing, and data stealing are reduced, compared to cloud-based
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offloading. Figure 1 shows the overall task flow into the proposed cooperative learning
model for task slicing and load distribution among similar capacities having edge devices.

Figure 1. Proposed cooperative learning model for task slicing and load distribution among
edge devices.

The organization of the paper is as follows: Section 2 is a comprehensive discussion
of the related works, including distributed offloading, intelligent edge cluster, decision-
making module, multimedia data processing, and service experience matrices; Section 3
highlights the proposed advanced edge computing algorithms; Section 4 is the result
analysis section; and Section 5 concludes the paper.

2. Related Work

Multimedia data computation and object detection at the edge is a concept that has
already been explored [4]. A few studies have already explored how to bring an intelli-
gence camera to compute real-time data processing [5–7]. Some have deployed hardware-
accelerated custom application-specific integrated circuits (ASICs) and field-programmable
gate arrays (FPGAs) to accelerate the overall processing. They were also performed with a
low-power configuration strategy by bio-inspired event-based processing. Whereas these
standalone intelligent cameras are highly acceptable for specific functions, such as person
detection or classified object detection using vision processing, our motivation is to design
an improved algorithm to facilitate a smart car into an IoV network. Existing object detec-
tion and machine learning approaches exist in a statically defined local network and are
connected with a private/cloud server. In contrast, we propose a load-distribution and
decision-making strategy, while a smart car continuously moves from one place to another.
Standalone intelligent camera modules installed in industrial areas are possibly connected
using a similar protocol or application gateway. Additionally, the computational task was
performed by the edge device itself.

However, computational load on a single module is not time efficient in many real-time
task offloading, for example, for a moving car. Therefore, efficient task diffusion could be
helpful in service quality enhancement in terms of time and accuracy. On the other hand, the
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boundary box optimization method has gained popularity in real-time object detection [8,9].
This particular methodology has been proved to be appropriate for a lightweight edge
module. Nevertheless, there is a time mismatch for dynamic object detection if we use a
single-edge node that acts as a deep learning module. We can increase the quality of service
by distributing the load among similar computational capabilities having nodes. Therefore,
we propose a slicing and stitching methodology using an advanced bounded box iteration
model to interact, allocate, and accommodate heavy computational tasks, such as real-time
multimedia data processing. The novelty of our model is to reduce compilation errors
and increase trust among the decision-making units. This section introduces a few related
technologies and strategies that crucially assist our proposed approach.

2.1. Distributed Offloading

In the traditional offloading method, the task is offloaded to the best cloud for further
execution, and the consequent value comes back to the resource after the completion of
the performance. In comparison, the cloud has far more processing units and capacity
than edge servers [3,9]. Therefore, distributed offloading into the edge cluster needs
more than one surrogate server. Henceforth, unlike one-to-one task offloading in a cloud-
based approach, the edge-cluster approach follows distributed or one-to-many offloading
strategies. Distributed offloading needs more complicated load distribution strategies
than cloud-based offloading; however, in a network of intelligent things, the end nodes
come with several constraints, such as a short battery life, low computational capacity, and
lightweight data security. Therefore, edge cluster-based computing is more suitable for
low-bandwidth-supported IoT networks.

The low latency, quick response, and accurate processing of real-time multimedia data
are the primary entities of an automated car. As sensors, cameras and audio adopters are
the sources of real-time elements; the automated vehicle can make an edge cluster for a
predominantly secured processing unit itself [4,5]. Distributed offloading to the cluster
head for further load distribution is one of the best solutions for IoVs. Distributed learning
and processing can provide intelligent edge clusters with the perfect consummation of
quality-of-experience matrices.

2.2. Intelligent Edge Cluster

Intelligent edge is the most suitable option for resource starving IoV networks. Every
cluster has one cluster head connected to the other cluster heads and IoT nodes in the
intelligent edge cluster network [8]. Eventually, they are the decision makers and load
distributors of each collection [9]. A fundamental task, such as image processing, audio
processing, and sensor data processing (for example, humidity, temperature, and light)
can be performed individually by the edge-IoT device itself. However, when it comes to
an automated vehicular system, a cluster could be made of all the multi-processing units
responsible for a particular vehicle.

