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We present a new R package PRECISION.seq for assessing the performance of depth
normalization in microRNA sequencing data. It provides a pair of microRNA sequencing
data sets for the same set of tumor samples, additional pairs of data sets simulated by re-
sampling under various patterns of differential expression, and a collection of numerical
and graphical tools for assessing the performance of normalization methods. Users can
easily assess their chosen normalization method and compare its performance to nine
methods already included in the package. PRECISION.seq enables an objective and
systematic evaluation of normalization methods in microRNA sequencing using realistically
distributed and robustly benchmarked data under a wide range of differential expression
patterns. To our best knowledge, this is the first such tool available. The data sets and
source code of the R package can be found at https://github.com/LXQin/
PRECISION.seq.
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INTRODUCTION

Depth normalization is a critical preprocessing step for accurate and reproducible analysis of
transcriptomic sequencing data (Bullard et al., 2010). Methods for depth normalization have been
newly proposed or repurposed from normalization methods previously developed for microarray
data (Dillies et al., 2013). Their performances have been evaluated primarily for RNA sequencing
data and a thorough assessment is still in need for microRNAs (miRNAs), a class of small RNAs
regulating gene expression and closely linked to carcinogenesis, which tend to be expressed in a
tissue-specific manner with a small number of markers abundantly expressed (Dillies et al., 2013;
Maza et al., 2013).

To enable such an assessment, we collected two data sets for the same set of tumor samples, where
one set was collected using uniform handling and balanced library assignment and the second was
collected over time and without such careful study design (Qin et al., 2020). The former can be used
to assess miRNAs’ differential expression (DE) status, serving as a benchmark; the latter can be used
to assess the use of normalization methods against the benchmark. Furthermore, we devised a re-
sampling-based strategy for simulating additional data set pairs and developed a workflow for
performing the paired-data-sets based assessment. We have built these data and the workflow into an
R package named PRECISION.seq, PaiREd miCrorna analysIs of differential expresSION for
sequencing, for interested researchers to assess methods.
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IMPLEMENTATION

MiRNAs were sequenced for 27 myxofibrosarcoma samples and
27 pleomorphic malignant fibrous histiocytoma samples twice,
once with uniform handling (serving as the “benchmark” data)
and a second time in the order of sample collection over the
years resulting in unwanted depth variations (serving as the
“test” data) (Qin et al., 2020). The first data set can be
accessed by data.benchmark and the second by data.test.

The overall normalization assessment is provided by the
function precision.seq() following three steps: first, the test
data is normalized using one or multiple methods; second,
differential expression between the two subtypes is
determined in the un-normalized benchmark data and
normalized test data using either voom-limma or edgeR
(Robinson, McCarthy, and Smyth 2010; Law et al., 2014);
lastly, the DE statuses determined in the benchmark data are
used as a gold standard for assessing the performance of
normalization methods in the test data.

Our package currently includes nine normalization
methods that are relatively commonly used in the
literature. Among them, six methods are based on scaling:
Total Count, Upper Quartile, Median, Trimmed Mean of
M-values (TMM), DESeq, PoissonSeq (Anders and Huber
2010; Robinson and Oshlack 2010; Li et al., 2012; Dillies

et al., 2013); three methods are based on regression:
Quantile Normalization, Surrogate Variable Analysis for
Sequencing (SVASeq), and Remove Unwanted Variation
(RUV, including three sub-methods RUVg, RUVr, RUVs)
(Irizarry et al., 2003; Leek 2014; Risso et al., 2014). The
computational speed of these normalization methods is
very fast, in the range of a fraction of seconds for scaling
methods and about a second for the RUV methods, using a PC
with AMD Ryzen 5 3600 6-Core Processor 3.60 GHz. Users
can also add any additional normalization method to the
workflow by providing its normalized test data to the
precision.seq() function.

