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Growing evidence indicates that gut microbiota factors cannot be viewed as
independent in the occurrence of obesity. Because the gut microbiome is highly
dimensional and complex, studies on interactions between gut microbiome and host
in obesity are still rare. To explore the relationship of gut microbiome–host interactions
with obesity, we performed multi-omics associations of gut metagenome, intestinal
transcriptome, and host obesity phenotypes in divergently selected obese–lean broiler
lines. Metagenomic shotgun sequencing generated a total of 450 gigabases of clean
data from 80 intestinal segment contents of 20 broilers (10 of each line). The microbiome
comparison showed that microbial diversity and composition in the duodenum,
jejunum, ileum, and ceca were altered variously between the lean- and fat-line broilers.
We identified two jejunal microbes (Escherichia coli and Candidatus Acetothermia
bacterium) and four cecal microbes (Alistipes sp. CHKCI003, Ruminococcaceae
bacterium CPB6, Clostridiales bacterium, and Anaeromassilibacillus sp. An200), which
were significantly different between the two lines (FDR < 0.05). When comparing
functional metagenome, the fat-line broilers had an intensive microbial metabolism in
the duodenum and jejunum but degenerative microbial activities in the ileum and ceca.
mRNA-sequencing identified a total of 1,667 differentially expressed genes (DEG) in the
four intestinal compartments between the two lines (| log2FC| > 1.5 and FDR < 0.05).
Multi-omics associations showed that the 14 microbial species with abundances that
were significantly related with abdominal fat relevant traits (AFRT) also have significant
correlations with 155 AFRT-correlated DEG (p < 0.05). These DEG were mainly involved
in lipid metabolism, immune system, transport and catabolism, and cell growth-related
pathways. The present study constructed a gut microbial gene catalog of the obese–
lean broiler lines. Intestinal transcriptome and metagenome comparison between the
two lines identified candidate DEG and differential microbes for obesity, respectively.
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Multi-omics associations suggest that abdominal fat deposition may be influenced by
the interactions of specific gut microbiota abundance and the expression of host genes
in the intestinal compartments in which the microbes reside. Our study explored the
interactions between gut microbiome and host intestinal gene expression in lean and
obese broilers, which may expand knowledge on the relationships between obesity and
gut microbiome.

Keywords: whole metagenome sequencing, mRNA sequencing, multi-omics associations, obesity, broiler

INTRODUCTION

Obesity is a systemic lipodystrophic syndrome which is a
serious health problem worldwide in humans. Chicken has
unique metabolic features, i.e., hyperglycemia and insulin
resistance, which can serve as an interesting model organism
for studying the development of obesity (Resnyk et al., 2013).
In chicken, excessive abdominal fat accumulation is the major
obesity phenotype, which causes negative influence on chicken
production and consumption (Wang et al., 2007; Abdalla
et al., 2018). Growing evidence has proved that crucial gut
microbiome alteration could lead to many chronic metabolic
disorders (Yan et al., 2017; Aw and Fukuda, 2018; Hoyles
et al., 2018), especially in adiposity (Bouter et al., 2017).
Although previous studies have indicated that gut microbiota
had comprehensive impacts on obesity (Ussar et al., 2016;
Org and Lusis, 2018; Lee et al., 2020), the underlying
interaction mechanism between gut microbiome and host
remains ambiguous.

The animal intestinal tract, as an important interface
between host and gut microenvironment, functions as an
organ for digestion and absorption of diets (Parker and Picut,
2016). The intestinal tract functional variations directly impact
systemic nutrition metabolism, especially lipid metabolism,
which ultimately contributes to obesity (Kondo et al., 2006;
Mao et al., 2013). Altered functions such as an increase in
mucus layer permeability and breach of intestinal integrity
have been reported in obese mice, though causality was
unclear (Teixeira et al., 2012; Araujo et al., 2017). At the
molecular level, several intestinal genes and pathways were also
significantly changed in obese humans and mice, compared
to controls (Mao et al., 2013; Pfalzer et al., 2016; Xie et al.,
2017). Altered intestinal functions could be mediated by the
varied gut microbiome in obesity. Previously, studies of human
fecal microbiome have found that obese individuals possessed
significantly decreased microbial diversity and metagenome
gene counts (Turnbaugh et al., 2009; Le Chatelier et al.,
2013). When comparing gut microbial composition between

Abbreviations: AFRT, abdominal fat relevant traits; DEG, differentially expressed
gene; AFD, abdominal fat deposition; NEAUHLF, Northeast Agricultural
University broiler lines divergently selected for abdominal fat content; AFW,
abdominal fat weight; AFP, abdominal fat percentage; BW, body weight; TG,
triglycerides; CHO, total cholesterol; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; TBA, total bile acid; TP, total
protein; ALB, albumin; GLU, glucose; AST, aspartate transaminase; ALT, alanine
transaminase; CREA, creatinine; GGT, γ-glutamyl transpeptidase; UA, uric acid;
MGC, microbial gene catalog.

obese and lean individuals, the differences of specific microbial
relative abundance were inconsistent among studies, with
some researchers reporting a higher ratio of Firmicutes to
Bacteroidetes (F/B) in obesity (Turnbaugh et al., 2006, 2009;
Koliada et al., 2017), whereas other studies have not drawn
a similar conclusion without any explanation (Duncan et al.,
2008; Schwiertz et al., 2010b; Fernandes et al., 2014). In
regard to microbial relative abundance, genera including
Megamonas (Maya-Lucas et al., 2019), Oscillospira, Ruminococcus
(Jiao et al., 2018), Fusobacterium, Escherichia-Shigella, and
Pseudomonas (Gao et al., 2018) were significantly increased
in obese humans and mice. Recently, studies on chicken
cecal microbiome showed that Microbacterium, Sphingonomas,
Olsenella, Methanobrevibacter, and Slackia were positively
correlated with fat metabolism (Xiang et al., 2021; Zhang
et al., 2021). Functional analysis of microbiome indicated
that pyruvate metabolism, butanoate metabolism, propanoate
metabolism, pentose phosphate pathway, fatty acid biosynthesis,
and glycerolipid metabolism pathways were enriched in obese
mice (Jiao et al., 2018), while glycolysis I (from glucose 6-
phosphate) and glycolysis II (from fructose 6-phosphate) were
significantly overrepresented in normal individuals (Maya-Lucas
et al., 2019). In chicken, functional enrichments of cecal
microbiome found that microbial pathways including lipid
metabolism, carbohydrate metabolism, and energy metabolism
pathways were upregulated in high AFD group, when compared
to low-AFD group (Xiang et al., 2021).

In general, most studies were only focused on gut microbiome
differences between obesity and control and ignored the
interactions between the gut microbiota and host. However,
a previous study in chickens implied that gut microbiome
could not be viewed as independent of its environment
and is regulated by the host genetic background (Zhao
et al., 2013). Considering the proximity and direct contact
between the intestine and the microbiota, we hypothesized
that the interaction of the specialized intestinal microbiome,
which resulted from genetic selection, with the intestinal
compartment in which it resides is an important mechanism
contributing to AFD in broilers. In this study, multi-omics
combination analysis of host phenotype, intestinal transcriptome,
and corresponding metagenome in the Northeast Agricultural
University broiler lines divergently selected for abdominal
fat content (NEAUHLF) has been performed to reveal the
association of host–gut microorganism interactions with AFD.
These findings may benefit our understanding of gut microbial
effects on obesity and offer novel guidance for strategies
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to target gut–microbe interactions to mitigate abdominal fat
accumulation in broilers.

MATERIALS AND METHODS

Experimental Population
The lean and fat broilers were derived from the 21st generation
of the NEAUHLF. We have previously reported the detailed
breeding scheme of NEAUHLF (Guo et al., 2011). After 21
generations of selection, there is over a 10-fold difference in
AFP between the two lines, representing a classical obese–
lean study model. All broilers were raised in similar feeding
surroundings and had free access to feed and water. To
prevent contamination from uncontrolled particle intake and
feathers, all broilers were raised in individual cages with wire
floors. A commercial soybean-based diet that met all of the
National Research Council (NRC) requirements was provided;
a starter diet of 3,000 kcal ME/kg and 210 g/kg CP was
fed to the birds until 3 weeks of age, while a grower diet
of 3,100 kcal metabolizable energy (ME)/kg and 190 g/kg
crude protein (CP) was fed from 3 to 7 weeks of age (Guo
et al., 2011). No antibodies nor veterinary drugs were used
in animal raising of the present study. At age of 7 weeks,
10 male individuals of each line were selected randomly to
investigate the interactions between gut microbiome, host gene
expression, and obesity.