Similarly, other cars have their intelligent edge cluster for making decisions in real
time. One intelligent micro-edge of each group is nominated as a cluster head, which is
fixed and manually determined during installation. Each cluster designed for each car is
smart enough to make a decision in real time with parallel active–passive learning. The
processing and decision making concerning the edge make an IoV unit more trustworthy
by itself. Possibilities of data breaching, data clashing, and data stealing are reduced,
compared to cloud-based offloading. An intelligent edge cluster does not claim to block
data sharing or offloading to the distance server [10]. Nonetheless, it helps to decide to
share information in a reliable way with the other resources. Similar to the case of petrol-
pump finding, the car has to share its current location. Here, we come to the conception of
active–passive learning and cooperative learning.
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2.3. Active–Passive Learning and Cooperative Learning

An intelligent cluster can perform two things simultaneously. Active learning is
making decisions within the cluster and passive learning occurs during the knowledge
sharing among the other cluster heads. Passive learning can occur in the subconscious
core with little web consumption to decrease bandwidth constraints [10]. An automated
vehicle needs to gather multimedia data from different edge-IoT servers, which can make a
diminutive decision, such as adjusting the brightness of headlights and not sounding the
horn while passing a hospital or comprehending the traffic lights and signals. The concept
of clustering provides a semantic-based learning environment to gather and distribute
knowledge among the edge clusters. This knowledge sharing is called cooperative learning.
Another major aspect of passive learning is establishing trust among the IoV nodes so
that, in the instant of an accident, the decision maker can ask for/receive help from
the trustworthy node. This reliable node could be a smart ambulance, smart loader,
or even a smart police van. Active learning is a more accurate, problem-solving, and
self-involved procedure depending on the installed applications, algorithms, and decision-
making capacity. Furthermore, the accuracy of any established algorithm can be increased
by continuous and cooperative learning and active–passive data processing.

2.4. Multimedia Data Processing

The proposed model follows many-to-one mapping to collect multimedia data from
different intelligent edge nodes [11,12], such as audio data from smart audio-receiving
nodes, image data from differently placed smart image-processing nodes, and real-time
sensor data from smart sensor nodes, assembled to the cluster head. The cluster head
distributes the collected data to the connected, intelligent edges using the slicing mech-
anism. Here, every participant-edge server is equally prioritized and has an equivalent
computation capacity.

Multimedia data processing includes audio–visual data with the addition of corre-
sponding sensor data. Multimedia data processing has basic targets depending upon
shallow or individual decision-based node learning and deep learning-based cooperative
decision making by more than one node or edge cluster [13]. As previously explained,
a smart car can decide not to sound a horn while hospitals or schools are nearby, only
utilizing the location-based application. We can optimize this decision by using more
than one source data; it effectively includes audio- or image-based data. If the school day
has ended or it is the school break time, and the traffic is also significant, intelligent edge
clusters can optimize the actions. The smart car can find the person we are looking for
without creating any disturbance, or it can effectively reduce the sound of the horn. It can
also share the real-time update of traffic to its trustworthy cluster heads.

2.5. Decision-Making Module

Decision-making modules are essential to reduce the computational load, optimize
the service matrix, and the overall network trust. Here, the term decision-making module
has been used alternatively for a single intelligent edge and cluster head as per their
operational perspective.

Two kinds of task handling have been conducted in the proposed cooperative model.
While there is no manual or automated load triggering, the system continuously performs
passive learning; after a manual or automatic load triggers the IoV module, it shifts to
the active-learning procedure. The node itself acts as a decision-making module for a
singular matrix handle related to image processing, audio processing, or sensor data
handling by individual intelligent edges [8,14]. For passive-learning conditions (mentioned
in Algorithms) cluster heads act as decision-making units to decide which information
should be shared within the cluster and which data could be published among the other
cluster heads of a more extensive IoV network. The cluster head also distributes the load
by choosing the appropriate data handler and allocating the computational task.
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2.6. Service Experience Matrices

QoE or quality of experience matrices are defined to match the service matrices
determined by a particular computational model or service provider. An intelligent IoV
network is similarly intended to uplift sustainability and reduce existing shortcomings
similar to other industrial IoT model. The quality-of-service pyramid consists of service
cost, reliability, latency, throughput, security, and other network-related constraints [15,16].
In comparison, the QoE aspect is defined to fulfill the desired QoS and reach the top of
the QoS pyramid. The evaluation of Industry 4.0 already recognizes user perspective
and satisfaction, which highly demand sustainable QoE. If a model continuously fails to
match the user demands, other solutions can easily replace it, as the market has several
innovative resolutions.

