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Abstract

Predicting the subcellular localization of proteins conquers the major drawbacks of high-throughput localization
experiments that are costly and time-consuming. However, current subcellular localization predictors are limited in scope
and accuracy. In particular, most predictors perform well on certain locations or with certain data sets while poorly on
others. Here, we present PSI, a novel high accuracy web server for plant subcellular localization prediction. PSI derives the
wisdom of multiple specialized predictors via a joint-approach of group decision making strategy and machine learning
methods to give an integrated best result. The overall accuracy obtained (up to 93.4%) was higher than best individual
(CELLO) by ,10.7%. The precision of each predicable subcellular location (more than 80%) far exceeds that of the individual
predictors. It can also deal with multi-localization proteins. PSI is expected to be a powerful tool in protein location
engineering as well as in plant sciences, while the strategy employed could be applied to other integrative problems. A
user-friendly web server, PSI, has been developed for free access at http://bis.zju.edu.cn/psi/.
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Introduction

Discovering the subcellular localization of proteins provides

important clues for revealing their function and aids in under-

standing their interactions with other biomolecules at the cellular

level [1,2].The eukaryotic cell is particularly highly organized, in

which various protein functions and biological processes are

associated with specialized subcellular localizations. The localiza-

tion of proteins with known function can either aid in annotation

of newly discovered or sequence-inferred proteins or unravel how

and under what cellular compartments intricate pathways regulate

biological process. Some powerful experimental approaches, such

as proteomics and microscopic detection of tagged or labeled

proteins have been proposed [3]. However, these are invariably

expensive and time-consuming. With the development of high

throughput sequencing technology, a wealth of protein sequence

data has been accumulated. It is now highly desirable to develop

computational methods for protein subcellular localization pre-

diction based on amino acid sequence information.

Over recent years, various prediction methods and tools have

been introduced [4–23]. Most of these tools employ the machine

learning method to predict protein localization via learning

localization specific sequence features with proteins of known

localizations. Signal peptide and sequence similarity are widely

used sequence features to identify a protein’s location within the

cell by predictors such as mitoProt [24], TargetP [8], Predotar [7]

and PASUB [25] etc. Newly-developed methods consider anno-

tation information including function domain and motifs [21],

gene ontology terms [22] and textual information [23,24]. Some

predictors combine several features. For example, N-peptide

composition and physio-chemical properties were used together by

ESLpred [26]. Likewise, MultiLoc exploits amino acid composi-

tion, N-terminal targeting sequences and motifs [27].

Although much progress has been made in predicting plant

subcellular localization, current predictors remain limited in

their scope and accuracy. To the best of our knowledge, only

five predictors can cover all of the following ten locations: (1)

cytosol, (2) endoplasmic reticulum, (3) extracellular space, (4)

Golgi, (5) membrane, (6) mitochondrion, (7) nucleus, (8)

peroxisome, (9) plastid, and (10) vacuole. Others can discrim-

inate plant proteins among only few location sites. For instance,

TargetP [8] can cover three locations while iPSORT can only

capture two sites. Commonly, any given predictor may perform

well on certain locations or data sets but poorly on others. Often

predictions by different prediction tools disagree with each

other. This probably results from the employment of different

algorithms, a differing choice of training set, or the different

sequence features they exploit etc. Previous publications have

reported that an integration of various prediction methods may

outperform the individual methods [28]. Some meta-servers for

protein subcellular location prediction were proposed using the

voting method or machine learning method [29]. However, the

group voting method ignores non-linear effects between

predictor results and the neural network tends to sacrifice

accuracy of minor cellular compartments to reach an optimized

overall prediction result. Meanwhile, the performance of the

neural network method can be improved with addition of prior

knowledge. Our main inspiration was to unite the two
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integration methods (using group-voting results as neural

network inputs) to conquer more challenging tasks.

Here, we present PSI, a highly accuracy web server for plant

subcellular localization prediction. This represents the first attempt

to employ the combination of group voting, the group decision

making strategy, and the machine learning method artificial neural

network, to give an integrated best result. PSI conquers the

limitation in scope, accuracy and location prediction bias consist in

most other individual prediction tools. It can cover all of the

following ten locations: (1) cytosol, (2) endoplasmic reticulum, (3)

extracellular space, (4) Golgi, (5) membrane, (6) mitochondrion, (7)

nucleus, (8) peroxisome, (9) plastid, and (10) vacuole.