Phenotypic Measurement and Sample
Collection
After fasting 12 h, the BW of the 20 experimental birds
were measured with an electronic scale. Blood was collected
from the brachial wing vein, and serum fraction was sampled
for measurement of serum biochemical parameters using an
Architect C8000 Automatic Biochemical Analyzer (Abbott, Inc.,
Chicago, IL, United States) in the clinical laboratory of the Fourth
Hospital of Harbin Medical University (Harbin, China). The
measurements included TBA, TP, TG, GLU, CHO, HDL-C, LDL-
C, GGT, AST, ALT, ALB, UA, and CREA (Dong et al., 2015).
Then the birds were euthanized, and the AFW was measured,
while the AFP was calculated based on the AFW and BW.
Four intestinal sections including the duodenum, jejunum, ileum,
and ceca were carefully divided with sterilized monofilament
nylon thread, placed on ice, and rapidly transported to the
laboratory for further processing. The duodenal compartment
starts at the pylorus of the gizzard and extends to the end
of the duodenal loop; the jejunal compartment follows the
duodenum and extends to the Meckel’s diverticulum, while
the ileal compartment follows the jejunum and extends to the
ileocecal junction, followed with cecal sections in the two flanks
(Wang et al., 2014). The four intestinal contents were sampled
for metagenome sequencing following the procedure reported by
Quince et al. (2017). To avoid contamination bias, the luminal
contents were sampled and frozen promptly with liquid nitrogen
in the laboratory super clean bench. Subsequently, 3 cm of
intestinal tissue from the middle of each section was sampled and
snap-frozen in liquid nitrogen for mRNA sequencing.

Metagenome DNA Preparation and
Sequencing
The gut microbial DNA was isolated from the four intestinal
contents per bird using the QIAamp DNA Stool Mini
Kit (Qiagen, Hilden, Germany) following the standard
manufacturer’s protocol at Novogene Bioinformatics Technology
Co., Ltd (Tianjin, China) (Lim et al., 2018). In DNA quality
control, Optical Density (OD) value between 1.8 and 2.0
and DNA yields above 1 µg were prepared for each library
construction. The qualified DNA samples were randomly
interrupted into about 350-bp fragments using a Covaris
sonicator (Covaris, Inc., Woburn, MA, United States). Then,
to prepare these fragments for Illumina sequencing using
PCR amplification, samples were end-polished, polyA-tailed,
and ligated with the full-length adaptors (Illumina Inc., San
Diego, CA, United States). The AMPure XP system (Beckman
Coulter, Beverly, MA, United States) was utilized to purify the
PCR products, while the Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, United States) and real-time PCR
were applied to evaluate size distribution and quantity of libraries
at Novogene Bioinformatics Technology Co., Ltd, respectively.
After clustering of the index-coded samples on the flow cells,
the libraries were sequenced on the Illumina PE150 platform
(Novogene Bioinformatics Technology Co., Ltd.) and 150-bp
paired-end reads were generated.

Metagenome Assembly and Gene
Catalog Construction
Readfq software (V81) was performed to preprocess the raw
data, from which unqualified reads and adapters were filtered
out to obtain clean data. Considering the possibility of host
and food contamination (Huang et al., 2018), clean data were
subsequently aligned to the possible non-microbial genomes
(including chicken, human, corn, wheat, and soybean genome)
using Bowtie2.2.4 software to filter out the noisy reads (from
contaminating genomes) with the default parameters (Langmead
and Salzberg, 2012). For single-sample assembly, the clean
reads from each sample were then assembled and analyzed by
SOAPdenovo (V2.04, parameters: -d 1, -M 3, -R, -u, -F, -K
55) (Luo et al., 2012; Qin et al., 2014; Feng et al., 2015). The
assembled scaffolds were separated at connecting Ns, leaving
scaftigs without Ns (Mende et al., 2012; Qin et al., 2014). To
maximize the utilization of data, a mixed sample assembly
process was performed on the unused PE reads that did not
align to the scaftigs using Bowtie2.2.4 (Qin et al., 2014); the
unused reads from all samples were combined and used to
assemble additional scaftigs using SOAPdenovo. Open reading
frame (ORF) prediction was performed for all scaftigs longer than
500 bp using MetaGeneMark software (V2.102); any predicted
ORFs shorter than 100 nt were removed with default parameters
(Qin et al., 2010; Li et al., 2014). The unique initial gene catalog
was constructed through CD-HIT software (V4.5.8; parameters:
-c 0.95, -G 0, -aS 0.9, -g 1, -d 0) (Fu et al., 2012). The clean data

1https://github.com/cjfields/readfq
2http://topaz.gatech.edu/GeneMark/
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of each sample were then mapped to the initial catalog using
Bowtie2.2.4 with default parameters to obtain the number of
reads per gene in each sample (Li et al., 2014; Qin et al., 2014).
Genes with less than two aligned reads in each sample were
removed to acquire the final gene catalog, which was applied in
subsequent analysis (Li et al., 2014). According to the gene length
and the mapped read counts, the abundance of each gene (G in
the formula below) in each sample was statistically calculated by
the following formula:

Gk −
rk

Lk
×

1∑n
i = 1

ri
Li

in which r stands for the mapped read counts of each gene
and L is the corresponding gene length (Qin et al., 2010). The
above analyses were performed by Novogene Bioinformatics
Technology Co., Ltd.

Taxonomy Prediction and Statistics
DIAMOND software (V0.9.93) was adopted to BLAST the
catalog genes to the NR database (Version: 2019-04-094) of
National Center for Biotechnology Information (NCBI) with
the parameter of blastp, -e 1e-5. As multiple aligned results
for one Unigene, the lowest common ancestor (LCA) algorithm
of MEGAN software was applied to acquire the final taxon
annotation of each Unigene (Oh et al., 2014). The final
chicken gut MGC included 1,296,491 genes. On the basis
of gene abundance and LCA annotations, the quantity and
abundance matrix of each taxonomy hierarchy (kingdom,
phylum, class, order, family, genus, and species) were calculated
statistically per sample. The above analyses were performed by
Novogene Bioinformatics Technology Co., Ltd. Based on the
above taxonomy hierarchy matrix, the subsequent analysis of
microbiota structure and diversity was performed with the vegan
package (Oksanen et al., 2013) in R (version 3.6.1). The Metastats
method compiled with R language was performed in detection
of differential microbial taxa between two lines. A permutation
test between the two lines was used in Metastats analysis for
each taxonomy, while Benjamini and Hochberg false discovery
rate (FDR) was used to correct each p-value (White et al., 2009).
Taxonomies identified in all samples of at least one group and
with relative abundance over 0.1% were used to perform the
differential comparisons between two lines.

Metagenome Functional Annotation
DIAMOND software (V0.9.9) was also performed to BLAST the
catalog genes to the Kyoto Encyclopedia of Genes and Genomes
database (KEGG, Version 20180101), Carbohydrate-Active
enZYmes database (CAZY, Version 2015.08) and evolutionary
genealogy of genes: Non-supervised Orthologous Groups
database (eggNOG, Version 4.5) with the parameter setting of
blastp, -e 1e-5 (Feng et al., 2015). For multiple BLAST results
of each Unigene, the best BLAST hit was selected as the final
function annotation (Feng et al., 2015). The above analyses were
carried out by Novogene Bioinformatics Technology Co., Ltd.

3https://github.com/bbuchfink/diamond/
4https://www.ncbi.nlm.nih.gov/

For the functional abundance matrix, the relative abundance of
each functional hierarchy was the sum of the relative abundances
for genes annotated to that functional level per sample.