The differential expression analysis results are compared
numerically and graphically between the normalized test data
and the un-normalized benchmark data. Treating the latter as a
gold standard and dichotomizing the p-values at a user-specified
significance level, the pip.statistics() function calculates the True
Positive Rate (TPR), False Positive Rate (FPR), False Discovery
Rate (FDR), and False Negative Rate (FNR). To assess the impact
of each individual normalization method, functions are included
to draw 1) Relative Log Expression (RLE) plot for log2 count data
(fig.RLE()), 2) Volcano plot for p-values versus group mean
differences (fig.volcano()), and 3) Venn diagram of DE statuses
(fig.venn()) (Gandolfo and Speed 2018). To compare across
normalization methods, functions are provided to draw

FIGURE 1 | Graphical display of empirical assessment results for P90 normalization in comparison with no normalization and nine normalization methods using
PRECISION.seq. (A) CATplot of p-value ranking determined in the test data that undergoes scaling normalization (left panel) or regression-based normalization (right
panel), in comparison with no normalization. (B) Scatterplot of False Negative Rate and False Discovery Rate among the normalization methods. (C) Dendrogram for
clustering the p-values in the test data before and after normalization.
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1) Scatter plot of FNRs and FDRs (fig.FDR_FNR()), 2)
Concordance At the Top (CAT) plot of the p-value ranking
(fig.CAT()), and 3) Dendrogram for hierarchically clustering
p-values using the Euclidean distance and the Ward’s minimum
variance linkage (fig.dendrogram()) (Waldron et al., 2012).

Additional paired data sets can be simulated under
various scenarios of differential expression using the
simulation.algorithm() function that implements the re-
sampling-based algorithm introduced in (Qin et al., 2020).
Briefly, sample group labels are shuffled for the benchmark
data by: 1) clustering the 54 samples to two clusters and
randomly selecting nine samples in each cluster to serve as the
‘anchor samples’ for the two new sample groups; 2) randomly
allocating the remaining 36 samples to these two new sample
groups. The same sample shuffling is then applied to the test data.
We have used this algorithm to pre-simulate 20,000 pairs of data
sets and categorized them based on the proportion of differential
expression and the median of mean differences across markers.
To save computation time, users can extract the pre-simulated
data sets under a desired differential expression pattern using
the simulated.data() function. The simulated data sets can be
analyzed by calling the function pip.simulated.data() and
the results can be summarized and displayed by calling the
fig.FDR_FNR.boxplot() function.

EXAMPLE USAGE

We showcase the use of the benchmarking pipeline for scaling
normalization by the 90th percentile (P90). We assess the
performance of P90 in comparison with the nine
aforementioned methods using the function precision.seq().

FIGURE 2 |Graphical display of method-specific empirical assessment results for P90 normalization using PRECISION.seq. (A)RLE plot for log2 count data before
(left panel) and after P90 (right panel), (B) Volcano plot for p-values versus group mean differences after P90, (C) Venn diagram of DE statuses before versus after P90
normalization.

FIGURE 3 | Boxplot of FDR and FNR in 100 pairs of simulated data sets
for P90 normalization in comparison with no normalization and nine
normalization methods using PRECISION. seq.
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Assessment is first done with the pair of empirical data sets
(Figure 1). As expected, P90 performs similarly to Upper
Quartile and Median Normalization due to their related
manner of normalizing the data. More specifically, P90 is a
moderate performer resembling Upper Quartile and Median
Normalization in terms of p-value ranking; it has an FDR of
63.27% and an FNR of 69.49%; its p-values cluster closely with
those for Upper Quartile and Median. Method-specific plots for
P90 are provided in Figure 2. Further assessment is done using
100 pairs of simulated data sets that have a DE proportion around
20% and a median of mean differences around 3. P90 shows
mediocre FDR and poor FNR, generally comparable to Total
Count and Quantile Normalization and slightly worse than
Upper Quartile and Median (Figure 3).

SUMMARY

In this paper, we introduce an R package, called PRECISION.seq,
for assessing the performance of depth normalization methods in
miRNA sequencing using realistically distributed and robustly
benchmarked data under a range of differential expression
scenarios. To the best of our knowledge, this is the first such
tool available. One limitation of our tool is that it does not offer
varied scenarios for the number of samples or the range of
sequencing depth in the samples.
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