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In recent years, the evolution of the molecular biological technical background led to the
widespread application of single-cell sequencing, a versatile tool particularly useful in the
investigation of tumor heterogeneity. Even 10 years ago the comprehensive
characterization of colorectal cancers by The Cancer Genome Atlas was based on
measurements of bulk samples. Nowadays, with single-cell approaches, tumor
heterogeneity, the tumor microenvironment, and the interplay between tumor cells and
their surroundings can be described in unprecedented detail. In this review article we
aimed to emphasize the importance of single-cell analyses by presenting tumor
heterogeneity and the limitations of conventional investigational approaches, followed
by an overview of the whole single-cell analytic workflow from sample isolation to
amplification, sequencing and bioinformatic analysis and a review of recent literature
regarding the single-cell analysis of colorectal cancers.
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INTRODUCTION

In 2012, researchers at The Cancer Genome Atlas Network published their work on the comprehensive
molecular biological characterization of human colorectal cancers (CRC) [1]. They analyzed the
exomes, copy number alterations, promoter methylation levels, transcriptomes, and microRNA
fraction of bulk samples acquired from 276 patients with colorectal cancer. Since then, with the
evolution of the equipment and toolbox of molecular biology with methods such as single-cell next
generation sequencing (NGS), the need for an evenmore detailed investigation of organisms at a single-
cell level has emerged. In this review article, we aimed to present contemporary methods and
techniques for the sampling, isolation, and analysis of single cells and to give an overview of the
current scientific literature about CRC at the single-cell level.

MODELS FOR TUMOR HETEROGENEITY

Tumor heterogeneity means that neoplastic cells from the same tumor can genotypically,
phenotypically, morphologically, or metabolically differ from each other. The concept of
heterogeneity has been around for several decades and gained attention in the 1990s when
cancer stem cells were identified in acute myeloid leukemia [2]. There are two not mutually
exclusive models explaining tumor heterogeneity: the cancer stem cell and the clonal evolution
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model. In the former model, tumor cells are hierarchically
organized: a portion of cells, called the “stem cells” retain their
ability to proliferate, while their offspring “differentiate” into
nonproliferating cells [3]. The latter model describes cancer as a
sequential process driven by somatic mutations following
Darwinian mechanisms for subclonal selection [4]. Over the
past decades, intratumoral heterogeneity has been intensively
researched. Some cancer types (e.g., leukemias [2], breast cancer
[5], brain tumors [6] and CRCs [7]) are thought to behave
according to the cancer stem cell model, with evidence of a
portion of cells being capable of inducing cancer in
immunodeficient mice. Compelling evidence was found to the
monoclonal origin and subclonal selection of several tumors
including breast cancer [8], glioblastoma multiforme [9], and
renal cell carcinoma [10].

TUMOR MICROENVIRONMENT AND
COMPONENTS OF TUMORS

Heterogeneity in solid tumors is not limited to the differences
between neoplastic cancer cells. Cancerous cells are embedded
into diverse tissues consisting of cancer-associated fibroblasts,
extracellular matrix, vascular and lymphatic networks, and
immune cells, among others. Cancer-associated fibroblasts, which
have a constantly activated phenotype are the main components of
tumor stroma [11]. Their exact origin and functions are not fully
understood, but it is hypothesized that they can enhance tumor
growth and progression, invasion, and metastatic potential as well
[12]. They are more heterogeneous than normal fibroblasts and
express various surface receptors and cytokines that facilitate tumor
progression, angiogenesis, etc. [13]. Many tumors have been
described to have marked immune cell infiltration. Some of these
cells have antitumoral behavior (NK cells, CD8+ T cells, CD4+ Th1
cells, and APCs), while others can promote tumor progression
(CD4+ Th2 cells, regulatory T cells, and tumor-associated
macrophages) [13]. A meta-analysis published in 2020 found
that high tumor-infiltrating lymphocyte (TIL) count with CD3+,
CD8+ and FOXP3+ T-cells pose a prognostic benefit in CRC [14].

Another phenomenon that further expands heterogeneity of the
tumor stroma is tumor budding andwas described in several cancers
including esophageal, pancreatic, endometrial, and breast cancer
and was most extensively researched in CRCs. Tumor buds are
isolated or small clusters of undifferentiated cancerous cells at the
invasive front of the tumor tissue. The malignant cells in a tumor
bud are morphologically different (loss of basal membrane, diverse
shapes) from cells of the main tumor mass and express decreased
epithelial and increased mesenchymal marker levels [15].

The extent of tumor heterogeneity has clinical implications as
well. A recent study showed that sequencing of multiple tissue
biopsy samples was able to detect more than twice as many
mutations in solitary colorectal cancers compared to single tissue
biopsy [16]. The genetic and epigenetic landscape of tumors
influence tumor initiation, progression and drug response [17]
thus the assessment of the degree of tumor heterogeneity may
prove diagnostic and prognostic value and help treatment
selection, monitoring of drug response and patient follow-up.

METHODS FOR EVALUATING TUMOR
HETEROGENEITY

The above-mentioned characteristics of tumor heterogeneity
explain the need for more sophisticated and sensitive methods
for cancer cell biology research. Frequently used approaches for
evaluating heterogeneity include various types of methods, such as
immunohistochemistry, fluorescence in situ hybridization (FISH),
comparative genome hybridization (CGH), microdissection
combined with PCR, microarray techniques, etc. In 2005, Losi
et al. confirmed the presence of intratumoral heterogeneity during
the progression of CRC using microdissection and the above
techniques, focusing on p53 and K-ras mutations, and loss-of-
heterozygosity on chromosomes 5q and 18q [18]. Their study
concluded that prognostic and diagnostic genetic markers should
be evaluated for heterogeneity as well.

The development and widespread use of NGS opened new
paths towards understanding tumor heterogeneity more
precisely. NGS is used for analyzing the genome,
transcriptome, or accessible chromatin with techniques
including DNA-seq, RNA-seq, or chromatin profiling
methods, such as ChIP-seq. The sequence of a targeted gene
panel, the exome (whole-exome sequencing, WES), or the whole
genome (whole-genome sequencing, WGS) of multiple samples
can be rapidly and relatively cost-effectively analyzed for single-
nucleotide variations (SNVs) and copy-number variations
(CNVs/SCNVs) with DNA-seq by fragmenting the genome
into smaller pieces and sequencing them in parallel. Market
leader companies in the genetic research industry, e.g.,
Illumina (San Diego, United States) offer several commercially
available targeted gene panels for oncology including the field of
both hematologic malignancies and solid tumors. Tumor samples
can be sequenced in bulk or at a single cellular level with the
evolving technical background. Bulk samples may contain several
types of tissue including cancerous cells and their surrounding
stroma, healthy surrounding tissue, smooth muscles, fat, and
connective tissue. The sensitivity of bulk analysis is dependent on
the coverage (average number of reads aligning to a known
reference base) of the sequencing run and is typically between
5 and 10% [19]. This means that the detectability of a sought
variant is highly dependent on its allele frequency, which in the
field of oncology can be lower than the typical sensitivity of bulk
sequencing. Thus, single-cell sequencing methods could be
far more accurate and focused on characterizing intratumoral
heterogeneity, however, the current isolation techniques are
much more challenging and require designated equipment
with relatively higher cost of reagents and subsequent
analyses.