We decided to reduce the computational limitation by slicing real-time multimedia data
among analogous intelligent edges. The model obtained a parallel multimedia processing
medium among the connective edge clusters. After completing the object-detection method,
the cluster head compared the sliced tasks and optimized the decision. We used the prediction
model based on the edging box composition for multimedia data processing and compared
the accuracy and propagation time with existing solutions. Consequently, we reduced the com-
putational time by distributing the tasks and transferring knowledge among interconnected
edge devices. In the object-detection phase, we predicted the next position of an individual
object considering its prior status. The system increased the computational rate and improved
its accuracy by responsible resource utilization. Table 1 summarizes some of the existing
literature, along with their contributions and areas of application.

Table 1. Summary of existing literature with their contributions and areas of application.

Ref. Number Year of Publishing Area of Application Use Remark

[1] 2020 Federated learning and
edge computing

Survey of the probable application
of federated learning On macro perception

[2] 2019 Integrated Wireless
Network (IWN)

Deep learning enables algorithms
and specific security for analyzing

traffic systems
On micro perception

[6] 2019 Edge intelligence
Deep learning-based application
to train and test, improving edge

interface system
On macro perception

[8] 2020 Edge intelligence Improving edge interface by
training, testing, and uploading On macro perception

[14] 2021 Edge computing and
artificial intelligence

Survey deep learning method and
those applied to improve edge

intelligence method
On macro perception

[16] 2019 Edge intelligence Enhancing the cloud service using
deep learning applications On macro perception

3. Advanced Edge Computing Algorithms

Edge computation is more reasonable than the conventional VM-ware-based cloud
computing to connect the resource-thrusting IoT nodes. The primary conception of making
an edge cluster is similar to the software-defined cloud cluster; it helps to avail the high
computational intelligent-capacity destination near the edge.

Analysis, innovation, and AI-based automation have helped grow smart edge clus-
ters to serve fast, reliable computational platforms in the last decade. Here, the entire
network can perform active-learning and decision-making steps from Algorithm 1, while
fast multimedia data processing. An individual node can make a short-term decision
depending upon self-analysis capacity by following Algorithm 2, step 6 onwards. The edge
cluster can also perform cooperative learning among the cluster heads using the passive-
learning mode, explained in Algorithm 3. The decision making unit decide and entire
procedure which could be the near optimized way for that particular situation handling.
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Algorithm 1: DMO algorithm

• Input: n numbers of data input matrices from n number of different edge devices
• Output: Decision-making optimization
1: Start screening by the cluster head
2: If Passive learning is running
{

Check speed of the vehicle and area congestion
{ If (

i. Current_speed => Threshold_speed &&
ii. Current_congesion => Threshold_congestion

)
{
3: Initialize the Active learning;
4: Increase the processing capacity;
5: Check status of the receiver ends;
6: Check the nature of the work load;

}
If (forceful and manually urgent for particular
activity)
{

Call Algorithm 2 for singular matrices data
processing;

}
Else: Call Algorithm 2 for multimedia matrices

data processing;
Else: Continue passive learning; }

7: Check the status of the receiver nodes regularly;
8: Initialize parallel processing into the edge cluster;
9: Train the DNNs and update;
11: End;
}

Algorithms 1 and 2 help to perform the decision-making procedure. At the start of
the connection of the IoV node to the IoV network, the already decided cluster node starts
the screening procedure. By default, the passive learning starts, which is described by
Algorithm 3. As per Algorithm 1, the intelligent edges continuously sense the speed of
the vehicle and congestion or traffic volume of the external world. Here, one self-efficient
smart vehicle is considered as the IoV node. The similar node is also considered as an edge
cluster. If the current speed of the IoV module is more than the threshold speed and the
current congestion is more than its threshold value, then the active learning is initiated by
the cluster head. It helps to proceed further, according to Algorithm 1.

Figure 2 depicts the system flow while producing certain conditional approaches for
the load distribution. Primarily, an individual edge cluster, which is also a self-sufficient
smart vehicular system, enters into the largely connected IoV system. Subsequently, the
possible task flows can occur. The entire direction can be divided into six levels, as shown
in Figure 2. Explaining the diagram using the top-to-bottom approach, level 1 encounters
the initialization phase of the entire procedure. The moment an individual IoV node enters
the IoV network, three different possibilities arise. The first one is to select Algorithm 1.
The next one is to choose the unknown idle period if the connectivity cannot be correctly
established or the user wants to exit the network. The third possibility is to handle the smart
vehicle manually, without the absence of sufficient network resources, or intentionally.
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Algorithm 2: NOLD algorithm

• Input: n numbers of data input matrices from n number of different edge devices
• Output: Near optimal load distribution
1: Follow Algorithm 1 up to step 2;
2: Initialization of Active learning:
3: Prioritize each edge;
4: Replicate different workloads to all edges;
5: Call Algorithm 2 for singular matrices data

processing:
6: Check the nature of the work load;
For singular matrices data processing:

