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Introduction
Neurogenesis has been defined as the ability of brain cells to 
regenerate themselves (Gage, 2000). This process has been 
known to occur in the adult mammalian brain for over 50 
years (Altman, 1962; Altman and Das, 1965). Neural stem 
cells are self-renewing multipotent cells that normally gener-
ate the main phenotypic cells of the nervous system namely, 
neurons, astrocytes and oligodendrocytes (Taupin, 2006). 
Neurogenesis has been reported in the mammalian brain of 
rats (Kuhn, et al., 1996), mice (Kempermann, et al., 1997), 
tree shrews (Gould, et al., 1997), guinea pigs (Altman and 
Das, 1967), rabbits (Gueneau, et al., 1982), cats (Wyss and 
Sripanidkulchai, 1985), monkeys (Rakic and Nowakowski, 
1981; Gould, et al., 1998, 1999), humans (Eriksson et al., 
1998) and the hippocampi of several other species (Patzke et 
al., 2013). 

New neurons are continually produced in the adult mam-
malian brain from progenitor cells located in specific re-
gions, including the subgranular zone of the dentate gyrus 
of the hippocampus (Siwak-Tapp, 2007). The mammalian 
brain consists of two types of neurogenic sites, active and 
potential neurogenic sites (Ihunwo and Pillay, 2007). The 
two active neurogenic regions of the brain are the rostral 
subventricular zone of the lateral ventricle and the subgran-
ular zone of the dentate gyrus of the hippocampus (Kaplan 

and Hinds, 1977; Kaplan and Bell, 1984). The subventricular 
zone is considered the largest active neurogenic site in the 
brain (Schauwecker, 2006) and it has been shown to be a 
source for cortical and subcortical neurons (Alvarez-Buylla 
and Garcia-Verdugo, 2002; Watts et al., 2005). Other areas 
of the brain where adult neurogenesis has been reported 
include the septum, substantia nigra, ependymal wall of the 
third ventricle, cerebral cortex, olfactory bulb and dorsal va-
gal complex (Reynolds and Weiss, 1992; Ihunwo and Pillay, 
2007). Evidence by Bernier et al. (2002) indicated that neu-
rogenesis is present in the amygdala and surrounding cortex 
of adult monkeys with the occurrence of a temporal migra-
tory stream, which is similar to rostral migratory stream.

Animals in their natural environment experience a com-
plex interactions compared to the laboratory animals that 
are limited in their exposures. The four-striped mouse is 
widespread and found in habitats such as grasslands, deserts 
and forests of Southern Africa and parts of the northern Af-
rica (Schradin and Pillay, 2004) and usually in colonies with 
very few population living as a group. They demonstrate 
bi-parental care and cover long distances in foraging for 
food. It has a body mass that ranges from 40 to 80 g (Maini, 
2003; Schradin and Pillay, 2004) and a small brain with an 
average mass of about 0.64 g (Schradin et al., 2014). Explor-
ing effects of environmental influences, animal behavior and 
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social interactions on adult neurogenesis is becoming a ma-
jor initiative in the field and collectively, these factors con-
stitute a number of combined forces acting on brain plas-
ticity, and ultimately, the rate and location of neurogenesis 
in adulthood (Boonstra et al., 2001). The aim of this study 
therefore is to explore adult neurogenesis occurrence in the 
active neurogenic sites: subventricular zone and dentate 
gyrus, as well as other reported potential sites in the four-
striped mice using immunohistochemistry.

Materials and Methods
Experimental animals
Four adult male four-striped mice were used with an aver-
age age of 100 days. The animals were captive-reared at the 
Central Animal Service Unit of the University of the Wit-
watersrand, South Africa. Their ancestors were of a defined 
colony typical of the description under introduction and 
captured with cage traps. The animals were treated and used 
according to the guidelines of the University of the Witwa-
tersrand Animal Ethics and Screening Committee, which 
parallel those set down by the National Institute of Health 
(NIH) for use of animals in scientific experiments. The four-
striped mice are widely distributed in Southern Africa occur-
ring in different habitats, such as grassland, marsh, forests, 
semi-deserts and deserts (Skinner and Chimimba, 2005). 
Four-striped mice are small diurnal murid rodents that are 
solitary in their living. They demonstrate bi-parental care 
with a very flexible social organization and mating system 
which is controlled mainly by resource availability and pop-
ulation density (Schradin and Pillay, 2005). They are very 
unique by the four distinct dark longitudinal stripes running 
the length of their back.

Tissue processing
The animals were euthanized intraperitoneally with sodi-
um pentobarbital (80 mg/kg) and transcardially perfused 
with 0.9% cold saline followed by 4% paraformaldehyde in 
0.1 mol/L phosphate buffer. Brains were carefully removed, 
weighed and post-fixed in 4% paraformaldehyde in 0.1 mol/L 
phosphate buffer, then allowed to equilibrate in 30% sucrose 
in 0.1 mol/L PBS. Brains were then kept frozen in dry ice and 
sectioned using a sliding microtome in the sagittal plane at 50 
μm section thickness covering the entire brain. One in five se-
ries of sections was stained for a cell proliferation marker Ki-
67 and an immature neuronal marker doublecortin (DCX).