Results

Prediction bias
From the assessment of each individual predictor, a prediction

bias was reflected (Figure 1). For each certain predictor the

performance at a different subcellular location varied. This may be

due to differences in the employment of algorithms, choice of

training set, or sequence features they exploit etc. For example the

best individual predictor with highest overall AUROC value,

CELLO, actually performed rather poorly on prediction for the

vacuole. Meanwhile, some subcellular locations, such as the Golgi

apparatus, lacked accurate predictors. Successful integration

strategy takes advantages of the differing complementary strengths

of each of the location predictors. Thus, whilst the predictors’

performance varied, gains in accuracy are realized through

accumulation and through the non-linear relationships for

locations where all predictors performed poorly.

Community integration using group-voting
Ranking system. Predictor results for each protein sequence

were first separated into ten nodes for ten subcellular compart-

ments with their corresponding confidence score. The ranking

system for the separated compartment-specific nodes was estab-

lished according to confidence score among the all prediction

confidence scores given by that predictor. For each node, an

identifier was given and the normalized score was calculated

according to the function described in the method. The ranking

results and normalized scores for individual predictors were

presented in Table S3. True positive (TP) nodes and false positive

(FP) nodes are denoted by labeling the judge column 1 or 0

corresponding to the gold standard. Consequently the normalized

score of the TP nodes are higher than that of the FP nodes’ after

calculation according to the method. The T-test indicated a

significant difference between the mean values of the two

distributions. Figure S1 shows the TP vs. FP frequency-distribution

diagrams. Rank band was 0.01 ranging from 0 to 1. Meanwhile

the distribution for best individual predictor, CELLO, and

integration of three predictors, CELLO, WoLF PSORT and

MultiLoc was depicted in the same way. The mean difference

between the two peaks was observable and significant in the full-

integrated community while evaluation of AUROC reflected a

better prediction power when integration increased from 1 to 3

and from 3 to 11.

Performance evaluation. Using the integrated ranking

system, an average ranked list was given with an average score

ranging from 0 to 1 representing an increased confidence of the

prediction. Evaluation was performed against the ROC curve

(Figure 2). From the AUROC values, it was verified that the

community integration of predictors outperformed each individual

predictor, both overall and on individual subcellular location

(Figure 2).

Community integration using artificial neural-network
Topological structure determination. To determine the

best neural network structure, all predictor results were formed

sequentially as inputs for network training. Structure of 1, 2

hidden layers with 5, 10, 15 neurons respectively in each layer was

trained and the prediction power was evaluated by the test set via

AUROC. Note that as the neuron number increases in addition to

the increasing complexity of the model, the learning power also

always increases while the prediction power has a peak, due to the

Figure 1. Performance evaluation. (a) AUROC values for individual subcellular locations reflected a varied prediction power of different predictors
and on different location sites. Three integration strategies including group-voting (blue sphere), neural network (saffron triangle) and combination
(red stars) improved prediction power significantly for all subcellular locations. (b) Overall ROC-curves illustrated the significant elevation of
prediction power after integration. Grey lines denote the performance of the individual predictors. Blue line describes the performance of the group
voting method; the saffron line shows the accuracy of the neural network method and the red line characters the performance of the combination
method.
doi:10.1371/journal.pone.0075826.g001
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over-fitting phenomenon. Since the neural network performed

differently every time and gave local optimized results by chance,

each structure was trained 10 times and the best 3 ones were

picked out to give a statistical illustration of optimized results. The

structure with the best prediction power was proven to be that of

one hidden layer of ten neurons (Figure 2a).