TECHNIQUES FOR THE ISOLATION OF
SINGLE CELLS

Numerous approaches have been developed for the isolation of
single cells which differ in throughput, speed, cost, and efficiency.
The starting sample material can be cell cultures, cell suspensions,
or histopathologic slides.
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The simplest method is termed limiting dilution. This
technique is based on the dilution of cell suspensions and then
aliquoting them into such volumes that it is statistically probable
that a well contains only one cell [20].

Micromanipulation systems typically work with an inverted
microscope and a motorized stage combined with glass
micropipettes. Live, individual cells can be observed under the
microscope and transferred to different compartments using the
micropipettes [21]. The process is labour intensive manually but
can be automatized with the help of computer vision and
motorized stages [22].

Several microfluidics techniques exist for the separation of
single cells. Cell suspensions can be separated through
microchannels based on physical properties, immunomagnetic
labelling or cell surface protein binding antibodies on the
microfluidics chip [21]. 10x Genomics’ Chromium Controller
(10x Genomics, Pleasanton, California, United States) solution
offers a droplet-in-oil-based technique in which individual cells
are encapsulated with uniquely barcoded beads thus enabling
parallel sorting of cells and library preparation for NGS. The Bio-
Rad ddSEQ Single-Cell Isolator (Bio-Rad Laboratories, Hercules,
California, United States) offers a similar technique. Both
platforms are capable of sorting and barcoding thousands of
cells a day.

Fluorescence-activated cell sorting (FACS) is another high
throughput method for separating individual cells. Cells bound
with fluorescence-conjugated antibodies are passed through a
flow cytometer and the antibodies are activated with laser beams.
Detectors pick up scatter- and fluorescence signals from each cell
which can then be individually diverted towards collecting
compartments by an electromagnetic field based on their
phenotype [23]. Penter et al. individually sorted cells applying
this technique, and according to their results, the error rate was
less than 1 out of 100 cells [24].

Magnetic-activated cell sorting (MACS) is an affinity-based
cell sorting method. Antibodies conjugated with magnetic beads
are bound to cells’ surface antigens. Cells are then placed in an
external magnetic field, and after washing away unlabeled cells,
the labelled cells can also be eluted [21].

Optical tweezers offer a procedure for non-contact cell
separation using highly focused laser beams. Single cells can
be selected, trapped and moved from one compartment to
another with the help of optical forces [25].

Laser capture microdissection is a popular technique for
isolating homogeneous, uniform cell populations or even
single cells from histopathological slides while simultaneously
assessing tissue and cellular morphology. A typical instrument
consists of an inverted microscope, a motorized stage, a laser unit,
and a CCD camera [26]. The operator can manually adjust the
power, speed, and focus of the laser, and can select preformed
shapes or draw unique areas for dissection. Various methods exist
for the subsequent isolation of dissected areas including
gravitational forces pulling down the specimen to a collecting
compartment, the use of adhesive-coated caps, or using a
defocused laser beam to catapult the sample into the desired
compartment [26]. These systems need to be manually
supervised, moreover, working with single cells requires high

operator skills due to the limited size of samples and lack of
feedback systems. Figure 1 summarizes the workflow of single
cell isolation, sequencing, and analysis.

MOLECULAR BIOLOGICAL ANALYSIS OF
SINGLE CELLS

A typical eukaryotic cell contains ~4 pg of genomic material while
Illumina’s sequencing solutions need at least 1 ng of DNA for
sequencing according to the manufacturer. Therefore, in
eukaryotic single-cell sequencing at least a ~1000-fold
amplification is needed for subsequent analysis. This can be
achieved by several methods including degenerate
oligonucleotide-primed polymerase chain reaction (DOP-
PCR), multiple displacement amplification (MDA), and
multiple annealing and looping-based amplification cycles
(MALBAC) among others. Some of these methods are PCR-
based (e.g., MALBAC, DOP-PCR), while others use isothermal
amplification (e.g., MDA).

Multiple displacement amplification utilizes the φ29 DNA
polymerase, a high-fidelity enzyme with proofreading and strand
displacement activity that works in an isothermal environment
[27]. MDA uses random hexamer primers which offer great
genome coverage and due to the enzyme’s strand displacement
activity, multibranched DNA structures are generated. Its
amplification is exponential, meaning small differences are
disproportionally amplified causing sequence-dependent bias,
producing over- and underamplified regions. As a result, this
method is less effective in copy number variation (CNV) analysis
than linear amplification methods, however, owing to the φ29
polymerase’s proofreading activity it is ideal for single nucleotide
variation (SNV) detection [27].

Multiple annealing and looping-based amplification cycles is a
PCR-based quasi-linear amplification technique. It utilizes the
isothermal Bst DNA polymerase with strand displacement
activity but does not have proofreading activity. The main
advantage of MALBAC is that it only amplifies the original
DNA template by using special primers that can form loops in
full amplicons preventing them from serving as templates for
another amplification cycle. After a few cycles of linear
amplification, the product is further amplified with traditional
PCR steps. The quasi-linear sense of this method makes it a great
choice for CNV detection; however, it is less reliable for SNV
detection due to the lack of the enzyme’s proofreading
activity [28].

Degenerate oligonucleotide-primed PCR is another PCR-
based amplification procedure using primers with a random
hexamer sequence at the 3′ end and a fixed sequence at the 5′
end. In the first step, the random hexamer binds the genome and
primer extension begins. Next, another set of primers specific to
the 5’ end of the primers amplifies the products from the previous
step. Thereby, DOP-PCR yields exponential amplification, yet, it
is suitable for analyzing large CNVs [27].

Sequencing of RNA transcripts from single cells is also a
possible approach. This requires the reverse transcription of
RNA molecules to complementary DNA (cDNA) which can
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then be amplified and sequenced. To selectively target mRNA and
exclude tRNA and rRNA, primers containing poly (dT) sequence
binding the poly(A) tail of mRNA molecules are usually used for
the reverse transcriptase enzyme generating cDNA [29]. After

reverse transcription, cDNA can be amplified using several
methods including PCR-based amplification [30] and in vitro
transcription (IVT) using T7 RNA polymerase [31]. Amplified
cDNA can then be subjected to library preparation and

FIGURE 1 | Summary of the workflow of single cell isolation and downstream analyses.
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sequencing. Several protocols have been devised for single-cell
RNA amplification and library preparation based on PCR
amplification (Smart-Seq2 [32], SCRB-seq [33], DropSeq [34])
and IVT (MARS-Seq [35], inDrop [36], CEL-Seq [37]). Table 1
shows the advantages and limitations of different DNA and RNA
amplification methods.