Transcriptome Sequencing and Analysis
The total RNA of the corresponding four intestinal tissues
was prepared for mRNA sequencing using TRizol reagent
(Invitrogen, Carlsbad, CA, United States) following the
manufacturer’s protocol at Novogene Bioinformatics Technology
Co., Ltd. The RNA integrity and yield were assessed by the
RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system
(Agilent Technologies, Santa Clara, CA, United States)
and the NanoPhotometer R©spectrophotometer (IMPLEN,
Westlake Village, CA, United States), respectively. The RNA
Integrity Number values were all greater than 6.8 (average
of 8.28), and the RNA yield of each sample was more than
4 µg. In accordance with the manufacturer’s protocol of the
NEBNext R©UltraTM RNA Library Prep Kit for Illumina R©(NEB,
Ipswich, MA, United States), 3 µg of RNA per sample was
used to generate sequencing libraries with index codes added
to assign sequences to each sample. The libraries were clustered
following the manufacturer’s recommendations of the cBot
Cluster Generation System using TruSeq PE Cluster Kit v3-
cBot-HS (Illumina Inc.). Finally, the clustered libraries were
sequenced on an Illumina HiSeq platform (by Novogene
Bioinformatics Technology Co., Ltd.), and 150-bp paired-end
reads were generated.

Reads containing adapter, reads containing poly-
N, and low-quality reads from raw data were filtered
using Trimmomatic with the default parameters
(PE ILLUMINACLIP:./adapter_fasta.fa:2:30:10
SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3
MINLEN:36) (Bolger et al., 2014). Subsequently, high quality
clean data were mapped to the chicken reference genome
(version: galGal5). Reference genome and gene model annotation
files were downloaded from the NCBI genome website directly.
Bowtie v2.2.3 was employed to build a search index of the
reference genome, then TopHat v2.0.12 was applied to align the
pair-end clean reads to the reference genome (Trapnell et al.,
2009). The reads mapped to each gene in each individual dataset
were counted by using HTSeq v0.6.1 (Anders et al., 2015). The
above steps of read mapping and counts were performed by
the Novogene Bioinformatics Technology Co., Ltd. Differential
expression analysis of the lean vs. fat lines within each intestinal
compartment was performed using the DESeq2 R package
(version 1.24.0) (Love et al., 2014). Genes with FDR (adjusted
p-value) less than 0.05 and absolute log2-fold change more than
1.5 were assigned as DEGs. For gene functional enrichment
analysis, KEGG enrichment was subsequently performed using
the clusterProfiler R package (v3.12.0) and the pathway profiles
in the KEGG database (Yu et al., 2012).

Differentially Expressed Genes Validation
Using qPCR
The RNA isolates used for qPCR validation were the same
as those used for RNA-seq. The PrimeScriptTM RT reagent
kit with gDNA Eraser (Perfect Real Time) (Takara Bio

Frontiers in Microbiology | www.frontiersin.org 4 February 2022 | Volume 12 | Article 815538

https://github.com/bbuchfink/diamond/
https://www.ncbi.nlm.nih.gov/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-815538 February 12, 2022 Time: 16:33 # 5

Jing et al. Intestine–Microbiota Interactions on Obesity

Inc., Kusatsu, Japan) was applied to remove genomic DNA
and perform the reverse transcription reaction following the
manufacturer’s recommended protocol. Specific primers (see in
Supplementary Table 1) for candidate genes with the ideal
amplification efficiency between 90% and 110% were selected to
perform the validated experiment (Broeders et al., 2014). The
ABI QuantStudioTM 6 Flex Real-Time PCR System (Applied
Biosystems, Foster City, CA, United States) was adopted to
perform the real-time qPCR of candidate genes with FastStart
SYBR Green Master (Roche, Mannheim, BW, Germany). The
reaction conditions were as follows: an initial denaturation
at 95◦C for 10 min, 40 cycles of 15 s at 95◦C, and 1 min
at 60◦C. Internal reference gene stability was estimated with
NormFinder R scripts5, and TBP was finally selected as the
internal reference gene. Ct values of all genes were analyzed
using QuantStudioTM Real-Time PCR Software v1.3 (Applied
Biosystems). Gene expression comparison between the two lines
within each intestinal compartment was done using the 2−11Ct

method (Livak and Schmittgen, 2001) in Excel and pairwise
correlation and linear regression between Log2FC (–11Ct for
each comparison) in qPCR validation, and Log2FC in mRNA-
Seq were calculated in JMP 10.0.0 (SAS Institute, Inc., Cary,
NC, United States).

Statistical Analysis and Multi-Omics
Association
Phenotypes were statistically compared to the difference between
the lean and fat broilers with Student’s t-test in SPSS 18.0
(IBM, Armonk, NY, United States). Omics-related analysis were
performed in R software, version 3.6.1. Phenotype correlations
were firstly calculated, and serum biochemical indices (ALB,
CHO, GGT, GLU, HDL-C, HDL-C/LDL-C, TP, UA) that were
significantly related with AFW or AFP were considered AFRTs
(Supplementary Figure 1). To obtain the AFRT-correlated
genes and microbial species within each tissue compartment,
we first employed correlations of the intestinal transcriptome
and gut microbiome with AFRT using the weighted gene co-
expression network analysis (WGCNA) R package (Miller et al.,
2010). In detail, genes of the transcriptome were first clustered
into multi-modules, and modules that significantly correlated
(Pearson correlations) with AFRT were selected (Supplementary
Figure 2). Subsequently, genes in the above modules were
screened for individual correlations with AFRT (p-values less
than 0.05 identified AFRT-correlated genes). Finally, hub genes
that correlated with AFRT were selected to perform the following
multi-omics correlations (Supplementary Table 2). As there
was non-normal distribution of microbial data, Spearman rank
correlations were adopted when calculating correlations with
microbial species. Otherwise, similar analysis procedures in
WGNCA were performed in selecting AFRT-correlated microbial
species (Supplementary Figure 3). Spearman rank correlations
were finally performed to identify the correlations between
AFRT-correlated microbial species and host genes in each tissue;
genes with less p-values than 0.05 were viewed as significantly
correlated with AFRT-correlated species. Because there was a

5https://www.moma.dk/files/r.NormOldStab5.txt

far greater number of species in the cecal microbiome than in
the small intestine, only microbes in the ceca that significantly
differed between the two lines were correlated with the AFRT, and
a more stringent threshold of p-value less than 0.01 was used for
the final correlation of AFRT-correlated genes and microbe.

RESULTS

Phenotype Characterization of the Lean-
and Fat-Line Broilers
The comparison analysis of the phenotypes between two lines
are summarized in Table 1. The studied broilers from two lines
had a significant difference of AFW and AFP (p < 0.05), with
no difference of BW (p > 0.05). For clinical serum biochemical
phenotypes, HDL-C, ratio of HDL-C to LDL-C, TP, ALB, GGT,
and UA in the fat line were significantly higher than in the lean
line, while GLU was significant decreased in fat-line broilers
(p < 0.05). These phenotypes indicated that this sample of
broilers satisfactorily represents our NEAUHLF population as an
ideal obese–lean study model to investigate our hypothesis.

Gut Microbial Gene Catalog
To profile the gut metagenome, we sampled 80 intestinal contents
from the four intestinal compartments (duodenum, jejunum,
ileum, and ceca) of the same 10 broilers per line. Metagenomic
shotgun sequencing was performed to generate a total of 450

TABLE 1 | The comparison of phenotypes between the lean and fat lines.