Stepwise-selection of predictors. With the determined

structure of the neural network, stepwise selection was performed

to determine the best community of predictors. Predictors were

added according to their prediction power (AUROC value) from

high to low. A predictor was conserved in the community if the

prediction evaluation values (AUROC) for test set increased after

addition; otherwise it was removed in the next step. The detailed

stepwise-selection performance is shown in Figure 2b. Conse-

quently the best community for prediction consists of six

predictors: (1) CELLO, (2) WoLF PSORT, (3) MutiLoc, (4)

mPLoc, (5) YLoc, and (6) iPSORT. With the selection of feature

vectors from the above six predictors, the model which achieved

the higher accuracy was revealed by AUROC while the

complexity of the model could be reduced to avoid over-fitting,

Different topological structures were trained and evaluated again

using the same method and the selected community of predictors.

As a result, one hidden layer of ten neurons was found to be the

best structure with the best prediction power (Figure 2c).

Performance evaluation. Prediction results on test sets were

given via a neural network using 1 hidden layer with 10 neurons,

based on data from community of six selected predictors. Since the

neural network performed variably each time, the model with

highest overall performance, as evaluated by AUROC was

selected from among large amounts of trained models. The

overall performance evaluation illustrated that the neural network

method outperformed the group-voting method as a whole

(Figure 1). However on specified subcellular locations, the neural

network prediction performed rather poorly, e.g. on Golgi

apparatus. This is because unbiasedness cannot be guaranteed,

due to the black-box feature of neural networks. Therefore, a

neural network usually sacrifices the accuracy of minor cellular

compartments to reach the optimized overall prediction results.

Figure 2. Determination of the model topological structure. (a) Performance under different model structures with full data as input. Blue
lines denote the training set and red lines denote the test set. Peak for prediction was on 10 neurons, 1 hidden layer. (b) Stepwise-selection
performance was evaluated by AUROC. Obvious enhancement took place in step 2, 3 and 4. Peak was in step 9, with best community consisting of
cello, Wolf PSORT, MultiLoc, mPloc, YLoc and iPsort. (c) With selected community of predictors, model topological structure was determined using the
same method in (a). Peak was on 10 neurons, 1 hidden layer. (d) Model structure evaluation for combination of group-voting and neural network.
Results from group-voting were taken as input for neural network. Peak was on 10 neurons, 1 hidden layer. The best results are boxed in dash.
doi:10.1371/journal.pone.0075826.g002
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Community integration outperforms individual
predictors

With comprehensive comparison among the group-voting

method, artificial neural network method and each individual

predictor’s results, a clear enhancement of prediction power

evaluated by AUROC was discovered. Figure 1 shows that

community integration outperforms all individual predictors in

overall prediction accuracy, where the improvement of prediction

power by the neural network is more significant than that of

group-voting. However, group-voting guaranteed a lift of accuracy

on each specified subcellular location while the neural network

sacrificed accuracy of minor cellular compartments, such as Golgi

apparatus, to reach the optimized overall prediction results. This is

because neural network itself is a black-box algorithm and

unbiased property is not guaranteed. Group voting has been

mathematically proved to be unbiased improving the prediction

power as long as a better than random predictor performance is

added. In all, our results verified that the integration of predictors

outperforms each individual predictor and community integration

was required for accuracy.

Wisdom of group-voting and neural network
combination for subcellular localization prediction

We must consider that the group voting method ignores the

non-linear effects between predictor results where the neural

network method tends to sacrifice the accuracy of minor cellular

compartments, like Golgi apparatus, to reach the optimized

overall prediction results. Both integration strategies have their

strengths and limitations. Meanwhile, the neural network method

can improve its performance with addition of prior knowledge.

The strategy for integration of the two methodologies is shown in

Figure 3.

Using group-voting results as neural network inputs, the

topological structure was then determined. As a result, one hidden

layer of ten neurons was the best structure with the most

prediction power (Figure 2d). The overall performance for the

combination improved to AUROC,0.934, which outperformed

either group-voting (AUROC,0.906) or neural network

(AUROC,0.928) alone (Figure 1). Despite the overall better

performance, the combination model is better but not significantly

different to the results from the neural network alone. However,

the neural network itself is a black-box algorithm where unbiased

property is not guaranteed, which results in rather poor prediction

performance on specified subcellular locations e.g. on Golgi

apparatus. The combination performed well with an

AUROC$0.8 for each predictable subcellular location, which

was a better result than that of group-voting on most sites, while it

maintained a high prediction power for minor subcellular

locations that were lost in the neural network method.