Immunohistochemistry for Ki-67 
The Ki-67 is a chromosome-associated protein present 
during division (G1, S, G2, and M, but absent from cells at 
rest, G0). Free floating sections were incubated for epitope 
retrieval in citrate buffer, pH 6.0, at 90˚C for 40 minutes, 
followed by incubation in endogenous peroxidase blocking 
reagent, 0.6% H2O2 in Tris-buffered saline (TBS)-Triton 
(0.05% Triton X-100 in TBS, pH 7.4) for 30 minutes at room 
temperature. Thereafter, sections were pre-incubated in 2% 
serum (normal goat serum) + 0.1% bovine serum albumin 
(BSA) + 0.25% Triton in TBS, for 60 minutes at room tem-
perature. Afterwards, sections were incubated with poly-

clonal rabbit-anti-lyophilized-Ki-67p antibody (Novocastra, 
Newcastle, UK; 1:5,000 in preincubation solution) overnight 
at 4˚C. Incubation with biotinylated goat anti-rabbit IgG 
(1:1,000 + 2% normal goat serum + 0.1% BSA  in TBS; Vec-
tor lab, CA, USA; 1:250) was performed for 2 hours at room 
temperature followed by incubation with streptavidin-biotin 
complex (Vectastain Elite ABC kit) and stained with 3,3′-di-
aminobenzidine (DAB) as chromogen. Until incubation 
with primary antibody, all rinses in between incubations 
were made with TBS-Triton, afterwards with TBS alone.

Immunohistochemistry for DCX
DCX is a microtubule associated protein expressed specifi-
cally in newly generated neuronal precursors, immature & 
migrating neurons. Sections were washed three times for 
10 minutes in PBS and then rinsed with Tris-buffered sa-
line and Tween 20 (TBST) once for 5 minutes under gentle 
shaking at room temperature. Thereafter, sections were then 
treated with blocking solution, 5 % normal rabbit serum in 
TBST for 30 minutes. Tissues were transferred into primary 
antibody goat anti-mouse DCX antibody (Santa Cruz Bio-
technology, CA, USA; 1:400) in TBST supplemented with 2 % 
BSA and 2 % normal rabbit serum overnight at 4˚C under 
gentle shaking. Incubation with secondary antibodies (rabbit 
anti-goat IgG (1:250) + 2 % normal rabbit serum + 0.1% 
BSA in TBS) was performed for 2 hours followed by incuba-
tion with streptavidin-biotin complex (Vectastain Elite ABC 
kit) and stained with DAB as chromogen. 

Microscopic analysis
Sections of the brains were analyzed and photomicrographs 
were taken with the aid of Zeiss Axioskop light microscope 
(Carl Zeiss Microscopy GmbH, Jena, Germany) using vari-
able objective lenses and Axiovision software (Carl Zeiss Mi-
croscopy GmbH).

Results
Ki-67-immunoreactive cells 
Ki-67-immunoreactive cells appeared darkly stained and 
were easily seen in various sites of the brain (Figure 1A–C). 
The Ki-67-immunoreactive cells appeared more numer-
ous in the subventricular layer of the dentate gyrus. These 
cells were present in the two established neurogenic sites; 
subventricular zone and the dentate gyrus (Figure 1A, B). 
Also, Ki-67-immunoreactive neurons were visible in the 
rostral migratory stream and olfactory bulb (Figure 1C). 
No Ki-67-immunoreactive cells were observed in the stria-
tum, amygdala, cerebral cortex or dorsal vagal complex.

DCX-immunoreactive cells
DCX-immunoreactive cells presented visible bipolar neurons 
with ovoid cell bodies and axonal and dendritic processes, 
an evidence of immature neurons. The dendrites extended 
towards the outer molecular layer of the dentate gyrus. In 
addition to the two active neurogenic sites, DCX-immuno-
reactive cells were observed in the striatum, third ventricle, 
cerebral cortex, amygdala, olfactory bulb and along the ros-
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tral migratory stream. They were however absent in the sub-
stantia nigra and dorsal vagal complex. The staining intensi-
ty of the DCX in the dentate gyrus of the hippocampus and 
the rostral migratory stream were quiet conspicuous (Figure 
2). A summary of sites where adult neurogenesis was either 
present or absent in the four-striped mice using immunohis-
tochemistry for Ki-67 and DCX are shown in Table 1.