If (Data=image_data){
Distribute the load && apply boundary box
object detection;

}
If (Data=audio_data){

Distribute the load && apply audio-based
object detection;

}
If (Data=sensor_data){

Distribute the load && apply condition-based
operation handling;

}
Else: Call Algorithm 2 for multimedia matrices
data processing;

End for
For multimedia data processing:
7: Increase the processing capacity of the GPUs;
8: Start thread handling to optimize process utilization;
9: Check the status of the request handler regularly;

If (
i. Current_speed < Thresold_speed &&
ii. Current_congesion < Thresold_congesion
)
{
10: Initialize the Passive learning;
11: Train the DNNs and update;
12: End;
}
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Algorithm 3: Passive-learning algorithm

• Input: p number of different cluster heads
• Output: Trust build and optimization
1: Start learning:
2: Manually set cluster head for individual edge cluster;
3: Assign individual tasks while designing the IoV
network;
4: For trust building:
{

If (Current_load < threshold_load && no manually
triggered service request){

Share globally requested data to build the trust;
}
If (Current_load < threshold_load && manually
triggered service request){

i. Act as per the request;
ii. Search for incorporated solution;
iii. Utilize previously built trusts into the IoV network;

}
If (Current_load > threshold_load && automatically
triggered service request){

Distribute the load && apply condition-based
operation handling;

}
Else: Call Algorithm 1 for multimedia matrices
data processing;

End for
9: Train the DNNs and update;
10: End;
}

Figure 2. Conditional decision-making flow diagram for proposed edge intelligence-based coopera-
tive learning model for industrial Internet of Things.



Sensors 2022, 22, 4133 10 of 18

At the next level, there are two possible occurrences: one follows step 6 from Algorithm 2,
to make individual decisions for singular matrices data, such as audio; the other is to select
cluster-head activation as the decision-making module for further procedures.

At level 3, the task module can make two different decisions: one is to decide upon the
active-learning procedure as per Algorithm 1, from step 3 onwards; the other is to select
the near-optimized computation of singular matrices data by assigning the load to similar
kinds of computational edge units.

At level 4, the active learning and task distribution processing starts as per Algorithm 1.
The procedure makes sure to select load distribution as per the system’s requirements. At this
level, there is an extra provision to choose singular matrices data processing in addition to the
near-optimal multimedia data processing.

At level 5, first, stitching procedures occur. This is for decision optimization after
the processing of singular matrices. Other flows occur for multimedia data processing
and optimization.

At level 6, the other stitching procedure occurs. This is for decision optimization after
the 3D-data processing for multi-matrices.

Finally, the near-optimized decision making starts and continues until the IoV node is
disconnected from the IoV network either manually or accidentally.

Figure 3 depicts the particular work-flow diagram for multimedia data processing and
handling using Algorithms 1 and 2. It shows how the cluster head (CH) acts as the decision-
making module and distributes the triggered load among similar kinds of data-processing
units. From Figure 3, it can be included that the decision-making module works in a self
loop to incorporate updated information, while making a decision on load balancing.

Figure 3. Work-flow diagram of proposed edge intelligence-based cooperative learning model with
multimedia object-processing handler in industrial Internet of Things. The Figure 3 explains the flow
diagram of the proposed work.

4. Result Analysis

We used the prediction model based on boundary box creation for multimedia data
processing and compared the accuracy and propagation time with the existing solutions.
As a result, we reduced the computational time by distributing the tasks and transferring
knowledge among the interconnected edge devices.

For the purpose of the result analysis, we took a real-time video-processing challenge,
where we considered three problem-defined scenarios. We followed the work-flow diagram
of the proposed edge intelligence-based cooperative learning model with a multimedia
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object-processing handler in the industrial Internet of Things shown in Figure 3. Table 2
presents an idea of the components of our prototype model.

Table 2. List of the components.