Phenotype Lean line (n = 10) Fat line (n = 10) p-Value

BW/kg 2.218 ± 0.015 2.189 ± 0.129 0.370

AFW/g 14.319 ± 1.127b 117.869 ± 4.306a 1.037 × 10−13

AFP/% 0.646 ± 0.050b 5.401 ± 0.210a 3.507 × 10−13

TG (mmol/L) 0.322 ± 0.023 0.378 ± 0.029 0.835

CHO (mmol/L) 3.051 ± 0.091 3.271 ± 0.111 0.425

HDL-C (mmol/L) 2.164 ± 0.071b 2.573 ± 0.094a 0.002

LDL-C (mmol/L) 0.649 ± 0.036 0.591 ± 0.039 0.282

HDL-C/LDL-C (%) 3.173 ± 0.303b 4.658 ± 0.432a 0.017

TBA (µmol/L) 2.743 ± 0.484 2.943 ± 0.610 0.799

TP (g/L) 29.607 ± 0.653b 36.657 ± 1.369a 8.5 × 10−5

ALB (g/L) 13.143 ± 0.310b 15.157 ± 0.494a 0.002

GLU (mmol/L) 12.174 ± 0.132a 10.761 ± 0.225b 1.1 × 10−5

AST (U/L) 288.786 ± 12.894 265.000 ± 13.903 0.221

ALT (U/L) 2.500 ± 0.272 2.286 ± 0.194 0.527

AST/ALT (%) 143.232 ± 25.858 132.357 ± 16.592 0.726

CREA (µmol/L) 3.157 ± 0.329 3.750 ± 0.379 0.248

GGT (U/L) 14.357 ± 0.862b 19.071 ± 0.863a 0.001

UA (µmol/L) 162.743 ± 17.384b 284.350 ± 39.886a 0.010

a,bSuperscript letters in the same row mean a significant difference between the
two lines (p < 0.05).
Values in table are described with mean ± standard error.
BW, body weight; AFW, abdominal fat weight; AFP, abdominal fat percentage; TG,
triglycerides; CHO, total cholesterol; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; TBA, total bile acid; TP, total
protein; ALB, albumin; GLU, glucose; AST, aspartate transaminase; ALT, alanine
transaminase; CREA, creatinine; GGT, γ-glutamyl transpeptidase; UA, uric acid.
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gigabases (Gb) of clean data (average of 5.63 Gb per sample)
(Supplementary Table 3). A total of 2.44 million non-redundant
genes were then identified, with an average ORF length of
560.44 bp (details in Supplementary Table 4). In rarefaction
analysis on all samples, identified microbial genes (MG) numbers
approached saturation by 20 samples and, when each tissue
was considered separately, revealed that the majority of MG
were identified in the ceca. These results indicated that the
gut MGC has covered most of the microbiota in our broilers
(Supplementary Figure 4).

Microbial taxa annotation showed that over half of the
non-redundant genes (1.29 million) could be taxonomically
classified (details in Supplementary Table 5). In total, 99.7%
genes with annotations were taxonomically assigned to the
kingdom level, among which bacteria account for 99.4% of
the annotated genes, with 0.3% being from archaea and
eukaryote and 0.3% being from virus and unclassified kingdom.
Of bacterial genes, over 93% genes belonged to the main
four phyla, including Firmicutes (79.5%), Bacteroidetes (9.0%),
Proteobacteria (4.1%), and Actinobacteria (0.5%). At lower
taxonomic levels, 71.91% and 57.18% of the annotated genes
in this catalog were taxonomically classified at the genus and
species levels, respectively. At the genus levels, most of the
bacterial genes annotated to Clostridium (15.76%), followed by
Lachnoclostridium (7.03%), Bacteroides (5.56%), Flavonifractor
(4.52%), and Blautia (3.73%). At the species levels, most
bacterial genes belonged to Firmicutes bacterium (7.57%),
followed by Clostridiales bacterium (4.42%), Lachnoclostridium
sp. An298 (1.30%), Candidatus Borkfalki ceftriaxensis (1.19%),
and Pseudoflavonifractor sp. An184 (1.11%).

The Gut Microbiome Composition
Analysis of the Lean- and Fat-Line
Broilers
Based on the constructed MGC, the relative abundance matrix of
microbial taxa was calculated to investigate the gut microbiota
differences between the lean and fat broilers. In microbial
alpha diversity, the fat-line broilers revealed a significant
decrease in both gene counts and Shannon index in the
ceca compared with the lean-line broilers (p < 0.05), and
there were no significant differences between lines in the
small intestine (p > 0.05, Figure 1A). To avoid confounding
variations within group, partial least squares discriminant
analysis (PLS-DA) was performed as a supervised model to
illustrate the microbial species variations between the two lines
for each tissue compartment, which showed that there was
some extent of separation between the two lines, although
with partial overlap, in small intestinal compartments and
a clear separation of each line in the ceca (Figure 1B).
The relative abundance of dominant species in the four
intestinal compartments of each line is displayed in Figure 1C.
Subsequently, microbes identified in all samples of at least one
group with relative abundance exceeding 0.1% were compared
in the four intestinal compartments between the two lines; this
showed that the jejunum and ceca had a distinct microbial
characterization at both genus and species levels (Figure 2

and Supplementary Figure 5). At the species level, Escherichia
coli and Candidatus Acetothermia bacterium were significantly
increased in the jejunum of fat-line broilers (FDR < 0.05,
Figure 2). In the ceca, two microbial species, Alistipes sp.
CHKCI003 and Ruminococcaceae bacterium CPB6, had a
significantly increased abundance in fat-line broilers, whereas
two other species (C. bacterium and Anaeromassilibacillus sp.
An200) were significantly decreased (FDR < 0.05, Figure 2).
Another two cecal species, Pseudoflavonifractor sp. An184 and
Eubacterium sp. CAG:180, showed an increased trend in the
lean line (FDR < 0.1, Figure 2). As the F/B is a candidate
indicator for obesity, we also examined the F/B, which was
decreased in all four intestinal compartments of obese birds
(Supplementary Figure 6).

Functional Metagenome Profile of the
Lean- and Fat-Line Broilers
To further gain the functional metagenome variations between
the two lines of broilers, we subsequently annotated the MG
by using three gene functional databases: KEGG, CAZY, and
eggNOG. To avoid biases caused by varied sequencing depth
among samples, we screened the functional categories that
existed at least in all individuals of one line with the mean relative
abundance over 0.1%. In KEGG pathways comparison, we,
respectively, identified 3, 27, 1, and 10 pathways of duodenum,
jejunum, ileum, and ceca significantly varied between the two
lines of broilers (p < 0.05, Figure 3A). The jejunum occupied
more numbers of significantly differential microbial pathways
between the two lines, including fatty acid metabolism, varied
amino acids metabolism, carbohydrate metabolism, membrane
transport, nucleic acids metabolism, biotin metabolism, and
energy metabolism (p < 0.05, Figure 3A). In the ceca, nine
microbial pathways mainly containing nucleotide metabolism
and amino acid metabolism were significantly increased in the
lean line, while “NOD-like receptor signaling pathway” was
significantly enriched in the fat line (p < 0.05, Figure 3A).

The CAZY families comparison showed that seven families
in the four intestinal compartments were significantly different
between the two lines (duodenum, 1; jejunum, 2; ileum, 1; ceca,
3; p < 0.05, Figure 3B). CBM13, as a kind of carbohydrate-
binding module-binding mannose, was significantly increased in
the duodenum of the fat-line broilers (p < 0.05, Figure 3B).
The glycoside hydrolases (GH23 and GH18) were significantly
enhanced in the jejunum of the fat-line broilers (p < 0.05,
Figure 3B). The two glycoside hydrolase families were involved in
cleaving either chitin or peptidoglycan, which demonstrated that
the jejunal microbiome of fat-line broilers displayed increased
activities of turnover. GH1, as a family of glycoside hydrolases
containing glucosidase, galactosidase, mannosidase, etc., was
found to significantly increase in the ileum of the lean-line
broilers (p < 0.05, Figure 3B). Among the three CAZY families
in the ceca, CBM50 and GH4 were significantly enriched in the
lean-line broilers, while GH36 was significantly enhanced in the
fat-line broilers (p < 0.05, Figure 3B).

A total of 18 significantly differential ortholog groups
were identified in all intestinal compartments except for the
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FIGURE 1 | The difference of microbial diversity and composition between the lean- and fat-line broilers. (A) The comparison of non-redundant gene numbers and
Shannon index in four intestinal compartments between the two lines. Mann–Whitney U test was performed to verify the difference, in which p < 0.05 indicated a
significant difference. (B) Partial least squares discriminant analysis of microbial species composition in the four intestinal compartments, which showed a clear
isolation of the ceca and some extent of separation in the small intestine (duodenum, jejunum, and ileum) between the two lines. (C) The relative abundance of the
top 10 microbial species in the four intestinal compartments of the two lines of broilers. The blue boxes and points represent lean-line broilers, while the red boxes
and points are fat-line broilers.

duodenum when compared in eggNOG terms (jejunum, 10;
ileum, 2; ceca, 6; p < 0.05, Figure 3C). In the jejunum, apart
from ENOG410YP23 (related with ubiquinone metabolism),
the other nine ortholog groups (mainly involved in protein
biosynthesis and modification) were significantly enriched
in the fat-line broilers (p < 0.05, Figure 3C). For the
ileum, ENOG410XR2N [lysine (K)-specific demethylase] was
significantly enriched in the fat line, while COG2188 (GntR
family transcriptional regulator) was significantly enhanced
in the lean line (p < 0.05, Figure 3C). Among the six
ortholog groups in the ceca, only ENOG410XNMH (histidine
kinase) was significantly enriched in the fat line; the other five
microbial ortholog groups (COG2801, COG0474, COG0621,
COG0270, and COG0542) were significantly enriched in the
lean line (p < 0.05, Figure 3C). These five ortholog groups
are mainly associated with retrotransposon, energy metabolism,

translation, and methylation. These functional comparisons of
gut microbiome demonstrated that fat birds have enhanced
microbial activities (e.g., carbohydrate and protein metabolism)
in the duodenum and jejunum but are hypoactive in the
ileum and cecum.