Webserver implementation
The PSI-predictor took the input protein sequence in a FASTA

format. Both pasted sequences and files were acceptable for input,

with the pasted items limited to 20 sequences and with a file

limitation of 500 kb. The format was checked before submission.

Using the input sequences, predictor results were retrieved and

formatted. A webpage of visualization, to reflect the predictor

status, was shown after submission. Whenever a predictor’s result

was responded to, the indication of ‘ready to use’ would appear

and be hyperlinked to the individual result in a readable format

provided by the predictor itself.

After all predictor results were provided, the integration

algorithms were employed. Integrated prediction results were

given when all collection and integrations were complete. These

are illustrated in the result page with scores ranging from 0 to 1 for

each of the subcellular locations, i.e. extracellular, cytosol,

membrane, endoplasmic reticulum, mitochondria, Golgi appara-

tus, plastid, nuclear, vacuole and peroxisome. A higher score

represents a higher confidence of the protein’s existence in certain

cellular compartments whilst the P-values, as the statistical

inference in the brackets, show the confidence of the results. In

the result page, different P-value thresholds could be selected to

filter the results shown on the screen while in the downloaded file

all original data was reserved in a format that is easily imported

into XLS files. The webserver is accessible at http://bis.zju.edu.

cn/psi/

Comparison between PSI and other individual predictors
According to the cross validation with area under the ROC

curve (AUROC) [32], the area under the precision vs. recall curve

(AUPR) [32], F-score [33] and Matthews Correlation Coefficient

(MCC) [33] (the detail results were shown in Table S4), overall

performance for PSI improved to AUROC,0.934,

AUPR,0.644, F-score,0.568 and MCC,0.54, which outper-

formed all individual predictors. As determined by ANOVA (the

results were presented in Table S2), the performance of PSI is

significantly better than CELLO, mPLoc, MultiLoc, WoLF

PSORT, Predotar, subcellPredict, Yloc at p,0.05 level; there is

no significant difference between TargetP and PSI, though

TargetP only covers three locations (extracellular space, mito-

chondrion and plastid). In addition, other individual predictors

(iPSORT, mitoProt and PTS1) can only discriminate one or two

locations, which results in the N/A ANOVA results. In conclusion,

PSI significantly improved the plant’s subcellular location predic-

tion power.

The applicability of PSI in other plants
To explore the applicability of PSI in other plants, PSI has been

used to predict protein entries (drawn from Swiss-Prot database) in

Rice, Soybean, Spinach, Tabacco, Tomato and Barley (Table S5).

The results indicate that PSI can be used for more than the two

species discussed and would be potentially suited for plant-wide

use.

Discussion

Why we need employ the combination of group-voting
and neural network?

The purpose of any integration strategy is to make good use of

strengths of each component whilst offsetting their weaknesses, in

order to give an overall more accurate prediction than any

individual part. Prediction bias is the foundation as well as the

difficulty to overcome for any successful integration strategy.

These biases may come from different input features that the

predictors seek, different algorithms employed, and the different

training sets upon which the algorithm was built. For the specified

subcellular localization problem, prediction bias can be classified

into three sources, namely, complementary effects, accumulation

effects and non-linear effects.

Complementary effects. Complementary effects were con-

sidered where the subcellular location had both accurate

predictors and poor predictors. Based on prediction bias, different

predictors compensate for each other’s poorly predicted locations.

For example, the individual predictor MultiLoc gave the good

predictions on average, but performed relatively poor for the Golgi

apparatus and nucleus, which could be compensated for when

A Integrative Plant Subcellular Location Predictor
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other predictors’ results, such as CELLO or WoLF PSORT, were

added.

Accumulation effects. The accumulation effect is especially

important for the subcellular locations where none of the

predictors gave accurate predictions. Some subcellular loca-

tions, such as the vacuole and peroxisome, thus far lack any

accurate predictors. All the individual predictors collected

performed unsatisfactorily (Figure 2). SVD analysis confirmed

the independency of each individual predictor that is the specific

rank of an edge given by a predictor has no dependency on the

same edge’s rank from any other predictors. Due to the

statistical independency of predictor results, a more correct

prediction result was obtained when more predictors were

integrated. As the number of predictors integrated increases, the

prediction accuracy of poorly predicted locations from all

individual predictors will finally rise to a satisfying level. Here,

to give an unbiased accumulation and integration of prediction,

the group-voting method was employed.