Sl. No. Module Name Compont Description Number of Component

1 Camera module

Maximum image transfer rate 1080p: 30 fps
(encode and decode)

720p: 60 fps, resolution 8-megapixels
Still-picture resolution: 3280 × 2464

4

2 Sound-capture module Sound card, comes with inbuilt microphone, compatible with
the Raspberry Pi 4 4

3 IMU-enabled GPS device Dimensions: 115 × 93 × 35 mm, 115 × 93 × 35 mm; weight,
330 g, 740 g; with accelerometer; gyroscope 1

4 Radar

2 (before and after)
Wavelength: 3.2 cm

Transmit frequency: 9.3–9.8 GHz
Beamwidth (circular): 1.8◦

1

5 Control unit Raspberry Pi 4 4
6 User interface Web interface using Django backend 1

We observed the before-task allocation status of the overall edge cluster. Then, we
manually triggered the cluster head for the rapid processing of the multimedia data. Then,
we considered the output data for single matrices data, which were image data. Another
factor we considered was the audio–visual multimedia data for video processing. In
Figure 4, we can observe the status of the processing unit just before the start of the
cooperative-based learning procedure (at Level 3, Figure 4, top-to-bottom approach). The
left side of Figure 4 clearly shows that no processing has been started. The processing unit
utilization was 16% at this point, which means that the cluster head had already started its
function as a decision-making unit.

Figure 4. Utilization of processing unit at the initialization of Algorithm 1, decision making by the
cluster head.
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Figure 5 depicts the process-utilization phase when we follow Algorithm 2, step 6
onwards for the image processing procedure. The audio processing step also runs par-
allel to the other edge node. Furthermore, the sensor nodes continuously process the
environmental data, such as the temperature and humidity. We specifically focused on
the multimedia task scheduling, processing, and utilization of the service module, while
following our proposed slice and stitch model.

Figure 5. Utilization of processing after the initialization of image processing by the cooperative-based
learning approach.

Figure 6 depicts the overall/shared processing effort towards audio–visual data pro-
cessing. The utilization increased from 16% to 28%, while processing the video data. Shared
memory utilization also increased by 3.08%.

Figure 6. Utilization of processing after the initialization of video processing by the cooperative-based
learning approach.

We entered seven intelligent edges into our prototype IoV model for the single IoV
node. Then, we assigned one edge as the cluster head and connected the other six edges
to that cluster head. Figure 7a shows the overall processor utilization for video-data
processing by the cooperative-based learning approach. Figure 7b shows the service
processor utilization of mother edge or the data-receiving end, whereas Figure 7c–h show
the utilization of edge devices for video-data processing by the cooperative-based learning
approach from edges 1 to 6. Figure 8a shows the utilization of cluster-head memory,
while making decisions for near-optimized video-data processing by the cooperative-based
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learning approach. Figure 8b shows the utilization of virtual memory at the cluster head,
while making decisions for near-optimized video data processing by the cooperative-based
learning approach. Figure 8c depicts the hard faults/sec measurement by the cluster head,
while distributing the load into the edge cluster for near-optimized video data processing
by the cooperative-based learning approach.

Figure 7. (a) Overall processor utilization for video-data processing by the cooperative-based learning
approach. (b) Service-processor utilization of the mother edge. (c) Utilization of the first edge device
for video-data processing by the cooperative-based learning approach. (d) Utilization of 2nd edge
device for video-data processing by the cooperative-based learning approach. (e) Utilization of 3rd
edge device for video-data processing. (f) Utilization of 4th edge device for video-data processing.
(g) Utilization of 5th edge device for video-data processing. (h) Utilization of 3rd edge device for
video-data processing.

Figure 8. Cont.
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Figure 8. (a) Utilization of cluster-head memory while making a decision for near-optimized video
data processing by the cooperative-based learning approach. (b) Utilization of virtual memory at
cluster head while making a decision for near-optimized video data processing by the cooperative-
based learning approach. (c) Hard faults/sec measurement by the cluster head while distributing
the load into the edge cluster for near-optimized video-data processing by the cooperative-based
learning approach.

Figure 9a shows the data-allocation rate from receiver end to the processing edge
while distributing the task by the cluster head for near-optimized video-data processing
by the proposed cooperative-based learning approach. During the distribution, the active
time was 38% of the total processing time. The read speed was 472 kb/sec from the mother
edge, while the write speed to the surrogate edge was 91.0 kb/sec. The average response
time after the overall processing was 11.6 ms.

Figure 9. (a) Data-allocation rate from receiver end to the processing edge for near-optimized
video-data processing by the cooperative-based learning approach. (b) Network throughput by the
edge cluster.

Figure 9b shows the throughput of the used network at a 30 s duration. This through-
put was fixed for all the edges, as the edge cluster shares the same Internet availability.

Figure 10a,b show disk utilization for a similar, but reverse, condition during the data
allocation from the surrogate end to the mother edge in the presence of the cluster head
for near-optimized decision making by the proposed cooperative-based learning approach.
Figure 10b shows the repetitive collection of processed data from edges 1 to 6 at a 60 s
duration. This procedure followed the cluster-mapping procedure, which is also called the
data-allocation tree.