Epigenetic assays providing information about accessible
chromatin and histone modifications such as bisulfite
sequencing (BS-seq), chromatin immunoprecipitation
sequencing (ChIP-seq), and assay for transposase accessible
chromatin sequencing (ATAC-seq) are also available at a
single-cell resolution. These methods offer a way to assess
parts of the genome on a functional level by measuring DNA
methylation level, open chromatin sites or histone modifications.

Bisulfite sequencing is an important method for DNA
methylation analysis. Treatment of DNA with bisulfite salts
converts unmethylated cytosines to uracil while methylated
cytosines are spared allowing the assessment of DNA
methylation at a single nucleotide level after sequencing. Clark
et al. presented a protocol for single-cell BS-seq with which the
methylation status of ~50% of all CpG sites can be measured in
single cells using post-bisulfite adaptor tagging, limiting the loss
of adaptor-tagged sequences otherwise occurring during bisulfite
treatment [38].

During ChIP-seq, protein-DNA complexes are cross-linked,
followed by exonuclease-mediated DNA fragmentation.
Fragmented DNA is then immunoprecipitated with antibodies
specific to histone modifications or transcription factors allowing
the sequencing of these target regions. Rotem et al. devised a way
to perform single-cell ChIP-seq on multiple pooled cells to
overcome the difficulties of the low input material from single
cells [39]. They used a microfluidic system where fragmented
chromatin from individual cells was uniquely barcoded by
adapters and then pooled together for the
immunoprecipitation step. After sequencing, the signal can be
demultiplexed and fragments can be assigned to individual cells
during the computational analysis.

Single-cell ATAC-seq was developed by Buenrostro et al. in
2015 using the Fluidigm C1 programmable microfluidic platform
[40]. ATAC-seq uses a mutant hyperactive Tn5 transposase that
identifies fragments and appends adaptors to nucleosome-free
active regions. These tagged sequences are then purified and
sequenced allowing the identification of active genomic
regions [41].

Recently, two spatial transcriptomics platforms became
commercially available: the 10X Visium Spatial Gene
Expression and the NanoString Technologies’ GeoMX Digital
Spatial Profiler (Seattle, United States). Although these platforms
cannot yet reach exact single-cell levels, they add valuable
histological and spatial information to the high-resolution
transcriptomic data. 10X’s solution uses a special, oligo probe
coated slide, where FFPE or fresh frozen tissue sections can be
mounted. Staining and imaging are followed by tissue
permeabilization, and the RNA molecules that have been
released from cells bind to adjacent probes. The cDNA library
constructed can then be sequenced and the probes are used to
reconstruct spatial information of the sequenced transcriptome.
NanoString’s solution works with tissue mounted on any type of
glass slide. Targeted mRNA probes with unique barcodes joined
by a photocleavable linker are hybridized to mRNA released from
the tissue section which is also stained with fluorescent
antibodies. After fluorescent imaging ROIs are selected where
UV light cleaves the unique barcodes. Finally, the barcodes are
sequenced and linked to unique mRNA targets mapping them to
specific locations of the slide [42].

However, it is important to emphasize that the link between
mRNA expression and protein translation is not always
guaranteed [43], and genomic and transcriptomic studies
should be validated at a protein level. Single-cell resolution
analysis of proteins, such as single-cell flow cytometry and
single-cell mass cytometry is also possible, the description of
which is beyond the scope of this article.

BIOINFORMATIC ANALYSIS OF
SINGLE-CELL SEQUENCING DATA

Sequencing instruments can produce several gigabytes of raw
sequencing data which need to be processed and analyzed by a
bioinformatics expert with sophisticated software tools and
bioinformatic pipelines. A typical DNA-seq pipeline consists
of quality control of the sequencing data followed by the
alignment of reads to a reference genome. After this, variant
calling can be performed to identify SNVs, and their allele
frequencies compared to the reference genome. In single-cell
analysis SNV allele frequencies should be close to 0.5 or 1
theoretically suggesting whether the cell is either heterozygous
or homozygous to the SNV. However, because of the widely used

TABLE 1 | Summary of DNA/RNA amplification methods.

Method Enzyme used Advantages Limitations References

DOP-PCR Taq DNA pol suitable for CNV detection with large bin
sizes

Often yields low coverage, expontential amplification [71]

MALBAC Bst DNA pol suitable for CNV detection No proofreading activity, less reliable in SNV detection [28]
MDA φ29 pol proofreading activity expontential amplification, less reliable in CNV detection [72]
Homopolymertailing,
PCR

M-MuLV RT, TdT,
Taq pol

Captures truncated cDNAs as well [73] Reduced coverage towards 3′ ends of transcripts, loss of
strand information, exponential amplification

[30]

Template
switching, PCR

M-MuLV RT,
Taq pol

Maintains strand information,
homogeneous transcript coverage

Lower sensitivity compared to homopolymer tailing,
exponential amplification

[74]

In vitro transcription T7 RNA pol Linear amplification Each round shortens products [75], labor intensive [37]
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non-linear amplification methods and the proportionally higher
impact of artifacts occurring either before or during the early
stages of the amplification step, the detected allele frequencies can
deviate from the theoretically expected values [44]. To overcome
this challenge, dedicated software tools such as SCAN-SNV
measure amplification balance throughout the genome and
calculate whether the detected allele frequencies are erroneous
or not [44]. In bulk sequencing data, CNVs are called by
measuring target read counts. Therefore, in single-cell analysis,
the uniformity of genomic coverage needs to be taken into
account during CNV calling [45]. Software tools for the
analysis of CNVs in single-cell data include HMMCopy [46],
AneuFinder [47], Ginkgo [48], and SCNV [49]. Mallory et al.
conducted a performance assessment of popular single-cell CNV
detection tools [45]. Table 2 lists examples of the software tools
used in single-cell DNA-seq data analysis.

An RNA-seq pipeline starts with quality control of the raw
data and is followed by read alignment, transcriptome
reconstruction, expression quantification, and downstream
analyses. Particularities of single-cell isolation techniques, such
as doublet formation (two cells in the same oil droplet) or the
capture of dead cells with droplet-based approaches must be
considered during quality control of the raw data for which the
ratio of transcripts/unique molecular identifier is widely used
[50]. Read aligners can be splice-aware (TopHat [51], STAR [52])
or non-splice aware (BWA [53], Bowtie2 [54]), the former
enabling larger gaps like those occurring at exon boundaries,
while the latter does not allow such gaps. Transcriptome
reconstruction aims to uncover all transcripts and their splice
variants expressed in a sample [55]. This can be performed in
either a reference-based manner where overlapping reference-
aligned reads are used (Cufflinks) [56] or by de novo assembly,
where an algorithm builds transcripts from short reads (SPAdes)
[57]. Normalization techniques (e.g., median and quantile
normalization) and gene-length corrections are usually used to
reduce technical variation between samples and facilitate their
comparison. The most widespread gene-length corrections are
TPM (transcripts per million) and RPKM/FPKM (reads/
fragments per kilobase per million reads). Several software
packages are available for the normalization and differential
expression analysis of single-cell RNA-seq data, including
scran [58], SCnorm [59], TASC [60], and SCDE [61] (the
detailed description of which is beyond the scope of this
article). A performance comparison of normalization and
differential expression analysis methods are summarized in
Cole et al.’s [62] and Wang et al.’s work [63], respectively.
Table 3 shows software tools for RNA-seq data analysis.