Non-linear effects. In formatting and integrating prediction

results, non-linear effects were noticed to be considerably imported

for predictor integration. For example, mitoProt gives a probabil-

ity score that a certain protein exists in the mitochondria.

However, according to mitoProt’s performance in the training

set, a relatively high score was given to mitochondria as well as to

the plastid. Similar relationships of scoring were supposed to exist

in both intra- and inter-predictors. Such intrinsic correlations are

important sources of information that could be integrated to give a

better prediction, based on which artificial neural-network method

was introduced.

Furthermore, an integrative strategy can resolve conflicting

predictions made by elemental predictors which frustrate exper-

imenters and researchers in that it is hard to make a concrete

decision based on those predicted values. Group voting, as a

statistical technique for prediction integration, has been rigidly

proven to improve prediction power whenever an independent

predictor that performs better than random is added. Our results

further confirmed the effect of group voting by showing that

integration of predictors performed better than individual

predictors both on each of the subcellular locations and overall.

On the other hand, the neuron network took the non-linear

effects into consideration and turned out to be better than that of

the pure arithmetic average scores given by the group voting. A

theoretically optimized model of artificial neuron network could

give the same results as the combination of neural network and

group voting together where group voting results are used as the

input. In this, the group voting results actually act as prior

knowledge to help the neural network find the optimized

parameters.

Figure 3. Model for combination of group voting and neural network. Raw prediction results from 11 predictors first entered ranking system
to give prediction for each subcellular location of elevated-accuracy. Then neural network took group-voting output as input for further calculation
and adjustment. Final prediction results were given through neural network.
doi:10.1371/journal.pone.0075826.g003
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Nevertheless, the combination of group-voting and neural

network is currently the best approach that provides the most

reliable prediction results. It takes all the effects proposed above

(complementary effects, accumulation effects and non-linear

effects) into consideration and takes advantage of both group-

voting and neural network methods.

Influence of experimental data as input on result output
As only the experimental data was taken as gold standard, the

training set data is actually biased due to the imbalance of studies

for different cellular compartments. Well-studied compartments,

such as mitochondria or chloroplast, tend to contain more diverse

patterns while some minor compartments, such as the vacuole and

Golgi apparatus, contain fewer patterns. This phenomenon results

in a more sensitive output in the well-studied compartments while

giving a more specific output in the less-studied compartments.

Towards more powerful predictions
No matter how delicate and skillful the integration strategy

develops, the true threshold for highly accurate predictions always

lies in the deficiency of the individual predictors. Some of

subcellular locations are currently benefiting from a large amount

of study, such as for plastid and nucleus for which predictors of

high confidence have been readily developed. However some

subcellular locations, like Golgi apparatus and vacuoles, lack

accurate predictors. Although integration of predictors generally

improved prediction accuracy for these locations e.g. from

AUROC 0.68 to 0.80 after applying the algorithm for the

vacuole, the accuracy remains far from satisfactory. Herein we call

for predictors specified for the ‘minor’ subcellular locations, which

are equally important for the portrait of the whole biological

systems picture.

Currently only the static spatial picture is depicted via

prediction while, in biological systems, proteins are modified and

transported to different subcellular compartments from time to

time. Taking regulations of protein levels, such as protein

modifications and protein-protein interactions into account, we

could expect a more powerful predictor that responds to

predictions of spatial as well as temporal distribution when given

a protein sequence. This acquires a higher emphasis upon protein

targeting, and certainly makes more sense in systems biology.

Subcellular localization of proteins is considered to be important

for protein function. Based on predictions of high accuracy,

function analysis, such as clustering and protein family distribution

analysis, can be conducted. Data mining from a confident

prediction of protein targeting helps to gain insight in biological

pathway process and evolution, which is the ultimate goal of

subcellular localization prediction.