We conducted a comparative analysis of training loss/accuracy and validation loss/
accuracy of an existing deep learning model. Figure 11a,b show the resultant curves for the
same model.
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Figure 10. (a) Disk-utilization rate while transferring data from the surrogate end to the mother edge
in the presence of the cluster head for near-optimized video-data processing by the cooperative-based
learning approach. (b) Processed-data collection from surrogate edges to the mother edge in the
presence of the cluster head for near-optimized video-data processing by the cooperative-based
learning approach.

Figure 11. (a) Comparative loss/accuracy curve for existing DL models. (b) Comparative loss/accuracy
curve for existing DL models.

Figure 12. Receiver operating characteristic curve (ROC) for existing DL models.

The receiver operating characteristic graph presented in Figure 12 depicts the imple-
mentation of a classification model for all classification thresholds. This graph shows the
different types of variations with their corresponding values. This plot generally reflects
two values those are the true positive rate and true negative rate value. We used the predic-
tion model based on boundary box creation for multimedia data processing and compared
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the accuracy and propagation time with the existing solutions. As a result, we reduced the
computational time [17] by distributing the tasks and transferring knowledge among the
interconnected edge devices. In the object-detection phase, we predicted the next position
of an individual object considering its prior status. The model was trained to process
audio-data processing parallel to image detection. The system increased the computational
rate [18,19] and improved the accuracy rate by responsible resource utilization.

Table 3 shows a comparative analysis of an existing model with our proposed prototype.

Table 3. Literature summary of different prototypical compressions.

Ref. Number Model Applied Interface or Approach Solution
Comparative Performance of Our
Proposed Edge Intelligence-Based

Cooperative Learning Model

[4] ResNet Compact-level modeling Improve acceleration by training Relatively improved

[8] Faster CNN Parameter tanning Minimized mode size Smaller than earlier

[9] CNN Information concentration
and regularization

Minimized the storage
utilization More accurate

[11] NN Information distillation Compress the model Slightly improved

[12] Google Net Information distillation Minimized the acceleration, and
less storage utilization Faster and advanced

[13] DNN E2C Level segregation for better
uploading Improved

[14] DNN and CNN Kernal segregation Minimized the acceleration, and
less storage utilization Faster and advanced

5. Conclusions

Industry 4.0 has shown how an appropriate combination of edge computing and deep
learning makes edge devices intelligent [20,21]. Intelligent edge devices can endure several
conditional determinations using machine learning algorithms that are comparatively
secure and fast. In addition, data analysis has also been highly recognized for analyzing
large amounts of data in every industrial IoT sector, such as automobile, robotics, manage-
ment, and automation [22–25]. We remodeled the existing Internet of vehicle system using
comparatively small, but powerful, edge clusters. It can increase the conquest rate and
reduce the building cost of a computerization model from scratch.

We collected real-time data to obtain more accurate and faster multimedia data pro-
cessing in intelligent vehicles using a multi-dimensional data collection and dispensation
model. We chose to reduce the computational limitation by slicing real-time multimedia
data among analogous intelligent edges. The model used active–passive learning to obtain
a parallel multimedia processing medium among connective edge clusters. After complet-
ing the object-detection method, the cluster head compared the sliced tasks and optimized
the decision. We obtained the following conquest:

• The success rate of the prototype model was satisfactory, with several position changes
and speeds.

• Load distribution was also adequate while increasing the congestion.
• Cluster-head selection was dynamic, but cost-efficient in terms of power consumption.

We targeted a few additions and plan to improve our prototype in the following ways:

• The prototype model needs to be integrated as a user-friendly product.
• We primarily used the ‘secure boot’ technique to secure our edge devices. We plan to

use blockchain security for connected edge clusters in the future [26].
• We plan to integrate vehicles in the food-supply chain with the concept of a sustainable

supplier selection based on the concept of Industry 4.0 [27].
• We plan to increase scalability by incorporating novel metaheuristics algorithms,

such as the red deer algorithm [28], whale optimization algorithm [29], and social
engineering optimizer [30], in the future.