Discussion
We assessed adult neurogenesis using two different cell 
markers, the Ki-67 and DCX for cell proliferation and im-
mature neurons respectively. Adult neurogenesis remains a 
complex process involving the proliferation, survival, dif-
ferentiation, and functional integration of new cells in the 
brain. The cellular and molecular mechanisms that regulate 
adult neurogenesis remain unclear (Schauwecker, 2006) but 
can be modulated by a variety of factors including glutamate 
receptor activation (Cameron et al., 1995, 1998; Gould et al., 
1997; Bernabeu and Sharp, 2000), dietary restriction (Lee et 
al., 2002), growth factors (Palmer et al., 1995; Scharfman et 

al., 2005), stress (Brunson et al., 2005; Nichols et al., 2005) 
and neuronal injury (Parent, 2003; Cooper-Kuhn et al., 
2004). Enriched environments (Kempermann et al., 1997), 
running wheel exercise (van Praag et al., 1999; Hauser et al., 
2009), hippocampal-dependent learning (Gould et al., 1999), 
and dietary restriction (Lee, et al., 2000, 2002), all these in-
crease neurogenesis in the adult hippocampus. Stress (Goul-
det al., 1997, 1998) and social isolation (Lu et al., 2003; Chet-
ty et al., 2009) reduces hippocampal neurogenesis. However, 
Kannangara et al. (2009) reported that social isolation does 
not affect adult neurogenesis. It was reported that estradiol 
alter hippocampal neurogenesis in the adult female rodents 
(Galea et al., 2006) even though a decrease in hippocampal 
neurogenesis does not always correlate with the development 
of learned helplessness in male rats (Vollmayr et al., 2003). 
According to Boonstra et al. (2001), both the daily behaviour 
and the immediate environment of species are intimately 
related with addition of new neurons throughout adulthood 
which provides a basis for investigating animals in the wild 
for increased neural plasticity and possible factors for this 

Figure 1 Representative photomicrograph of Ki-67 immunohistochemical staining in the various brain regions of four-striped mice. 
(A) DG; (B) subventricular zone and RMS. (C) A magnified image of the RMS showing the darkly stained neurons. Scale bars: 20 μm in A, 10 μm 
in B and 1 μm in C. DG: Dentate gyrus; RMS: rostral migratory stream; hil: hilum; LV: lateral ventricle.

Figure 2 Representative 
photomicrograph of doublecortin (DCX) 
immunohistochemical staining in the 
brain of four-striped mice. 
(A) Dentate gyrus with the immunoreac-
tive cells lining the whole length. (B) DCX- 
immunoreactive cells on the subventricular 
zone of the lateral ventricle. (C) Six differ-
ent layers in the olfactory bulb region with 
the immature neurons. (D) The striatum 
and isolated neurons (black arrows) and 
the subventricular zone (red arrows). Scale 
bars: A, C, 20 μm; B, D, 2.5 μm. LV: Lateral 
ventricle; ONL: olfactory nerve layer; GL: 
glomerular layer; EPL: external plexiform 
layer; MCL: mitral cell layer; IPL: internal 
plexiform layer; GCL: granule cell layer.
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mechanism. In all the immunostaining of the brain of four-
striped mice, new neurogenic cells were observed either in 
clustered or isolated form. These differences were evident in 
relation to the neurogenic regions, active or potential sites. 
In the hippocampus, more Ki-67 and DCX-immunoreactive 
cells were observed. DCX-immunoreactive cells were also 
found in the striatum of the brain but sparsely distributed 
compared to the subventricular zone and dentate gyrus.

The predominant DCX-immunoreactive cells appeared in 
clusters but varied in shape according to Plumpe et al. (2006). 
The somas of DCX-immunoreactive cells were primarily 
located in the subgranular layer and were bipolar with an 
ovoid soma. Their dendrites reach as far as the molecular 
layer of the dentate gyrus while some dendrites only end in 
the granular layer. 

The subventricular zone has two precise layers of cells: 
the first is a monolayer of multi-ciliated cells lining the lat-
eral ventricle called the ependymal layer; and the second 
layer is a 2–3 cell layer thick area adjacent to the ependymal 
layer called the subependymal layer. The neuroblasts from 
the subventricular zone travel a long distance to the olfac-
tory bulb through a network of interconnecting pathways 
that become confluent at the rostral margin of the lateral 
ventricle wall to form the rostral migratory stream (Watts 
et al., 2005). In mammals, the generation of new neurons 
is mostcommonly observed in the subgranular zone of the 
hippocampal dentate gyrus and the subventricular zone 
from where cells migrate along the rostral migratory stream 
to the olfactory bulb (Ming and Song, 2011). This is true in 
the four-striped mice. This study therefore adds the four-
striped mice to the growing list of wild-caught mammalian 
species with persistent adult neurogenesis. In conclusion, a 
combination of Ki-67 and DCX immunohistochemistry has 
provided evidence of adult neurogenesis in the active and 
some potential sites in four-striped mice. 
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