Materials and Methods

Experimental data and gold standard
Protein with curated locations from SUBA3 [30] and PPDB

[31] were used as our datasets, including 16009 protein sequences

located in ten sites: (1) cytosol (cytos), (2) endoplasmic reticulum

(ER), (3) extracellular space (extra), (4) Golgi apparatus (Golgi), (5)

membrane (membr), (6) mitochondria (mito), (7) nucleus (nucl), (8)

peroxisome (pero), (9) plastid (plast) and (10) vacuole (vacu) from

Arabidopsis and maize in order to build a meta-predictor specific

to plants. The number of protein sequence within each location

site was more than 100. In the SUBA3 database only the locations

derived by experiment (including Location Green Fluorescent

Protein, Location Mass Spec and Protein-protein Interaction) were

used as gold standards while the consensus locations by several

predictors were not included. Consequently, among the datasets,

one-fifth was randomly picked out as the test set and the rest as the

training set. Protein subcellular locations verified via experiments

were taken as the gold standard. Note that for a protein sequence,

subcellular locations which were not verified should be considered

as potentially existent rather than non-existent. Thus it is

reasonable to evaluate only true positive and false positive rates,

which will be further illustrated in ‘‘Assessment of subcellular

localization predictors’’.

Assessment of subcellular localization predictors
Totally of 22 currently published subcellular predictors were

collected. Among the community 11 predictors were chosen for

dataset prediction, which either provide a standalone version,

batch prediction or response of a single prediction within 1 min.

Other predictors were either off-shelf or the response was too slow

to predict mass data. A detailed summary of currently available

predictors is given in Table S1.

For each selected predictor, both single subcellular location

performance and overall performance was evaluated by splitting

prediction results into nodes with labels of each subcellular

location and corresponding confidence score. According to

confidence score a ranked list was given. Note that a ranked list

for a predictor here contained all prediction nodes given by that

predictor to avoid bias. The workflow from the prediction

matrix to the ranked list for one sequence is illustrated in

Figure 4. For a given protein sequence, raw prediction results

from 11 predictors were arranged in a performance matrix

(Figure 4a). The performance vector was obtained by splitting

prediction results of each predictor into ten nodes with sub-

location information and a corresponding confidence score

(Figure 4b). The ranking system was established according to

performance vectors. For each predictor, a rank list was given

according to the scores ranging from high to low in performance

vectors (Figure 4c).

Assessments for each subcellular localization predictor are given

by area under the ROC curve (AUROC, true positive rate vs. false

positive rate) [32], the area under the precision vs. recall curve

(AUPR) [32], F-score [33] and Matthews Correlation Coefficient

(MCC) [33]. True positive rate (TPR) and false positive rate (FPR)

as a function [9] of cutoff-value k were defined as follows [32]:

TPR(k)~
TP(k)

P
,

FPR(k)~
FP(k)

N
,

recall(k)~
TP(k)

P
,

precision(k)~
TP(k)

TP(k)zFP(k)
~

TP(k)

k
,

F{score~
2|precision|recall

precisionzrecall
,

where TP(k) is the number of true positive edges and FP(k) is the

number of false positive nodes in top k predictions in the ranked
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list, while P is the number of total positive nodes and N is the

number of total negative nodes according to the gold standard.

Since subcellular localizations of proteins not verified should be

considered as potentially existent rather than non-existent, only

true positive and false positive rates can be confirmed. Further-

more, by defining arbitrarily which of the two features is positive

or negative, intersection k of recall(k) curve and precision(k) curve

was calculated for each prediction method using the ranked list

and gold standards. Consequently, the top k nodes were defined as

positive predictions and others were regarded as negative

predictions. The following four quantities were defined: true

positives (tp) = number of positive events that are correctly

predicted; true negatives (tn) = number of negative event that are

correctly predicted; false positives (fp) = number of negative events

that are incorrectly predicted to be positive; and false negative

(fn) = number of subjects that are predicted to be negative despite

they are positive. Finally, the MCC was defined as [33]:

MCC~
(tp|tn){(fp|fn)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(tpzfp)|(tpztn)|(tnzfp)|(tnzfn)
p

Singular value decomposition analysis
Before the integration of predictors, singular value decomposi-

tion (SVD) analysis was performed to portray similarities and

variances of the predictors. Feature vectors were derived directly

from each predictor’s ranked list to form a performance matrix.