• We plan to use semantic interoperability to create intelligent ambulatory systems for
the smart healthcare industry [31].
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• We plan to add more sensor devices, while keeping the budget market reasonable.
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References
1. Xu, D.; Li, T.; Li, Y.; Su, X.; Tarkoma, S.; Jiang, T.; Crowcroft, J.; Hui, P. Edge intelligence: Architectures, challenges, and

applications. arXiv 2020, arXiv:2003.12172.
2. Ning, Z.; Dong, P.; Wang, X.; Obaidat, M.S.; Hu, X.; Guo, L.; Guo, Y.; Huang, J.; Hu, B.; Li, Y. When deep reinforcement learning

meets 5G-enabled vehicular networks: A distributed offloading framework for traffic big data. IEEE Trans. Ind. Inform. 2019, 16,
1352–1361. [CrossRef]

3. Liu, M.; Liu, Y. Price-based distributed offloading for mobile-edge computing with computation capacity constraints. IEEE Wirel.
Commun. Lett. 2017, 7, 420–423. [CrossRef]

4. Xu, X.; Fang, Z.; Qi, L.; Zhang, X.; He, Q.; Zhou, X. Tripres: Traffic flow prediction driven resource reservation for multimedia iov
with edge computing. ACM Trans. Multimed. Comput. Commun. Appl. 2021, 17, 1–21. [CrossRef]

5. Bhowmik, P.; Pantho, J.H.; Mbongue, J.M.; Bobda, C. ESCA: Event-based split-CNN architecture with data-level parallelism
on ultrascale+ FPGA. In Proceedings of the 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), Orlando, FL, USA, 9–12 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 176–180.

6. Moosavi, J.; Naeni, L.M.; Fathollahi-Fard, A.M.; Fiore, U. Blockchain in supply chain management: A review, bibliometric, and
network analysis. Environ. Sci. Pollut. Res. 2021, 1–15. [CrossRef]

7. Fallahpour, A.; Wong, K.Y.; Rajoo, S.; Fathollahi-Fard, A.M.; Antucheviciene, J.; Nayeri, S. An integrated approach for a sustainable
supplier selection based on Industry 4.0 concept. Environ. Sci. Pollut. Res. 2021, 1–19. [CrossRef]

8. Dewi, C.; Chen, R.C.; Liu, Y.T.; Jiang, X.; Hartomo, K.D. Yolo v4 for advanced traffic sign recognition with synthetic training data
generated by various gan. IEEE Access 2021, 9, 97228–97242. [CrossRef]

9. Cheng, L.; Li, J.; Duan, P.; Wang, M. A small attentional YOLO model for landslide detection from satellite remote sensing images.
Landslides 2021, 18, 2751–2765. [CrossRef]

10. Long, C.; Cao, Y.; Jiang, T.; Zhang, Q. Edge computing framework for cooperative video processing in multimedia IoT systems.
IEEE Trans. Multimed. 2017, 20, 1126–1139. [CrossRef]

11. Roy, D.G.; De, D.; Mukherjee, A.; Buyya, R. Application-aware cloudlet selection for computation offloading in multi-cloudlet
environment. J. Supercomput. 2017, 73, 1672–1690. [CrossRef]

12. Islam, S.; Grégoire, J.C. Giving users an edge: A flexible cloud model and its application for multimedia. Future Gener. Comput.
Syst. 2012, 28, 823–832. [CrossRef]

13. Zeng, X.; Fang, B.; Shen, H.; Zhang, M. Distream: Scaling live video analytics with workload-adaptive distributed edge
intelligence. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems, Virtual, 16–19 November 2020;
Association for Computing Machinery: New York, NY, USA, 2020; pp. 409–421.

http://doi.org/10.1109/TII.2019.2937079
http://doi.org/10.1109/LWC.2017.2780128
http://doi.org/10.1145/3401979
http://doi.org/10.1007/s11356-021-13094-3
http://doi.org/10.1007/s11356-021-17445-y
http://doi.org/10.1109/ACCESS.2021.3094201
http://doi.org/10.1007/s10346-021-01694-6
http://doi.org/10.1109/TMM.2017.2764330
http://doi.org/10.1007/s11227-016-1872-y
http://doi.org/10.1016/j.future.2012.01.002


Sensors 2022, 22, 4133 18 of 18

14. Kumar, Y.; Singh, P.K. A chaotic teaching learning based optimization algorithm for clustering problems. Appl. Intell. 2019, 49,
1036–1062. [CrossRef]

15. Roy, D.G.; Mahato, B.; De, D.; Buyya, R. Application-aware end-to-end delay and message loss estimation in Internet of Things
(IoT)—MQTT-SN protocols. Future Gener. Comput. Syst. 2018, 89, 300–316.