The Intestinal Transcriptome
Landscapes of the Lean- and Fat-Line
Broilers
The mRNA sequencing of 80 samples from four intestinal
compartments were profiled through Illumina HiSeq platform.
A total of 4,210,120,566 raw reads with a length of 150 bp
were obtained from the sequencing of 80 libraries. After quality
control, a total of 4,034,423,542 clean reads were retained with
the average clean data yield of 7.56 GB per sample, and the
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FIGURE 2 | The difference in species abundance between the lean- and fat-line broilers. Microbial species identified in all samples of at least one group with relative
abundance over 0.1% were used to perform the differential comparison between the two lines. Metastats software was used, and species with FDR < 0.1 are
shown in the figure. No differential species between the two broiler lines were identified in the duodenum and ileum. The green and orange columns stand for lean
line and fat line, respectively. The green boxes stand for lean-line broilers, while the orange boxes stand for fat-line broilers. *FDR < 0.05; +0.05 ≤ FDR < 0.1.

percentage of Q30 bases was > 90% (Supplementary Table 6).
The rates of clean reads mapped to the chicken reference genome
(version: galGal5) have been summarized in Supplementary
Table 6, of which the average mapping rate was more than 80%.
Meanwhile, approximately 20,000 chicken genes were detected in
each sample (Supplementary Table 6), and in total, 28,199 genes
were detected. Among these genes, a total of 26,309 genes were
identified as known genes, with the remaining 1,890 novel genes.

Based on the read counts matrix, the DESeq2 R package was
applied to identify the DEG of the four intestinal compartments
between the lean and fat lines. As shown in Supplementary
Figure 7, more downregulated DEG were identified in the lean
broilers from all four intestinal compartments using the threshold
values of | log2FC| > 1.5 and FDR < 0.05. Comparing the
two lines within the four intestinal compartments, 122 DEG
were common to all of four compartments, and 157 DEG to the
three small intestinal tissues (Supplementary Figure 7). To verify
the results from mRNA-seq, a total of 18 DEG (six upregulated
DEG and six downregulated DEG in each compartment; each
verified DEG was used in at least two different compartments)
were randomly selected and confirmed with qRT-PCR assay.
A high Pearson correlation coefficient (0.87) and R-squared value
(0.76) were obtained between qRT-PCR assay and mRNA-seq
results, demonstrating the reliability of our DEG identification
(Supplementary Figure 7).

To reveal the underlying functional mechanisms of the
differences between the lean and obese broilers, KEGG
enrichment analysis was applied to functionally annotate the

DEG. Pathway significant enrichment was conducted using
pathway profiles in the KEGG database, and hypergeometric tests
were performed to examine the pathways that were significantly
enriched by the DEG when compared to the background. The
significantly enriched pathways were displayed in Figure 4,
which illustrates that five pathways were shared in all four
compartments. Notably, lipid metabolism-related pathways were
significantly changed in some intestinal segments between the
two lines (p < 0.05), including “fatty acid degradation” in the
duodenum; “glycerophospholipid metabolism and sphingolipid
metabolism” in the ileum; and “steroid hormone biosynthesis,”
“linoleic acid metabolism,” “ether lipid metabolism,” and “alpha-
linolenic acid metabolism” in the ceca. The detailed DEG with
significant enrichment in lipid metabolism relevant pathways are
summarized in Supplementary Table 7. The enrichment analysis
demonstrated that the variations of lipid metabolism relevant
pathways could be one of the main drivers in regulating the
difference of AFD between the two lines.

Associations of Microbe–Intestine
Interactions With Broiler Abdominal Fat
Deposition
To further explore the interactions between host and gut
microbiome, correlation analysis of abdominal fat traits,
intestinal transcriptome, and metagenome species were
performed by using a multi-omics correlation analysis. Briefly,
the WGCNA R package was used to identify the crucial intestinal
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FIGURE 3 | Variations of the gut microbiome functions between the lean- and fat-line broilers. The functional categories of KEGG pathways (A), carbohydrate-active
enZYmes families (B), and eggNOG ortholog groups (C) were compared between the lean and fat lines through non-parametric Mann–Whitney U test, in which
p-values less than 0.05 were shown in the figure. These functional categories that participated in the comparison existed in all samples of at least one line with
relative abundances that were over 0.1%. The color scale represents the row Z score. The blue and orange patterns in the upper bound of each heatmap are the
individuals of lean line and fat line, respectively. The yellow, pink, green, and gray patterns in the left part of each heatmap represent the duodenum, jejunum, ileum,
and ceca, respectively.

genes (Supplementary Figure 2 and Supplementary Table 2)
and microbes (Supplementary Figure 3) that significantly
correlated with the AFRT within each tissue compartment.
Subsequently, based on the AFRT-correlated genes and
microbes, correlations between intestinal genes and microbes
were calculated (Figure 5). Because of the importance of DEG,
the genes in the microbe–gene correlations were required to also
have significance as DEG within the tissue compartment; thus,
Figure 5 shows the AFRT-correlated DEG in each tissue that were
significantly correlated with AFRT-correlated microbial species.

In the duodenum, two microbial species (Epulopiscium
sp. SCG-B11WGA-EpuloA1 and Coxiella burnetii) that both
increased in the lean line were significantly correlated with AFRT
(p < 0.05, Supplementary Figure 3). When the two microbial
species were tested for correlation with the intestinal genes that
had significant correlations with AFRT, the expression of 23
duodenal DEG had significant correlations with one or both
of the two microbial species relative abundances (p < 0.05,
Figure 5A). Pathway annotation of these 23 genes showed that
they were mainly involved in fatty acid metabolism, transport and
catabolism, immunity and infection, and nucleic acid metabolism
(Supplementary Table 8). In the jejunum, seven microbial
species (Lactobacillus aviaries, Lactobacillus reuteri, Epulopiscium
sp. SCG-B11WGA-EpuloA1, C. burnetii, Hannaella oryzae, E. coli,
and Candidatus Acetothermia bacterium) were significantly
correlated with AFRT (p < 0.05, Supplementary Figure 3).
The differential comparison of these seven species between

the two lines showed that the abundances of Epulopiscium sp.
SCG-B11WGA-EpuloA1, C. burnetii, and H. oryzae were higher
in the lean line, while the other four species abundances were
lower. Within the AFRT-correlated genes, the expression levels
of 50 jejunal DEG were subsequently found to have significant
correlations with the above seven microbial species (p < 0.05,
Figure 5B). Notably, ACSBG1, GRP, HSD3B1, and PLA2G4EL2
genes were involved in lipid metabolic pathways (i.e., “fatty
acid biosynthesis,” “fatty acid degradation,” “PPAR signaling
pathway,” “adipocytokine signaling pathway,” “steroid hormone
biosynthesis,” and “ether lipid metabolism”). In the ileum,
three microbial species, Candidatus Arthromitus sp. SFB-turkey,
Campylobacter jejuni, and Campylobacter coli, were significantly
correlated with AFRT (p < 0.05, Supplementary Figure 3). Of
the three species, the abundances of the two Campylobacter
species were decreased in the lean line, while the abundance
of Candidatus Arthromitus sp. SFB-turkey was increased. The
correlations between these three species and AFRT-correlated
genes showed that the expression of 38 ileal DEG had significant
correlations with the relative abundance of the three microbial
species (p < 0.05), where 18 genes were upregulated and the other
20 genes were downregulated (lean line vs. fat line, Figure 5C).