Feature vectors consist of ranks for individuals where smaller ranks

stand for higher confidence scores. Since subcellular locations

predictable from different predictor varied, feature vectors of same

Figure 4. Model for group voting. (a) Raw prediction results from 11 predictors were arranged in a performance matrix for a given protein
sequence. For subcellular locations that could not be predicted by a specified predictor, a short line presented the absence. (b) Performance vector of
predictors was obtained from the performance matrices of different sequences. Each node corresponds to a subcellular location with a score from
predictor and an id consisting of protein id and subcellular location code. (c) Ranking system was established according to performance vectors. For
each predictor, a rank list was given according to the scores ranging from high to low in performance vectors.
doi:10.1371/journal.pone.0075826.g004
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dimensions were put in one matrix for SVD via SVDLIBC.

Default parameters were used to perform this task.

Integration of predictors by group-voting
According to the ranked list used in the assessment procedure, a

normalized score of each individual node was introduced via

calculating the average value of all predictors [28]. Note that some

predictors capable of predicting only several locations gave nodes

with label ‘others’ and ‘no found’ which were not taken into

account for further analysis.

To balance the different predictable locations of predictors that

have different length of ranking range, the percentage (rank

divided by rank range) rather than rank was calculated. The

normalized score was given by

percentagei~
ranki

rank range
,

normalized scorei~1{

PK
1 percentagei from predictorj

K
,

where ranki was calculated from the above method for nodei, rank

range is the largest rank the predictor could give, K is the number

of predictors that was able to give corresponding predictions for

nodei. Some statistical tests were then performed to examine

whether the difference between true positive ranks and false

positive ranks was significant. Finally, the group voting perfor-

mance was estimated by the AUROC value.

Integration of predictors by artificial neural-network
The artificial neural-network took the raw score as the input

from predictors for each protein sequence. The inputs function

and activate function were chosen as:

Xj~
X

i
wixizbj ,

Yj~
1

1zeaXj
,

where wi is the weight, b denotes bias, and with the activate

function as a logsig function. Topological structure was deter-

mined and stepwise-selection of predictors was performed to form

the best community for prediction. The predictor’s results were

added one by one to form input feature subsets ordered according

to their accuracy (AUROC value) from high to low. Whenever a

predictor’s come-in caused a decline in AUROC, the predictor’s

results were abandoned. Then the optimal combination of

predictors was tested in different network structure to achieve

the best prediction results.

P-values as statistical inference for significance
Random sequences of amino acid residues randomly ranging

from 50 to 300 were generated through a simple perl script. These

sequences were considered to be negative sample which were

non-existent in any of the ten subcellular locations. The negative

sample was utilized for P-value construction, which will be

further illustrated in ‘‘P-values as statistical inference for

significance’’. BLASTP searches for the generated random

sequences were performed against the whole proteomes of

Arabidopsis and maize. Hits with an identity larger than 30%

were also removed to avoid bias. Sequences generated in such

methods were considered non-existent and prediction results

through the meta-predictor constituted the null hypothesis, from

which the P-value was drawn. Note that the P-value constructed

in this way reflected the confidence that the sequence was

existent in certain cellular compartment according to the null

hypothesis. Here smaller prediction scores corresponded to

higher P-values, meaning that the predictor had a higher

confidence that the protein was non-existent in that subcellular

location.

Supporting Information

Figure S1 Frequency-distribution for TP nodes vs. FP
nodes of single best predictor (cello), integration of 3
predictors (cello, Wolf PSORT, MultiLoc) and integra-
tion of 11 predictors were shown with AUPR and AUROC
values. Significant difference between distribution means could

be seen. AUPR and AUROC values raised as number of

predictors integrated increased.

(TIF)

Table S1 A detailed summary of currently available
predictors.

(XLSX)

Table S2 ANOVA for the performance of individual
predictors with PSI.

(XLSX)

Table S3 Ranking results and normalized scores for
individual predictors.

(ZIP)

Table S4 Performance comparison between PSI and
other individual predictors.

(XLSX)

Table S5 Predicted results for the proteins in other
plants by PSI.

(XLSX)
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