
MEMBRANE TRANSPORT

Riding elevators into and out of
cells
The mechanisms responsible for the trafficking of carboxylate ions

across cell membranes are becoming clearer.

ADAM W DUSTER AND HAI LIN

S
mall carboxylate ions such as citrate and

succinate are intermediates in the citric

acid cycle, which is a crucial metabolic

pathway in aerobic organisms. However, small

carboxylate ions also have many other roles: for

example, they function as signaling molecules in

processes ranging from DNA transcription and

replication (Wellen et al., 2009) to heat genera-

tion (Mills et al., 2018), and they have also been

linked to obesity (Birkenfeld et al., 2011) and

seizures (Thevenon et al., 2014).

Cells rely on transmembrane proteins belong-

ing to the DASS family (short for divalent anion

sodium symporter) to move small carboxylate

ions into and out of cells. There are two clades

in the DASS family: cotransporters that import

carboxylate ions from the bloodstream into cells

(Prakash et al., 2003), and antiporters/exchang-

ers that move some carboxylate ions into cells

while moving others out (Pos et al., 1998).

Previously the structure of just one member

of the DASS family – a cotransporter called

VcINDY, which is found in the bacterium Vibrio

cholerae – had been determined

(Mancusso et al., 2012; Mulligan et al., 2016;

Nie et al., 2017). VcINDY contains two subunits,

and each of these contains two domains: (i) a

scaffold domain, which is anchored in the plasma

membrane of the cell and is not, therefore, free

to move; (ii) a transport domain, which is more

mobile.

It has been predicted that DASS proteins

operate with an ’elevator mechanism’ that

involves the transport domain (to which the car-

boxylate ion is attached) sliding up and down

the scaffold domain between an inward-facing

state and an outward-facing state (Figure 1;

Mulligan et al., 2016). However, since the struc-

ture of VcINDY has only ever been determined

for the inward-facing state, evidence in support

of this mechanism has remained inconclusive.

Now, in eLife, Da-Neng Wang (New York Univer-

sity School of Medicine), Emad Tajkhorshid (Uni-

versity of Illinois at Urbana-Champaign) and co-

workers – including David Sauer as first author –

report the results of a combined experimental

and computational study that helps to shed light

on this mystery (Sauer et al., 2020).

The researchers used a combination of X-ray

crystallography and cryo-electron microscopy to

determine structures for VcINDY and also for

LaINDY, an antiporter that is found in the bacte-

rium Lactobacillus acidophilus. Remarkably, they

were able to obtain structures for the previously

elusive outward-facing state for both. Moreover,

they determined the structures when a carboxyl-

ate ion was bound to the transport domain and

also for the substrate-free case. Relative to the

inward-facing state, the transport domain in the

outward-facing state is rotated by an angle of
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37˚ and is about 13 Å further away from the

inside of the cell (Figure 1).

Sauer et al. then used computer simulations

to model the transition from an initial state in

which two succinate ions were bound to the out-

ward-facing state in the LaINDY antiporter

(based on their experimental structures) to a

final state in which the succinate ions were inside

the cell and the antiporter was in an inward-fac-

ing state: the researchers used an approximate

structure for the final state as the actual struc-

ture for the inward-facing state in LaINDY has

not been determined yet. Jointly, the experi-

ments and simulations lend strong support to

the elevator mechanism.

One may ask: how does the cotransporter or

antiporter make sure that the carboxylate ion

has been loaded into the elevator before the

button is pressed? The experimental structures

suggest that a ’passport check’ is enforced via

electrostatic effects. In the absence of the car-

boxylate ion, the binding site on the transport

domain has a positive net charge, which makes

it difficult for this domain to pass through the

membrane, because charged particles prefer

polar environments (such as aqueous solutions)

to the nonpolar environments found in the mem-

brane. Loading the negative carboxylate ion

onto the binding site neutralizes the

postive charge, allowing the transport domain to

cruise through. This mechanism limits a form of

unproductive transport called slippage (that is,

the passage of substrate-free transport domains)

in both cotransporters and antiporters.

The work of Sauer et al. also highlights inter-

esting differences between the cotransporter

and the antiporter. For the VcINDY cotrans-

porter the positive charge on the transport

domain is provided by sodium ions, and the

binding of the carboxylate ion to the transport

domain leads to large changes in conformation.

It also appears that the relatively weak initial

binding of sodium ions in the cotransporter is

strengthened by the arrival of the carboxylate

ion. In contrast, the positive charges in the

LaINDY antiporter are provided by amino acid

residues rather than sodium ions, and the con-

formational changes caused by bindin g

appeared to be small and local.

It would be interesting to explore the effects

of introducing mutations to the residues at the

sites of the sodium ions in VcINDY cotransport-

ers or the equivalent sites in LaINDY antiporters.

Would it be possible to engineer a sodium-inde-

pendent cotransporter? And could a cotrans-

porter be converted into an antiporter, and vice

versa? Answers to these questions will lead to a

deeper understanding of the structure-function

relationships for proteins belonging to the DASS

family.

Figure 1. Schematics of the elevator mechanism. Each of the two sub-units in a DASS transporter contains a

transport domain (yellow) that is mobile, and a scaffold domain (blue) that is anchored within the plasma

membrane of the cell (green). When the transporter is in an outward-facing state (left) two carboxylate ions

outside the cell (such as the succinate ion shown here) can each bind to one transport domain and be dragged

across the membrane and into the cell by the transport domain as it slides along the scaffold domain. This leaves

the transporter is in an inward-facing state (right). In cotransporters the positive charges of two sodium ions in the

transport domain have an important role in trafficking carboxylate ions through the membrane; in antiporters/

exchangers two positively charged residues have a similar role in the trafficking process. DASS: divalent anion/

sodium symporter.
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