BULK VS. SINGLE-CELL EXPERIMENTS IN
COLORECTAL ADENOMAS AND
ADENOCARCINOMAS
The comprehensive molecular characterization of CRCs by The
Cancer Genome Atlas project identified several recurrent
mutations, somatic copy number variations (SCNAs), DNA
methylation patterns, and gene expression profiles and the
integration of these findings has uncovered some key altered
pathways deregulated during CRC formation and progression.
The recurrently mutated genes included APC, TP53, KRAS,
PIK3CA, FBXW7, SMAD4, TCF7L2, NRAS, CTNNB1, SMAD2,
SOX9, ATM, ARID1A, and FAM123B in the non-hypermutated,
and ACVR2A, APC, TGFBR2, MSH3, MSH6, SLC9A9, TCF7L2,
and BRAF in the hypermutated tumors. Among SCNVs,
chromosomal changes found included the gains of 1q, 7p and
q, 8p and q, 12q, 13q, 19q and 20p and q with losses of 1p, 4q, 5q,
8p, 14q, 15q, 17p, and q, 18p and q, 20p, and 22q. Recurrent
subchromosomal deletion peaks including FHIT, RBFOX1,
WWOX, SMAD4, APC, PTEN, SMAD3, and TCF7L2 were also
observed. Furthermore, subchromosomal focal amplifications
were detected in the case of USP12, KFL5, CDK8, WHSC1L1,
MYC, ERBB2, IGF2, INS, and TH [1].

Since their integrative analysis, investigations using single-cell
techniques have also been conducted to further evaluate
intratumoral heterogeneity and clonal expansion in CRC.
Table 4 presents a list of publications about single-cell analysis
of colorectal cancers. Yu et al. performed scWES on cells isolated
by micropipetting from a single-cell suspension of cancerous and
normal adjacent tissues of colon cancer patient in 2014 [64].
Population genetics and potential driver events were investigated
in 63 single tumor cells and compared to the results of the bulk
sequencing data of 21 colon cancer patients. They identified two
independent clones in the tumor cell population with the major
clone containing APC and TP53mutations, which were absent in
the minor clones harboring mutations in CDC27 and PABPC1
genes, indicating biclonality in CRC. They also identified a
potential driver event, the frequent mutation of SLC12A5 in
single tumor cells, showing how single-cell sequencing can
provide insight into rare genetic events otherwise masked by
the whole population. In 2017Wu et al. studied the heterogeneity
and evolution of non-hereditary CRC in two patients by
combining bulk WES with scWES [65]. Normal polyps,
adenomatous polyps, CRC, and matched normal mucosa
acquired via biopsy were in part sequenced in bulk, while the
other part was digested into cell suspensions from which single
cells were isolated by a micromanipulation system. By comparing
the results of bulk WES with scWES, they found that bulk
sequencing underestimated the level of heterogeneity of the
tissues compared to single-cell analyses, and with scWES, they
were also able to cluster the cells. Based on their results they
proposed a monoclonal origin of CRC. In 2018 Roerink et al. used
immortalized clonal organoids as proxies for the single cells
obtained by flow-sorting normal and cancerous colorectal stem
cells [66]. Their argument for choosing this method was that
using true single cells with the contemporaneous amplification
techniques would result in incomplete coverage and artefactual

TABLE 2 | Software tools for the bioinformatic analyses of DNA-seq data.

Tool Usage Reference

SCAN-SNV Measures amplification balance, SNV detection [44]
HMMCopy CNV detection [46]
AneuFinder CNV detection [47]
Ginkgo CNV detection [48]
SCNV CNV detection [49]
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SNV calling. By profiling the SNVs, mutational patterns,
methylome, transcriptome, and drug response of clonal
organoids derived from 4–6 tumor sites and matching normal
tissue from 3 colorectal patients they were able to describe
intratumoral heterogeneity and possible phylogeny of these
tumors. In the same year, Bian et al. investigated FACS/MACS
sorted single cells obtained from multiregional samples of
surgically resected material of 10 CRC patients using scTrio-
seq2 method. This technique can simultaneously assess SCNVs,
methylation level, and also the transcriptome of cells [67]. After
investigating cells from multiple sites including the primary
tumor, lymph node metastases, liver metastases, and
posttreatment liver metastases and identifying sublineages
based on subclonal SCNAs within chromosome arms assessed
intratumoral heterogeneity and the dynamics of DNA
methylation and gene expression. Zhou et al. investigated
single cells of CRC patients and elderly cancer-free individuals
using parallel single-cell genome and transcriptome sequencing.
They included 21 CRC patients with primary tumor and matched
normal mucosal samples with peripheral blood, adjacent lymph
nodes andmesenteric blood vessel samples also obtained from 12,
4, and 4 of those patients, respectively. Six elderly cancer-free
individuals’ peripheral blood samples were also obtained. After
digesting the samples into cell suspensions and sorting them by
FACS based on surface markers, they performed genome and
transcriptome sequencing. Analyzing the SCNA profile of the
cells they concluded that every cell type, even the immune cells
isolated from cancer-free individuals’ blood contained SCNAs,

mostly deletions of X chromosome in females and Y chromosome
in males. Fibroblasts isolated from primary tumors had the
highest percentage of SCNAs (as high as 48% of cells) with
frequent gains of the whole chromosome 7. These cells,
compared to fibroblasts isolated from normal adjacent tissues
had 76 differentially expressed genes (DEG), 5 of which (BGN,
RCN3, TAGLN, MYL9, and TPM2) were associated with poorer
prognosis in the TCGA database [68]. Wang et al. performed
droplet-based scRNA-seq on cancerous and adjacent non-
malignant inflamed tissue from a patient with ulcerative
colitis-associated colon cancer [69]. They analyzed 2250 cells
from tumor tissues and 2527 cells from non-malignant tissues,
and classified them into cell types (myeloid cells, T cells, B cells,
fibroblasts, endothelial cells, and epithelial cells) based on their
transcriptional activity and further clustered them using the
t-SNE method. This enabled to compare gene expression
activity between malignant and non-malignant derived cells
among each cell types, characterizing the tumor
microenvironment, and found that many malignant clusters
presented protumoral activity. They also performed
pseudotime analysis to evaluate the development of ulcerative
colitis (UC) to colitis-associated colon cancer (CAC), and found
that CD74, CLCA1 and DPEP1 may play a key role in disease
progression. Recently, Liu et al. analyzed four cohorts containing
gene expression data and developed a prognostic model based on
immune cell type composition of colorectal cancers [70]. They
were able to associate several immune cell subtypes with the
prognosis of patients, such as a subgroup of dendritic cells with

TABLE 3 | Software tools for the bioinformatic analyses of RNA-seq data.