Because of the large number of cecal microbes, only
those microbes that were significantly different in the ceca
between the two lines were chosen to correlate with AFRT,
and four species (Alistipes sp. CHKCI003, Eubacterium sp.
CAG:180, Anaeromassilibacillus sp. An200, and Clostridia
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FIGURE 4 | KEGG pathway enrichment analysis of DEG between the two lines in four different intestinal compartments. The y-axis shows the name of the pathway,
and the x-axis shows the Rich factor. The pathways with significant enrichment were shown in the KEGG scatter plot. The dot size represents the number of different
genes, and the color indicates the p-value. The Rich factor is the proportion of the number of differentially expressed genes and the number of all annotated genes in
a given pathway. The greater the Rich factor, the higher the degree of enrichment. (A) Duodenum; (B) jejunum; (C) ileum; (D) ceca.

bacterium) were significantly correlated with AFRT (p < 0.05,
Supplementary Figure 3). In regard to the relative abundance of
these four species, Alistipes sp. CHKCI003 was increased in the
fat line, while the other three species were decreased. WGCNA
identified 44 cecal DEG that significantly correlated with the
AFRT and significantly correlated with the above four microbial
species (p < 0.05, Figure 5D). Of these 44 DEG, 17 genes were
upregulated, and the remaining 27 genes were downregulated
(lean line vs. fat line). Pathway annotation showed that these
correlated genes mainly participated in lipid metabolism, amino
acid metabolism, immune system, transport and catabolism, and
cell growth and death (Supplementary Table 8).

DISCUSSION

Recently, studies have characterized the composition and
function variation of the gut microbiome in obese individuals,
which revealed strong correlations between gut microbiota
and obesity (Turnbaugh et al., 2006, 2009; Bouter et al.,
2017). However, due to the complexity, high dimensionality,
and spatial heterogeneity of the gut microbiome, studies on
interactions between gut microbiome and host in obesity
are still rare. The application of multi-omics associations

provides novel opportunities to uncover the complex host–gut
microbiota interactions. To investigate the interactions between
gut microbiome and host in obesity, multi-omics associations
of gut metagenome, intestinal transcriptome, and abdominal fat
relevant phenotypes were performed in a unique NEAUHLF
broiler population, which is an excellent obese–lean study model
generated by over 20 years of genetic selection for divergent
abdominal fat content.

An accurate gut MGC is essential in metagenome sequence
analysis and critical for avoiding bias of results. The gut MGC
of humans (Qin et al., 2010), mice (Xiao et al., 2015), and pigs
(Xiao et al., 2016) have been published in succession. Recently,
Huang et al. published the chicken gut MGC by metagenomics
sequencing of 495 chickens of all intestinal compartments, which
contained 9.04 million non-redundant MG (Huang et al., 2018).
A comprehensive comparison of varied gut MGC demonstrated
that there is only a relatively small set of shared gut MG
in different animal species (Huang et al., 2018). Indeed, gut
microbiome depended on many factors like diet, environment
and genetics, which demonstrated that varied populations of the
same species could harbor varied gut microbiota (Turnbaugh
et al., 2009; Gao et al., 2018). Thus, in the current study,
an appropriate gut MGC for the lean and fat broilers based
on our own metagenome data was constructed and compared
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FIGURE 5 | Multi-omics correlation analysis reveals the interactions between microbiome and host. Each heat map contains two parts: the correlations between
gene expression and abdominal fat relevant traits (left part of each panel) and correlations between gene expression and microbial relative abundance (right part of
each panel). For each tissue compartment, the genes shown had significant correlations and were DEG in the transcriptome analysis. The upper histogram shows
the log2FC of microbial relative abundance between the two lines, while the right histogram displays the log2FC of gene expression [lean line (LL) vs. fat line (FL)]. In
the histograms, the light blue and orange columns represent genes or microbes significantly enriched in the lean- and fat-line broilers, respectively. The significance
p-value threshold was set to 0.05 in the small intestine (A–C) and 0.01 in the ceca (D). ALB, albumin; CHO, total cholesterol; GGT, γ-glutamyl transpeptidase; GLU,
glucose; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TP, total protein; UA, uric acid. +p-value < 0.1; *p-value < 0.05;
**p-value < 0.01. AFW, abdominal fat weight; AFP, abdominal fat percentage. (A) Duodenum; (B) jejunum; (C) ileum; (D) ceca.

Frontiers in Microbiology | www.frontiersin.org 11 February 2022 | Volume 12 | Article 815538

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-815538 February 12, 2022 Time: 16:33 # 12

Jing et al. Intestine–Microbiota Interactions on Obesity

FIGURE 6 | The potential model of how varied microbes impacted by host genetic selection regulate intestinal functions to promote abdominal fat deposition. The
up and down arrows (black) indicate increased and decreased intestinal functions or microbial abundances in the fat-line broilers compared to the lean-line broilers.
The dotted arrows (blue) designate those changes that are predicted by intestinal transcriptome–microbiome interactions. The solid arrows (blue) represent the
regulatory effects of the microbes and functions.

to the published chicken MGC. Although lower numbers of
non-redundant MG were identified in our MGC (2.44 million
vs. 9.04 million), our MGC annotated more specific genera and
species for our broilers (Supplementary Figure 8). The smaller
number of non-redundant MG in our MGC may be due to the
lower sample numbers and single chicken breed in our study.
Importantly, the dominant four phyla annotated by our MGC
corresponded with those in the published chicken MGC. In
addition, the gut MGC construction of our broiler population
could also be a supplement for the comprehensive intestinal
MGC of chicken, which could benefit deeper exploration in gut
microbiome studies.

In the present study, we found that the microbial features
of four intestinal compartments as well as their gene functions
were distinctly different in lines that had undergone long-term
selection for high or low AFD. The comparison of microbial
diversity and composition showed differences between the lean-

and fat-line broilers, although less difference was detected in
the small intestine than in the ceca. Obesity is reported to
be accompanied by a decrease in gut microbial diversity and
varied microbial structure, mainly caused by gut inflammatory
responses (Turnbaugh et al., 2008; De Wit et al., 2012; Hou
et al., 2016). Our ceca results were consistent with these findings.
A smaller difference in the small intestine might suggest less
influence of host genetics on small intestinal microbiome (Wen
et al., 2019). Even so, we identified two jejunal species of E. coli
and Candidatus Acetothermia bacterium that were significantly
increased in the fat line. E. coli, which is often involved in
inflammation, has been shown to be enriched in the human
gut with non-alcoholic fatty liver disease (Loomba et al., 2017).
Obesity is often associated with low-grade inflammation in the
intestine (Brestoff and Artis, 2015), which may relate to the
increased E. coli in fat-line broilers. Acetothermia has been viewed
as a harmful taxon, associated with diarrhea (Duan et al., 2020).
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As an opportunistic pathogen, Acetothermia may have similar
effects as E. coli in obesity. We identified six differential bacterial
species in the ceca between the lean- and fat-line broilers,
four of which (Alistipes sp. CHKCI003, R. bacterium CPB6,
C. bacterium, and Anaeromassilibacillus sp. An200) reached
significant levels. The short-chain fatty acids (SCFAs) usually
fermented by gut microbes mainly include acetate, propionate,
and butyrate, which have a diverse array of metabolic effects on
host (Bouter et al., 2017). The Alistipes sp. has been previously
predicted as a microbial marker of obesity and was characterized
by an increased distribution in the gut of obese individuals (Louis
et al., 2016; Kang et al., 2019). Alistipes is an acetic acid producer,
which could improve lipid metabolism by its metabolite (Yin
et al., 2018). Ruminococcaceae members are butyrate producers,
which can provide more energy for enterocytes (Wong et al.,
2006). Because of butyrate production, Ruminococcaceae serve as
a healthy bacterium, and its proportion was found to decrease
in obese mice (Daniel et al., 2014). However, R. bacterium CPB6
mainly produces caproate, which had positive relations with
BMI (Zhu et al., 2017; Fan et al., 2018). Similarly, R. bacterium
has also been identified to significantly increase in cecum of
high AFD chicken (Xiang et al., 2021). Increased abundances
of Alistipes sp. CHKCI003 and R. bacterium CPB6 in the ceca
of the fat-line broilers may be vital factors contributing to
AFD with their specific metabolites. Clostridiales members have
been characterized as defenders against obesity in high fat diet
induced mice, which is mediated by their metabolites, including
butyrate (Pérez-Matute et al., 2015). Anaeromassilibacillus, like
Clostridiales, is a SCFA producer and protected mice against
obesity (Treichel et al., 2019). Here, the lean-line broilers with
significantly enriched C. bacterium and Anaeromassilibacillus sp.
An200 may help to maintain a healthier gut environment and less
AFD. Another two cecal species (Pseudoflavonifractor sp. An184
and Eubacterium sp. CAG:180) showed a trend of difference
between the two lines and have been consistently reported as
probiotics (Udayappan et al., 2016; Qu et al., 2019). The current
study’s results comprehensively compared the relative abundance
of microbiota in the four intestinal compartments under the
obese chicken model, which has expanded knowledge of gut
microbiota variations in obesity.

