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ABSTRACT Actinomyces succiniciruminis strain Am4T, isolated from cow rumen fluid,
can metabolize a range of substrates including complex carbohydrates to organic
acids. Here, we report a 3.33-Mbp draft genome of Actinomyces succiniciruminis.

The genus Actinomyces is comprised of many species that can be found in various
environments. Here, we report the draft genome sequence of a species belonging

to the genus Actinomyces that originates from a cow rumen. Actinomyces succiniciru-
minis (Am4T) was isolated from an enrichment of amylopectin using rumen microor-
ganisms (1).

The genus Actinomyces is one of the largest genera within the order and class
Actinobacteria (2). This genus currently contains 47 species and two subspecies that are
Gram-positive, pleomorphic, nonmotile, anaerobic, and aerotolerant bacteria with high
G�C content (2). Actinomyces succiniciruminis can convert amylopectin, starch, and
starch waste to mainly succinate, lactate, and small amounts of acetate and formate (1).

Genomic DNA of strain Am4T was extracted from glucose grown cells (1) using the
MasterPure complete DNA and RNA purification kit (Epicenter, Madison, WI). Genome
sequencing was performed on an Illumina MiSeq sequencer with a read length of
250 bp and an insert size of 500 at GATC-Biotech, Konstanz, Germany. The genome size
was first estimated by using kmerspectrumanalyzer (3) on the complete left side of
the paired-end data. The quality of the reads was evaluated by FastQC (http://www
.bioinformatics.babraham.ac.uk/projects/fastqc/). The reads were trimmed and then the
adapters were removed using Trimmomatic, version 0.32 (4). Afterward the assembly
was performed using Velvet v1.2.10 (5), with a k-mer value of 41 and a minimum contig
size of 500, followed by gapfilling with Gapfiller v1.11 (6). Annotation was carried out
with an in-house pipeline, as described in references 7, 8, followed by additional
annotation via PRIAM (9), version March 2013. Mapping of reads was performed with
BWA v0.7.7 (10). Identification of CAZymes was performed via dbcan v3.0 (11).

The total draft genome consists of 3.33 Mbp and 91 scaffolds with an N50 of
69,311 bp and a G�C content of 69.8%, which includes 99.37% of all filtered reads. The
genome contains 50 tRNAs genes, one of each rRNA subunit and encodes 2,897
putative proteins, of which 832 were denoted as hypothetical.

Of the 2,897 proteins, 1,745 could be classified according to the COG database (12).
Of these 1,745 proteins, 273 are involved in carbohydrate transport and metabolism,
followed by 245 with only a predicted function and 180 for amino acid transport and
metabolism.

Metabolic mapping with Pathway Tools v17 (13) showed that the organism is
capable of degrading glucose, galactose, mannose, and maltose. Furthermore, 173
CAZymes were identified. They enable the organism to degrade complex carbohy-
drates like starch or glycogen. Multiple enzyme coding genes were presented with
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multiple copies, e.g., eight beta-glucosidases, 21 glycosyltransferases type 4, four
alpha-L-rhamnosidases, 16 glycosylhydrolases type 13, including alpha-amylases, oligo-
1,6-glucosidases, pullulanases, and neopullulanase, showing the broad capacity of
A. succiniciruminis (Am4T) to degrade complex carbohydrates.

Accession number(s). The draft genome sequence of Actinomyces succiniciruminis

strain Am4T has been deposited at DDBJ/EMBL/GenBank under the accession no.
LK995455 to LK995545. The version described in this paper is the first version.
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