Tool Usage References

TopHat Splice aware read aligner [51]
STAR Splice aware read aligner [52]
BWA Non-splice aware read aligner [53]
Bowtie2 Non-splice aware read aligner [54]
Cufflinks Reference-based transcriptome reconstruction [56]
SPAdes de novo assembly [57]
Scran QC, normalization, complex analytic methods [58]
SCnorm Normalization [59]
TASC Differential expression analysis [60]
SCDE Differential expression, gene set overdispersion analysis [61]

TABLE 4 | Overview of single-cell CRC publications and their findings.

Year Method Findings References

2014 scWES Observed biclonality in CRC, identified a rare driver mutation at single-cell level with low
prevalence at the population level (SLC12A5)

Yu et al. [64]

2017 scWES Proposed a monoclonal origin of CRCs Wu et al. [65]
2018 Bulk sequencing of organoids derived from

single cells
Assessment of intratumoral heterogeneity and phylogeny of cells Roerink

et al. [66]
2018 scTrio-seq2 Successful multi-omics characterization of ~1900 single cells of 12 CRC patients Bian et al. [67]
2020 Parallel single-cell genome and transcriptome

sequencing
Identification of SCNAs present in more than 10000 cells, DEGs in fibroblasts from tumor
compared to fibroblasts from NAT

Zhou et al. [68]

2021 scRNA-seq Found protumoral gene expression activity in tumor-derived cells in different cell types, proved
insights into progression of UC to CAC

Wang et al. [69]

2022 Analysis of scRNA-seq, RNA-seq and
microarray cohorts

Built a prognostic model based on immune cell type composition, analyzed the immune cell
subgroups in the TME

Liu et al. [70]
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better, and certain subgroups of macrophages, and B cells with
poorer prognosis. One of the cohorts analyzed contained scRNA-
seq data, and they evaluated the ratio of these subtypes in the tumor
microenvironment of these samples, showing how single-cell
analyses may prove prognostic value in oncologic patient care.

CONCLUSION

Single-cell genomic, transcriptomic, and epigenetic methods are
powerful tools in cancer cell biology research. With these
methods, intratumoral heterogeneity and cancer evolution can
be investigated in unprecedented detail, unveiling otherwise
averaged out cell populations, identifying driver events, and
understanding cancer phylogenetics. In the forthcoming era of
precision medicine, single-cell analyses will be essential for a
more detailed understanding of cancer formation, progression,
and metastatic spread. Moreover, by identifying therapy-resistant
clones and potential sensitivity to treatments the above-
mentioned techniques will provide a tool for clinicians to
administer the best possible treatment regimen to patients.

AUTHOR CONTRIBUTIONS

BM and AK: conceptualization and revision; WK: literature
research and drafting; ZN, KS, BBK, SZ, GV, and IT: critical
revision of the manuscript. All authors read and approved the
final manuscript.

FUNDING

Prepared with the professional support of the doctoral student
scholarship program of the Co-operative Doctoral Program of the
Ministry of Innovation and Technology financed from the
National Research, Development and Innovation fund.

CONFLICT OF INTEREST

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

REFERENCES

1. The Cancer Genome Atlas Network. Comprehensive Molecular
Characterization of Human colon and Rectal Cancer. Nature (2012) 487:
330–7. doi:10.1038/nature11252

2. Bonnet D, Dick JE. Human Acute Myeloid Leukemia is Organized as a
Hierarchy that Originates from a Primitive Hematopoietic Cell. Nat Med
(1997) 3(7):730–7. doi:10.1038/nm0797-730

3. Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in Cancer:
Cancer Stem Cells versus Clonal Evolution. Cell (2009) 138(5):822–9. doi:10.
1016/j.cell.2009.08.017

4. Nowell PC. The Clonal Evolution of Tumor Cell Populations. Science (1976)
194(4260):23–8. doi:10.1126/science.959840

5. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF.
Prospective Identification of Tumorigenic Breast Cancer Cells. Proc Natl
Acad Sci U.S.A (2003) 100(7):3983–8. doi:10.1073/pnas.0530291100

6. Dirks PB. Brain Tumour Stem Cells: the Undercurrents of Human Brain
Cancer and Their Relationship to Neural Stem Cells. Phil Trans R Soc B (2008)
363:139–52. doi:10.1098/rstb.2006.2017

7. Munro MJ, Wickremesekera SK, Peng L, Tan ST, Itinteang T. Cancer Stem
Cells in Colorectal Cancer: A Review. J Clin Pathol (2018) 71(2):110–6. doi:10.
1136/jclinpath-2017-204739

8. Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J, et al. Inferring
Tumor Progression from Genomic Heterogeneity. Genome Res (2010) 20(1):
68–80. doi:10.1101/gr.099622.109

9. Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ, et al.
Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in
Glioblastoma. Cancer Cell (2011) 20(6):810–7. doi:10.1016/j.ccr.2011.11.005

10. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al.
Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion
Sequencing. N Engl J Med (2012) 366(10):883–92. doi:10.1056/
NEJMoa1113205

11. Li H, Fan X, Houghton J. Tumor Microenvironment: The Role of the Tumor
Stroma in Cancer. J Cel Biochem. (2007) 101(4):805–15. doi:10.1002/jcb.21159

12. Valcz G, Sipos F, Tulassay Z, Molnar B, Yagi Y. Importance of Carcinoma-
Associated Fibroblast-Derived Proteins in Clinical Oncology. J Clin Pathol
(2014) 67(12):1026–31. doi:10.1136/jclinpath-2014-202561

13. Wei R, Liu S, Zhang S, Min L, Zhu S. Cellular and Extracellular Components in
Tumor Microenvironment and Their Application in Early Diagnosis of
Cancers. Anal Cell Pathol (2020) 2020:1–13. doi:10.1155/2020/6283796

14. Idos GE, Kwok J, Bonthala N, Kysh L, Gruber SB, Qu C. The Prognostic
Implications of Tumor Infiltrating Lymphocytes in Colorectal Cancer: A
Systematic Review and Meta-Analysis. Sci Rep (2020) 10(1):1–14. doi:10.
1038/s41598-020-60255-4

15. Grigore A, Jolly M, Jia D, Farach-Carson M, Levine H. Tumor Budding: The
Name Is EMT. Partial EMT. J Clin Med (2016) 5(5):51. doi:10.3390/
jcm5050051

16. Guo S, Ye Y, Liu X, Gong Y, XuM, Song L, et al. Intra-Tumor Heterogeneity of
Colorectal Cancer Necessitates the Multi-Regional Sequencing for
Comprehensive Mutational Profiling. Cancer Manag Res (2021) 13:
9209–23. doi:10.2147/CMAR.S327596

17. Alizadeh AA, Aranda V, Bardelli A, Blanpain C, Bock C, Borowski C, et al.
Toward Understanding and Exploiting Tumor Heterogeneity.Nat Med (2015)
21(8):846–53. doi:10.1038/nm.3915