In addition, the gut metagenome datasets also offered
functional microbiome information of the lean- and fat-line
broilers, which could supply the extra functions that were not
encoded by the host genome (Schmidt et al., 2018). Previously,
it reported that the enhanced nucleic acids metabolism were
accompanied by increased microbial activities (Morán et al.,
2007), while increased microbial carbohydrate metabolism is
commonly associated with overproduction and accumulation
of TG (Bäckhed et al., 2004). In the study, the MG related
to nucleic acids metabolism and carbohydrate metabolism
were significantly enriched in the duodenum and jejunum
of the fat line, which demonstrated that the microbiome
in obese broilers’ duodenum and jejunum might have more
metabolism activities and carbohydrate metabolism. Fatty acids
are important components of varied lipids, and they are usually
increasingly absorbed in the small intestine of obese women
(Koffert et al., 2018). Interestingly, MG involved in fatty acid

biosynthesis were significantly enriched in the jejunum of fat line,
which could add more fatty acid derived from gut microbiome
for obese broilers. The amino acids derived from gut microbiota,
especially aromatic and branched-chain amino acids, have been
thought to be vital modulators in obesity and insulin resistance
(Neis et al., 2015; Pedersen et al., 2016). Consistently, the
comparison of KEGG pathways and eggNOG ortholog groups in
the jejunum showed that MG of amino acid-related metabolism
were significantly enriched in the fat-line broilers, which revealed
that the specific amino acids produced by jejunal microbiota
might contribute to more AFD in obese broilers. However,
more significantly enriched microbial functional categories were
identified in the ileum and ceca of the lean-line broilers.
This may be related to less digestion and absorption in the
duodenum and jejunum of the lean-line broilers than fat line,
which could leave more substrates for microbiome in the
ileum and ceca. Additionally, non-obese individuals harbored
more abundant hindgut microbiome with less inflammation
than obese ones, which have a higher fermentative capability
to maintain balance microenvironment and offer extra energy
for the host (Turnbaugh et al., 2009; Ding et al., 2016; Hou
et al., 2016; Liu et al., 2016). Similarly, microbiota functions
of energy metabolism and carbohydrates metabolism were
significantly enriched in lean-line ceca, which could promote
anti-inflammatory responses to reduce AFD in the lean broilers.
Our functional metagenome profile demonstrated that varied
intestinal compartments enriched various microbiome functions
in response to divergent AFD in the two lines of broilers.

Previously, many researchers have characterized the variation
of intestinal transcriptome in obese animals, especially lipid
metabolism-related pathways (Kondo et al., 2006; De Wit
et al., 2008; Mao et al., 2013). In the present study, intestinal
transcriptome was profiled and compared between the lean and
fat lines. Functional enrichments of DEG in tissues of four
gut compartments by KEGG analysis showed that seven lipid-
related metabolism pathways were significantly varied between
the lean- and fat-line broilers. As the intestine is a site for
processing exogenous fat (Sklan et al., 1975), functional changes
of intestinal lipid metabolism may be among the mechanisms
of differences in AFD. Additionally, variations in immune and
inflammation-related functions have been identified in obese
individuals (Teixeira et al., 2012; Araujo et al., 2017). In the
present study, we also found similar changes in pathways
mainly involved in immune, infectious disease, and defense
responses, and amino acid metabolism between the two lines.
Recently, RNA-seq analysis of Chinese meat-type chickens during
development demonstrated that genes involved in endocytosis,
transcript factors, and cell process-related pathways had strong
associations with AFW (Xing et al., 2020). Our study also
found some DEG significantly enriched in similar pathways.
These transcriptome results reflected that the difference of lipid
metabolism, inflammatory, endocytosis, transcript factors, and
cell process-related pathways that happened in the intestine may
be close to the divergent AFD in the two lines of broilers.

Multi-omics association analyses were performed using AFRT,
intestinal gene expression, and microbial species abundance, to
determine the correlations existing between AFRT-correlated
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DEG and microbial species, which could influence broiler AFD.
In the duodenum, Epulopiscium sp. SCG-B11WGA-EpuloA1
was significantly negatively correlated with genes involved
in transport and catabolism (MHCIA6), lipid metabolism
(ACSBG1), and nucleotide metabolism (NME4). Epulopiscium
sp. was detected commonly in fish intestine and could decrease
digestive enzyme activity by regulating intestinal pH (Pollak
and Montgomery, 1994). Increased abundance of Epulopiscium
sp. SCG-B11WGA-EpuloA1 may downregulate catabolism and
lipid metabolism-related genes by inhibiting lipase activity in
the lean line duodenum. Another species, C. burnetii, was
mainly positively correlated with infectious disease-related genes
like RAB2B, MICA, C1QTNF4 (Day et al., 2018), and YF6
(Thoraval et al., 2003). Although C. burnetii has been viewed
as pathogenic, its avirulent strain does not cause symptoms in
the host but may instead promote immune system development
(Long et al., 2019). Infectious disease-related gene expression
increased with increased C. burnetii abundance in the lean-line
duodenum, which may be a mechanism to avoid endotoxemia-
mediated obesity by maintaining integrity of the intestinal
mucosal barrier. However, further studies and evidence are
needed to prove the strong correlations between the specific
strain of C. burnetii and obesity.

In the jejunum, four microbial species enriched in the
obese line were correlated with AFRT-correlated genes; E. coli
and Candidatus Acetothermia bacterium have more correlated
genes, while L. aviaries and L. reuteri were both correlated
with one gene (MHCIA3). As mentioned above, E. coli and
Candidatus Acetothermia bacterium are opportunistic pathogens
and were significantly increased in obese jejunum. These
bacteria can injure the intestinal mucosa barrier and induce
lipopolysaccharide (LPS)-mediated endotoxemia in obesity
(Schwiertz et al., 2010a; Loomba et al., 2017; Lee et al., 2018; Duan
et al., 2020). Consistently, more immune relevant genes (MICA,
MHCIA5, and RAB2B) were negatively correlated with these two
species. E. coli has also been reported to induce an increase in
fatty acid absorption by competing for monosaccharides and
disaccharides with epithelial cells (Tazi et al., 2018). In our
study, lipid metabolism-related genes like ACSBG1 and HSD3B1
were significantly increased in the fat line and have significantly
positive correlations with E. coli. For the two Lactobacillus species
increased in the fat line, their functions are still undetermined
because inconsistent variation was identified in the obese mouse
(Jiao et al., 2018). Few correlations were identified between
Lactobacillus spp. and intestinal genes, which suggests that
Lactobacillus spp. do not play a dominant regulatory role in our
broilers. Besides, two microbes, Epulopiscium sp. SCG-B11WGA-
EpuloA1 and C. burnetii, enriched in the jejunum and duodenum
of lean line had analogously related genes. Thus, we speculated
that there are similar interactions between the lean line enriched
microbes and DEG in both the duodenum and jejunum.

In the ileum, C. jejuni and C. coli were enriched in
the fat line, positively correlated with two lipid metabolism-
related genes (ACSBG1 and HSD17B2), and strongly negatively
correlated with the QPRT gene. Campylobacter, as the cause of
human campylobacteriosis, is widespread in poultry in which
it is a commensal (Williams et al., 2016). Campylobacter can

also cause inflammation in the intestine, disturbing the gut
microenvironment and injuring gut barrier functions (Knudsen
et al., 2006). Here, correlations between lipid metabolic-related
genes and Campylobacter sp. in the ileum showed similar impacts
of opportunistic pathogen on lipid metabolism as observed in the
duodenum and jejunum. Immune-related genes, like quinolinate
phosphoribosyl transferase (QPRT), protect against oxidative
stress (Kibi et al., 2019). Increased abundance of Campylobacter
sp. may aggravate the inflammatory response by downregulating
the QPRT gene. Only one lean-line enriched species was
identified in the ileum, Candidatus Arthromitus sp. SFB-turkey,
which had negative correlations with transport relevant genes
[i.e., ART7C, ART7B (Lesma et al., 1998), and AQP12A] and
positive correlations with immune-related genes [YF5, MICA
(Yuan et al., 2019), RSAD2, and MX1]. Candidatus Arthromitus
sp. was reported to be important to the maturation of innate
and adaptive immune functions in the murine gut (Bolotin
et al., 2014). The increased abundance of Candidatus Arthromitus
sp. may reflect a well-functioning ileum in the lean line, with
potentially greater nutrition absorption and immune maturation.