16. Wu, Z.; Lu, Z.; Hung, P.C.; Huang, S.C.; Tong, Y.; Wang, Z. QaMeC: A QoS-driven IoVs application optimizing deployment
scheme in multimedia edge clouds. Future Gener. Comput. Syst. 2019, 92, 17–28. [CrossRef]

17. Bhowmik, P.; Pantho, M.J.H.; Bobda, C. Harp: Hierarchical attention oriented region-based processing for high-performance
computation in vision sensor. Sensors 2021, 21, 1757. [CrossRef]

18. Bose, L.; Chen, J.; Carey, S.J.; Dudek, P.; Mayol-Cuevas, W. A camera that CNNs: Towards embedded neural networks on pixel
processor arrays. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2
November 2019; pp. 1335–1344.

19. Liu, Y.; Peng, M.; Shou, G.; Chen, Y.; Chen, S. Toward edge intelligence: Multiaccess edge computing for 5G and internet of things.
IEEE Internet Things J. 2020, 7, 6722–6747. [CrossRef]

20. Gottardi, L.; Nagayashi, K. A review of x-ray microcalorimeters based on superconducting transition edge sensors for astrophysics
and particle physics. Appl. Sci. 2021, 11, 3793. [CrossRef]

21. Bultmann, S.; Behnke, S. Real-time multi-view 3D human pose estimation using semantic feedback to smart edge sensors. arXiv
2021, arXiv:2106.14729.

22. Malhotra, P.; Singh, Y.; Anand, P.; Bangotra, D.K.; Singh, P.K.; Hong, W.C. Internet of things: Evolution, concerns and security
challenges. Sensors 2021, 21, 1809. [CrossRef]

23. Liu, C.; Su, X.; Li, C. Edge computing for data anomaly detection of multi-sensors in underground mining. Electronics 2021,
10, 302. [CrossRef]

24. Rodrigo, S.G.; Pobes, C.; Casi, M.S.; Martín-Moreno, L.; Lasheras, A.C. Neural network assisted design of plasmonic nanostruc-
tures on superconducting transition-edge-sensors for single photon detectors. Opt. Express 2022, 30, 12368–12377. [CrossRef]
[PubMed]

25. White, J.; Kameneva, T.; McCarthy, C. Vision Processing for Assistive Vision: A Deep Reinforcement Learning Approach. IEEE
Trans. Hum.-Mach. Syst. 2021, 52, 123–133. [CrossRef]

26. Zhang, J.; Xu, C.; Gao, Z.; Rodrigues, J.J.; de Albuquerque, V.H.C. Industrial pervasive edge computing-based intelligence IoT for
surveillance saliency detection. IEEE Trans. Ind. Inform. 2020, 17, 5012–5020. [CrossRef]

27. Huang, L.; Feng, X.; Feng, A.; Huang, Y.; Qian, L.P. Distributed deep learning-based offloading for mobile edge computing
networks. Mob. Netw. Appl. 2018, 1–8. [CrossRef]

28. Fathollahi-Fard, A.M.; Hajiaghaei-Keshteli, M.; Tavakkoli-Moghaddam, R. Red deer algorithm (RDA): A new nature-inspired
meta-heuristic. Soft Comput. 2020, 24, 14637–14665. [CrossRef]

29. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
30. Fathollahi-Fard, A.M.; Hajiaghaei-Keshteli, M.; Tavakkoli-Moghaddam, R. The social engineering optimizer (SEO). Eng. Appl.

Artif. Intell. 2018, 72, 267–293. [CrossRef]
31. Patange, G.S.; Sonara, Z.; Bhatt, H. Semantic Interoperability for Development of Future Health Care: A Systematic Review

of Different Technologies. In Proceedings of the International Conference on Sustainable Expert Systems, Lalitpur, Nepal,
28–29 September 2020; Springer: Singapore, 2021; pp. 571–580.

http://doi.org/10.1007/s10489-018-1301-4
http://doi.org/10.1016/j.future.2018.09.032
http://doi.org/10.3390/s21051757
http://doi.org/10.1109/JIOT.2020.3004500
http://doi.org/10.3390/app11093793
http://doi.org/10.3390/s21051809
http://doi.org/10.3390/electronics10030302
http://doi.org/10.1364/OE.453952
http://www.ncbi.nlm.nih.gov/pubmed/35472873
http://doi.org/10.1109/THMS.2021.3121661
http://doi.org/10.1109/TII.2020.3007792
http://doi.org/10.1007/s11036-018-1177-x
http://doi.org/10.1007/s00500-020-04812-z
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/j.engappai.2018.04.009

	Introduction 
	Related Work 
	Distributed Offloading 
	Intelligent Edge Cluster 
	Active–Passive Learning and Cooperative Learning 
	Multimedia Data Processing 
	Decision-Making Module 
	Service Experience Matrices 

	Advanced Edge Computing Algorithms 
	Result Analysis 
	Conclusions 
	References