18. Losi L, Baisse B, Bouzourene H, Benhattar J. Evolution of Intratumoral Genetic
Heterogeneity during Colorectal Cancer Progression. Carcinogenesis (2005)
26(5):916–22. doi:10.1093/carcin/bgi044

19. Yohe S, Thyagarajan B. Review of Clinical Next-Generation Sequencing.
Arch Pathol Lab Med (2017) 141(11):1544–57. doi:10.5858/arpa.2016-
0501-RA

20. Gross A, Schoendube J, Zimmermann S, Steeb M, Zengerle R, Koltay P.
Technologies for Single-Cell Isolation. Int J Mol Sci (2015) 16(8):16897–919.
doi:10.3390/ijms160816897

21. Hu P, Zhang W, Xin H, Deng G. Single Cell Isolation and Analysis. Front Cel
Dev. Biol. (2016) 4(Oct). doi:10.3389/fcell.2016.00116

22. Lu Z, Moraes C, Zhao Y, You L, Simmons CA, Sun Y. A Micromanipulation
System for Single Cell Deposition. In: 2010 IEEE International Conference on
Robotics and Automation, Anchorage, AK, May 03–07, 2010. Anchorage, AK
(2010). p. 494–9. doi:10.1109/ROBOT.2010.5509784

23. Liao X, Makris M, Luo XM. Fluorescence-activated Cell Sorting for
Purification of Plasmacytoid Dendritic Cells from the Mouse Bone
Marrow. J Vis Exp (2016) 117:54641. doi:10.3791/54641

24. Penter L, Dietze K, Bullinger L, Westermann J, Rahn HP, Hansmann L. FACS
Single Cell index Sorting is Highly Reliable and Determines Immune
Phenotypes of Clonally Expanded T Cells. Eur J Immunol (2018) 48(7):
1248–50. doi:10.1002/eji.201847507

25. Zhang H, Liu K-K. Optical Tweezers for Single Cells. J R Soc Interf (2008)
5(24):671–90. doi:10.1098/rsif.2008.0052

26. Ladanyi A, Sipos F, Szoke D, Galamb O, Molnar B, Tulassay Z. Laser
Microdissection in Translational and Clinical Research. Cytometry (2006)
69A(9):947–60. doi:10.1002/cyto.a.20322

Pathology & Oncology Research July 2022 | Volume 28 | Article 16103428

Kothalawala et al. Overview of Single-Cell Analyses

https://doi.org/10.1038/nature11252
https://doi.org/10.1038/nm0797-730
https://doi.org/10.1016/j.cell.2009.08.017
https://doi.org/10.1016/j.cell.2009.08.017
https://doi.org/10.1126/science.959840
https://doi.org/10.1073/pnas.0530291100
https://doi.org/10.1098/rstb.2006.2017
https://doi.org/10.1136/jclinpath-2017-204739
https://doi.org/10.1136/jclinpath-2017-204739
https://doi.org/10.1101/gr.099622.109
https://doi.org/10.1016/j.ccr.2011.11.005
https://doi.org/10.1056/NEJMoa1113205
https://doi.org/10.1056/NEJMoa1113205
https://doi.org/10.1002/jcb.21159
https://doi.org/10.1136/jclinpath-2014-202561
https://doi.org/10.1155/2020/6283796
https://doi.org/10.1038/s41598-020-60255-4
https://doi.org/10.1038/s41598-020-60255-4
https://doi.org/10.3390/jcm5050051
https://doi.org/10.3390/jcm5050051
https://doi.org/10.2147/CMAR.S327596
https://doi.org/10.1038/nm.3915
https://doi.org/10.1093/carcin/bgi044
https://doi.org/10.5858/arpa.2016-0501-RA
https://doi.org/10.5858/arpa.2016-0501-RA
https://doi.org/10.3390/ijms160816897
https://doi.org/10.3389/fcell.2016.00116
https://doi.org/10.1109/ROBOT.2010.5509784
https://doi.org/10.3791/54641
https://doi.org/10.1002/eji.201847507
https://doi.org/10.1098/rsif.2008.0052
https://doi.org/10.1002/cyto.a.20322


27. Huang L, Ma F, Chapman A, Lu S, Xie XS. Single-Cell Whole-Genome
Amplification and Sequencing: Methodology and Applications. Annu Rev
Genom Hum Genet (2015) 16(1):79–102. doi:10.1146/annurev-genom-
090413-025352

28. Zong C. Multiple Annealing and Looping-Based Amplification Cycles
(MALBAC) for the Analysis of DNA Copy Number Variation. In:
JM Frade FH Gage, editors. Genomic Mosaicism in Neurons and Other Cell
Types, 131. New York, NY: Springer New York (2017). p. 133–42. doi:10.1007/
978-1-4939-7280-7_7

29. Saliba A-E, Westermann AJ, Gorski SA, Vogel J. Single-cell RNA-Seq:
Advances and Future Challenges. Nucleic Acids Res (2014) 42(14):8845–60.
doi:10.1093/nar/gku555

30. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq
Whole-Transcriptome Analysis of a Single Cell. Nat Methods (2009) 6(5):
377–82. doi:10.1038/nmeth.1315

31. Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, et al. Analysis of
Gene Expression in Single Live Neurons. Proc Natl Acad Sci U.S.A (1992)
89(7):3010–4. doi:10.1073/pnas.89.7.3010

32. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R.
Smart-seq2 for Sensitive Full-Length Transcriptome Profiling in Single Cells.
Nat Methods (2013) 10(11):1096–8. doi:10.1038/nmeth.2639

33. Soumillon M, Cacchiarelli D, Semrau S, van Oudenaarden A, Mikkelsen TS.
Characterization of Directed Differentiation by High-Throughput Single-Cell
RNA-Seq. bioRxiv (2014). Preprint. doi:10.1101/003236

34. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly
Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter
Droplets. Cell (2015) 161(5):1202–14. doi:10.1016/j.cell.2015.05.002

35. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al.
Massively Parallel Single-Cell RNA-Seq for Marker-free Decomposition of
Tissues into Cell Types. Science (2014) 343(6172):776–9. doi:10.1126/science.
1247651

36. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet
Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells.
Cell (2015) 161(5):1187–201. doi:10.1016/j.cell.2015.04.044

37. Hashimshony T, Wagner F, Sher N, Yanai I. CEL-seq: Single-Cell RNA-Seq by
Multiplexed Linear Amplification. Cel Rep (2012) 2(3):666–73. doi:10.1016/j.
celrep.2012.08.003

38. Clark SJ, Smallwood SA, Lee HJ, Krueger F, Reik W, Kelsey G. Genome-wide
Base-Resolution Mapping of DNA Methylation in Single Cells Using Single-
Cell Bisulfite Sequencing (scBS-Seq). Nat Protoc (2017) 12(3):534–47. doi:10.
1038/nprot.2016.187

39. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, et al. Single-
cell ChIP-Seq Reveals Cell Subpopulations Defined by Chromatin State. Nat
Biotechnol (2015) 33(11):1165–72. doi:10.1038/nbt.3383

40. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP,
et al. Single-cell Chromatin Accessibility Reveals Principles of Regulatory
Variation. Nature (2015) 523(7561):486–90. doi:10.1038/nature14590

41. Schwartzman O, Tanay A. Single-cell Epigenomics: Techniques and
Emerging Applications. Nat Rev Genet (2015) 16(12):716–26. doi:10.
1038/nrg3980

42. Li X, Wang C-Y. From Bulk, Single-Cell to Spatial RNA Sequencing. Int J Oral
Sci (2021) 13(1):36. doi:10.1038/s41368-021-00146-0

43. Vannay Á, Fekete A, Ádori C, Tóth T, Losonczy G, László L, et al. Divergence
of Renal Vascular Endothelial Growth Factor mRNA Expression and Protein
Level in post-ischaemic Rat Kidneys: Post-transcriptional Regulation of Renal
VEGF Synthesis. Exp Physiol (2004) 89(4):435–44. doi:10.1113/expphysiol.
2004.027516

44. Luquette LJ, Bohrson CL, Sherman MA, Park PJ. Identification of Somatic
Mutations in Single Cell DNA-Seq Using a Spatial Model of Allelic Imbalance.
Nat Commun (2019) 10(1):3908. doi:10.1038/s41467-019-11857-8

45. Mallory XF, Edrisi M, Navin N, Nakhleh L. Methods for Copy Number
Aberration Detection from Single-Cell DNA-Sequencing Data. Genome Biol
(2020) 21(1). doi:10.1186/s13059-020-02119-8

46. Daniel Lai GH. HMMcopy: Copy Number Prediction with Correction for GC
and Mappability Bias for HTS Data. Bioconductor (2021). doi:10.18129/B9.
BIOC.HMMCOPY

47. Bakker B, Taudt A, Belderbos ME, Porubsky D, Spierings DCJ, de Jong TV,
et al. Single-cell Sequencing Reveals Karyotype Heterogeneity in Murine and

HumanMalignancies.Genome Biol (2016) 17(1):115. doi:10.1186/s13059-016-
0971-7

48. Garvin T, Aboukhalil R, Kendall J, Baslan T, Atwal GS, Hicks J, et al.
Interactive Analysis and Assessment of Single-Cell Copy-Number
Variations. Nat Methods (2015) 12(11):1058–60. doi:10.1038/nmeth.3578

49. Wang X, Chen H, Zhang NR. DNA Copy Number Profiling Using Single-Cell
Sequencing. Brief Bioinform (2018) 19(5):731–6. doi:10.1093/bib/bbx004

50. Yu X, Abbas-Aghababazadeh F, Chen YA, Fridley BL. Statistical and
Bioinformatics Analysis of Data from Bulk and Single-Cell RNA
Sequencing Experiments. Methods Mol Biol (2021) 2194:143–75. doi:10.
1007/978-1-0716-0849-4_9

51. Trapnell C, Pachter L, Salzberg SL. TopHat: Discovering Splice Junctions with
RNA-Seq. Bioinformatics (2009) 25(9):1105–11. doi:10.1093/bioinformatics/
btp120

52. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
Ultrafast Universal RNA-Seq Aligner. Bioinformatics (2013) 29(1):15–21.
doi:10.1093/bioinformatics/bts635

53. Li H, Durbin R. Fast and Accurate Short Read Alignment with Burrows-
Wheeler Transform. Bioinformatics (2009) 25(14):1754–60. doi:10.1093/
bioinformatics/btp324

54. Langmead B, Salzberg SL. Fast Gapped-Read Alignment with Bowtie 2. Nat
Methods (2012) 9(4):357–9. doi:10.1038/nmeth.1923

55. Lu B, Zeng Z, Shi T. Comparative Study of De Novo Assembly and Genome-
Guided Assembly Strategies for Transcriptome Reconstruction Based on
RNA-Seq. Sci China Life Sci (2013) 56(2):143–55. doi:10.1007/s11427-013-
4442-z

56. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al.
Transcript Assembly and Quantification by RNA-Seq Reveals Unannotated
Transcripts and Isoform Switching during Cell Differentiation. Nat Biotechnol
(2010) 28(5):511–5. doi:10.1038/nbt.1621

57. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al.
SPAdes: A New Genome Assembly Algorithm and its Applications to Single-
Cell Sequencing. J Comput Biol (2012) 19(5):455–77. doi:10.1089/cmb.2012.
0021

58. Lun ATL, McCarthy DJ, Marioni JC. A Step-by-step Workflow for Low-Level
Analysis of Single-Cell RNA-Seq Data with Bioconductor. F1000Res (2016) 5:
2122. doi:10.12688/f1000research.9501.2

59. Bacher R, Chu L-F, Leng N, Gasch AP, Thomson JA, Stewart RM, et al.
SCnorm: Robust Normalization of Single-Cell RNA-Seq Data. Nat Methods
(2017) 14(6):584–6. doi:10.1038/nmeth.4263

60. Jia C, Hu Y, Kelly D, Kim J, Li M, Zhang NR. Accounting for Technical Noise
in Differential Expression Analysis of Single-Cell RNA Sequencing Data.
Nucleic Acids Res (2017) 45(19):10978–88. doi:10.1093/nar/gkx754

61. Kharchenko PV, Silberstein L, Scadden DT. Bayesian Approach to Single-Cell
Differential Expression Analysis. Nat Methods (2014) 11(7):740–2. doi:10.
1038/nmeth.2967

62. Cole MB, Risso D, Wagner A, DeTomaso D, Ngai J, Purdom E, et al.
Performance Assessment and Selection of Normalization Procedures for
Single-Cell RNA-Seq. Cel Syst (2019) 8(4):315–28. doi:10.1016/j.cels.2019.
03.010

63. Wang T, Li B, Nelson CE, Nabavi S. Comparative Analysis of Differential Gene
Expression Analysis Tools for Single-Cell RNA Sequencing Data. BMC
Bioinform (2019) 20(1):40. doi:10.1186/s12859-019-2599-6

64. Yu C, Yu J, Yao X, Wu WK, Lu Y, Tang S, et al. Discovery of Biclonal Origin
and a Novel Oncogene SLC12A5 in colon Cancer by Single-Cell Sequencing.
Cell Res (2014) 24(6):701–12. doi:10.1038/cr.2014.43

65. Wu H, Zhang X-Y, Hu Z, Hou Q, Zhang H, Li Y, et al. Evolution and
Heterogeneity of Non-hereditary Colorectal Cancer Revealed by Single-Cell
Exome Sequencing. Oncogene (2017) 36(20):2857–67. doi:10.1038/onc.
2016.438

66. Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB, Behjati S, et al.
Intra-tumour Diversification in Colorectal Cancer at the Single-Cell Level.
Nature (2018) 556(7702):457–62. doi:10.1038/s41586-018-0024-3