Chicken ceca function as a fermentative and immune-
related organ (Huang et al., 2018). For fat-line enriched
species in the ceca, Alistipes sp. CHKCI003 was significantly
positively correlated with ACSBG1, HSD17B2 (involved in
lipid metabolism) and CNDP1 (amino acid metabolism). As
previously mentioned, Alistipes sp. is an acetic acid-producing
bacteria and associated with enhanced lipid metabolism in
obese mice (Louis et al., 2016; Yin et al., 2018; Kang et al.,
2019). The fat-line ceca had increased abundance of Alistipes
sp. CHKCI003 correlated with upregulated genes in lipid
metabolism. Expression of the other 15 DEG (mainly involved
in the immune system) was negatively correlated with Alistipes
sp. CHKCI003 abundance, which might be associated with
inflammation in fat-line ceca. In addition, three lean line enriched
species (Eubacterium sp. CAG:180, Anaeromassilibacillus sp.
An200, and C. bacterium) were positively correlated with
immune relevant genes. The three species are SCFA producers,
which benefit healthier enteric performance (Qu et al., 2019;
Treichel et al., 2019). Their metabolites, SCFAs, have been
proven to maintain a lower pH value and more energy, which
could inhibit pathogen colonization (Venegas et al., 2019).
Thus, we speculate that immune-related DEG interacting with
SCFAs-producing bacteria drives anti-inflammatory responses
to prevent obesity. However, many DEG with no functional
annotation were also identified to have correlations with AFRT-
correlated microbial species, which suggests that comprehensive
interactions exist between gut microbiota and host genes. More
research is needed to fully characterize the interactions between
gut microbiota and host.

CONCLUSION

In conclusion, a microbial gene reference catalog of the
NEAUHLF population was constructed, which provides a
supplement for the published chicken gut microbiome. With
the divergently selection for abdominal fat, the differences of
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microbial composition in cecum between the two lines of
broilers were larger than that in the small intestine. When
compared to lean-line broilers, the microbial richness and
diversity were significantly decreased in the ceca of fat-line
broilers, but there were no differences in the small intestine. The
intestinal functions reflected by transcriptome were significantly
varied as the more AFD in fat line. Multi-omics associations
demonstrated that specialized gut microbiota, like E. coli,
Candidatus Acetothermia bacterium, and Alistipes sp. CHKCI003,
which varied by intestinal compartment and by chicken line,
had significant correlations with corresponding intestinal genes
involved in lipid metabolism, immune system, transport, and
catabolism-related pathways, which suggests that microbiome–
host interactions may contribute to AFD (Figure 6). Our study,
therefore, expands knowledge of the relationship between obesity
and gut microbiome. Future association studies with more omics
datasets (like metabolome, proteome, and metatranscriptome)
will help us to better uncover in detail the complex interaction
mechanisms between gut microbiome and intestinal genes.
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Supplementary Figure 1 | Phenotype correlations of serum biochemical indices.
Pearson correlations were performed between abdominal fat traits and serum
biochemical indices. The upper numbers were the correlation coefficients, while
the lower numbers were corresponding P values. Serum biochemical indices and
numbers with bold fonts were significantly correlated with abdominal fat traits
(P < 0.05), and were clustered into abdominal fat relevant traits (AFRT) for the
following association analysis. AFW, abdominal fat weight; AFP, abdominal fat
percentage; TG, triglycerides; CHO, total cholesterol; HDL-C, high-density
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TBA, total bile
acid; TP, total protein; ALB, albumin; GLU, glucose; AST, aspartate transaminase;
ALT, alanine transaminase; CREA, creatinine; GGT, γ-glutamyl
transpeptidase; UA, uric acid.

Supplementary Figure 2 | Correlation analysis between abdominal fat relevant
traits (AFRT) and intestinal gene modules. WGCNA methods were performed to
identify the vital genes that have impacts on abdominal fat deposition. Genes were
first clustered into modules based on their expression variations. Correlations
between AFRT and modules were subsequently determined, and modules with
correlation P values less than 0.05 were selected. Genes within the significant
modules with correlation P values less than 0.05 were identified as
AFRT-correlated genes. AFW, abdominal fat weight; AFP, abdominal fat
percentage; ALB, albumin; CHO, total cholesterol; GGT, γ-glutamyl
transpeptidase; GLU, glucose; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; TP, total protein; UA, uric acid.

Supplementary Figure 3 | Correlation analysis between abdominal fat relevant
traits (AFRT) and microbial relative abundance. Spearman correlation was
performed and the microbial species with correlation P values less than 0.1 were
selected as vital AFRT-correlated species. Due to the much larger number of
species in the ceca, only species with differential abundance between the two
lines were correlated with the AFRT, and P value threshold was set to 0.01. AFW,
abdominal fat weight; AFP, abdominal fat percentage; ALB, albumin; CHO, total
cholesterol; GGT, γ-glutamyl transpeptidase; GLU, glucose; HDL-C, high-density
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TP, total
protein; UA, uric acid.

Supplementary Figure 4 | The rarefaction analysis of the identified genes from
the total set of 80 samples (E) and the subgroups of duodenum (A), jejunum (B),
ileum (C), and ceca (D) compartments. A total of 2.44 million non-redundant
genes were identified, and the rarefaction curve including all samples approached
saturation by 20 samples. The gene number for a specific number of samples was
calculated after random samplings repeated 100 times with replacement, and the
median was plotted.

Supplementary Figure 5 | The difference of genera between the lean- and
fat-line broilers. Microbial genera identified in all samples of at least one group with
relative abundance over 0.1% were used to perform the differential comparison
between the two lines. Metastats software was performed and genera with
FDR < 0.1 were shown in the figure. No differential genera between the two broiler
lines were identified in duodenum and ileum. The green and orange columns
stand for the lean and fat line, respectively. ∗FDR < 0.05; +0.05 ≤ FDR < 0.1.

Supplementary Figure 6 | The ratio of Firmicutes to Bacteroidetes between the
two lines. A declined ratio of these two phyla was observed in all four
compartments of obese broilers, which expanded the previous knowledge on
variation of intestinal microbiome in obese individuals. LL, lean line; FL, fat line.

Supplementary Figure 7 | Identification and comparison of DEG between two
broiler lines within four intestinal compartments. (A) Volcano plots of gene
expression changes between the two lines for duodenum, jejunum, ileum and
ceca compartments (from left to right, respectively). The threshold values were
| log2FC| > 1.5 and FDR < 0.05. The red dots and green dots represent
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up- and down-regulated genes, respectively. The black dots signify genes with no
statistically significant difference. (B) Venn diagram of DEG overlapping across the
four intestinal compartments. (C) Linear regression fitted for log2FC of selected
genes determined via qRT-PCR assay and mRNA-Seq technology. R-square and
Pearson correlation coefficient are labeled as “R2” and “r.” Different contrasts of
the four intestinal compartments were marked with different shapes. Log2FC in
qRT-PCR equals −11Ct for each comparison. Average Ct value for each group
was the means of samples in that group. The housekeeping gene of TBP was
used for normalization of Ct values.

Supplementary Figure 8 | The annotated comparison of microbiome reference
gene catalog to the published one. The green area (located in the left site)
represents the published catalog by Huang et al. (2018), while the red area
(located in the right site) represents our catalog. (A) Venn diagram of annotated
phyla present in and shared by two reference gene catalogs. (B) Venn diagram of
annotated genera present in and shared by two reference gene catalogs. (C) Venn
diagram of annotated species present in and shared by two reference gene
catalogs. (D) Venn diagram of KEGG orthologous groups (KOs) present in and
shared by two reference gene catalogs.

Supplementary Table 1 | Primers of validation qPCR experiment.

Supplementary Table 2 | Intestinal genes that significantly correlated with
abdominal fat relevant traits.

Supplementary Table 3 | The detailed data yield of whole
metagenome seqeuncing.

Supplementary Table 4 | The basic assembly statistics of metagenomic shotgun
sequencing data.

Supplementary Table 5 | The information of taxonomical annotation in the
constructed gut microbial gene catalog.

Supplementary Table 6 | The basic statistics of mRNA-Seq data.

Supplementary Table 7 | The DEG significantly enriched in lipid metabolism
relevant pathways.

Supplementary Table 8 | KEGG pathways annotations of the DEG that
significantly correlated with microbial specices.
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