67. Bian S, Hou Y, Zhou X, Li X, Yong J, Wang Y, et al. Single-cell Multiomics
Sequencing and Analyses of Human Colorectal Cancer. Science (2018)
362(6418):1060–3. doi:10.1126/science.aao3791

68. Zhou Y, Bian S, Zhou X, Cui Y, Wang W, Wen L, et al. Single-Cell Multiomics
Sequencing Reveals Prevalent Genomic Alterations in Tumor Stromal Cells of

Pathology & Oncology Research July 2022 | Volume 28 | Article 16103429

Kothalawala et al. Overview of Single-Cell Analyses

https://doi.org/10.1146/annurev-genom-090413-025352
https://doi.org/10.1146/annurev-genom-090413-025352
https://doi.org/10.1007/978-1-4939-7280-7_7
https://doi.org/10.1007/978-1-4939-7280-7_7
https://doi.org/10.1093/nar/gku555
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1073/pnas.89.7.3010
https://doi.org/10.1038/nmeth.2639
https://doi.org/10.1101/003236
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1126/science.1247651
https://doi.org/10.1126/science.1247651
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1016/j.celrep.2012.08.003
https://doi.org/10.1016/j.celrep.2012.08.003
https://doi.org/10.1038/nprot.2016.187
https://doi.org/10.1038/nprot.2016.187
https://doi.org/10.1038/nbt.3383
https://doi.org/10.1038/nature14590
https://doi.org/10.1038/nrg3980
https://doi.org/10.1038/nrg3980
https://doi.org/10.1038/s41368-021-00146-0
https://doi.org/10.1113/expphysiol.2004.027516
https://doi.org/10.1113/expphysiol.2004.027516
https://doi.org/10.1038/s41467-019-11857-8
https://doi.org/10.1186/s13059-020-02119-8
https://doi.org/10.18129/B9.BIOC.HMMCOPY
https://doi.org/10.18129/B9.BIOC.HMMCOPY
https://doi.org/10.1186/s13059-016-0971-7
https://doi.org/10.1186/s13059-016-0971-7
https://doi.org/10.1038/nmeth.3578
https://doi.org/10.1093/bib/bbx004
https://doi.org/10.1007/978-1-0716-0849-4_9
https://doi.org/10.1007/978-1-0716-0849-4_9
https://doi.org/10.1093/bioinformatics/btp120
https://doi.org/10.1093/bioinformatics/btp120
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1007/s11427-013-4442-z
https://doi.org/10.1007/s11427-013-4442-z
https://doi.org/10.1038/nbt.1621
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.12688/f1000research.9501.2
https://doi.org/10.1038/nmeth.4263
https://doi.org/10.1093/nar/gkx754
https://doi.org/10.1038/nmeth.2967
https://doi.org/10.1038/nmeth.2967
https://doi.org/10.1016/j.cels.2019.03.010
https://doi.org/10.1016/j.cels.2019.03.010
https://doi.org/10.1186/s12859-019-2599-6
https://doi.org/10.1038/cr.2014.43
https://doi.org/10.1038/onc.2016.438
https://doi.org/10.1038/onc.2016.438
https://doi.org/10.1038/s41586-018-0024-3
https://doi.org/10.1126/science.aao3791


Human Colorectal Cancer. Cancer Cell (2020) 38(6):818–82. doi:10.1016/j.
ccell.2020.09.015

69. Wang Q, Wang Z, Zhang Z, Zhang W, Zhang M, Shen Z, et al. Landscape of
Cell Heterogeneity and Evolutionary Trajectory in Ulcerative Colitis-
Associated Colon Cancer Revealed by Single-Cell RNA Sequencing. Chin
J Cancer Res (2021) 33(2):271–88. doi:10.21147/j.issn.1000-9604.2021.02.13

70. Liu Y, Liu X, Xu Q, Gao X, Linghu E. A Prognostic Model of Colon Cancer
Based on the Microenvironment Component Score via Single Cell Sequencing.
In Vivo (2022) 36(2):753–63. doi:10.21873/invivo.12762

71. Arneson N, Hughes S, Houlston R, Done S. Whole-Genome Amplification by
Degenerate Oligonucleotide Primed PCR (DOP-PCR). Cold Spring Harb
Protoc (2008) 2008:pdb.prot4919. doi:10.1101/pdb.prot4919

72. Silander K, Saarela J. Whole Genome Amplification with Phi29 DNA
Polymerase to Enable Genetic or Genomic Analysis of Samples of Low
DNA Yield. In: M Starkey R Elaswarapu, editors. Genomics Protocols, 439.
Totowa, NJ: Humana Press (2008). p. 1–18. doi:10.1007/978-1-59745-188-8_1

73. Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno KD, Imai T, et al. Quartz-
Seq: A Highly Reproducible and Sensitive Single-Cell RNA Sequencing

Method, Reveals Non-genetic Gene-Expression Heterogeneity. Genome Biol
(2013) 14(4):R31. doi:10.1186/gb-2013-14-4-r31

74. Ramsköld D, Luo S, Wang Y-C, Li R, Deng Q, Faridani OR, et al. Full-
length mRNA-Seq from Single-Cell Levels of RNA and Individual
Circulating Tumor Cells. Nat Biotechnol (2012) 30(8):777–82. doi:10.
1038/nbt.2282

75. Nygaard V. Options Available for Profiling Small Samples: A Review of
Sample Amplification Technology when Combined with Microarray
Profiling. Nucleic Acids Res (2006) 34(3):996–1014. doi:10.1093/nar/
gkj499

Copyright © 2022 Kothalawala, Barták, Nagy, Zsigrai, Szigeti, Valcz, Takács,
Kalmár and Molnár. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Pathology & Oncology Research July 2022 | Volume 28 | Article 161034210

Kothalawala et al. Overview of Single-Cell Analyses

https://doi.org/10.1016/j.ccell.2020.09.015
https://doi.org/10.1016/j.ccell.2020.09.015
https://doi.org/10.21147/j.issn.1000-9604.2021.02.13
https://doi.org/10.21873/invivo.12762
https://doi.org/10.1101/pdb.prot4919
https://doi.org/10.1007/978-1-59745-188-8_1
https://doi.org/10.1186/gb-2013-14-4-r31
https://doi.org/10.1038/nbt.2282
https://doi.org/10.1038/nbt.2282
https://doi.org/10.1093/nar/gkj499
https://doi.org/10.1093/nar/gkj499
https://creativecommons.org/licenses/by/4.0/

	A Detailed Overview About the Single-Cell Analyses of Solid Tumors Focusing on Colorectal Cancer
	Introduction
	Models for Tumor Heterogeneity
	Tumor Microenvironment and Components of Tumors
	Methods for Evaluating Tumor Heterogeneity
	Techniques for the Isolation of Single Cells
	Molecular Biological Analysis of Single Cells
	Bioinformatic Analysis of Single-Cell Sequencing Data
	Bulk vs. Single-Cell Experiments in Colorectal Adenomas and Adenocarcinomas
	Conclusion
	Author Contributions
	Funding
	Conflict of Interest
	References


