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Abstract

Time-series data collected over a four-year period were used to characterize patterns of abundance for pelagic fishes in the
northern Gulf of Mexico (GoM) before (2007–2009) and after (2010) the Deepwater Horizon oil spill. Four numerically
dominant pelagic species (blackfin tuna, blue marlin, dolphinfish, and sailfish) were included in our assessment, and larval
density of each species was lower in 2010 than any of the three years prior to the oil spill, although larval abundance in 2010
was often statistically similar to other years surveyed. To assess potential overlap between suitable habitat of pelagic fish
larvae and surface oil, generalized additive models (GAMs) were developed to evaluate the influence of ocean conditions on
the abundance of larvae from 2007–2009. Explanatory variables from GAMs were then linked to environmental data from
2010 to predict the probability of occurrence for each species. The spatial extent of surface oil overlapped with early life
habitat of each species, possibly indicating that the availability of high quality habitat was affected by the DH oil spill. Shifts
in the distribution of spawning adults is another factor known to influence the abundance of larvae, and the spatial
occurrence of a model pelagic predator (blue marlin) was characterized over the same four-year period using electronic
tags. The spatial extent of oil coincided with areas used by adult blue marlin from 2007–2009, and the occurrence of blue
marlin in areas impacted by the DH oil spill was lower in 2010 relative to pre-spill years.
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Introduction

Pelagic fishes that frequent open oceans are valuable econom-

ically and influence the structure and resilience of offshore

ecosystems [1–2]. Declines in the abundances of fishes in

nearshore and offshore ecosystems have been shown to limit

top-down regulation of marine food webs, often leading to

reductions in ecosystems services [3–5]. Anthropogenic drivers of

ecosystem change in the open ocean have been linked to a variety

of factors that alter the relative abundance of fishes, including

overfishing [6], climate change [7], and oil pollution [8]. Of these,

the ecological consequences of oil pollution from massive spills are

largely undetermined.

In April 2010, the Deepwater Horizon [DH) oil spill resulted in

the release of approximately 4.46106 (620%) barrels of oil into

the northern Gulf of Mexico (GoM) [9). Oil trajectory models

predicted that surface or near surface oil covered a large region of

the continental shelf and slope [10]. In the past few years, several

studies have attempted to assess the ecological impacts of the DH

oil spill on coastal and estuarine ecosystems in the GoM, including

research on higher order consumers such as fishes [11]. While the

need to understand the impacts to inshore areas is obvious, it is

also important to recognize that oceanic waters south of the DH

oil spill experienced significant exposure to both oil and

dispersants [12]. Moreover, slope waters south of the DH oil spill

represent an important hotspot of productivity for oceanic fishes,

serving as both nursery and spawning habitat of several pelagic

fishes [13–14]. Given that many oceanic fishes reside in epipelagic

regions of the water column and spawn in the late spring and

summer when surface slicks from the DH oil spill were widespread

in 2010, there is a clear need to investigate population-level

responses of pelagic fishes to this event, particularly during the

vulnerable early life stage.

The aim of the present study was to assess possible impacts of

the DH oil spill on four pelagic fishes that commonly inhabit outer

shelf and slope waters of the northern GoM: blackfin tuna (Thunnus

atlanticus), blue marlin (Makaira nigricans), dolphinfish (Coryphaena

hippurus), and sailfish (Istiophorus platypterus). We first explored

temporal variability during early life by contrasting larval

abundances of each species before (2007–2009) and after (2010)

the DH event. Next, generalized additive models (GAMs) were

developed from 2007–2009 data to assess habitat associations, and

then to predict the probability of occurrence the following year

(2010) in relation to surface oil (i.e., overlap). Finally, patterns of

occurrence for a model pelagic predator (blue marlin) over the

same four-year period were examined using pop-up archival
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transmitting (PAT) tags, and light-based geo-locations from tags

were used to compare the distribution of adults before and after

the DH oil spill. Our working hypothesis was that the distribution

and abundance of pelagic fishes in our study area, both early life

and adult stages, may have changed in 2010 due to changes in

habitat condition or other activities related to the DH oil spill. We

fully recognize that natural environmental variability is known to

influence the distribution and abundance of pelagic fishes in the

northern GoM [13], limiting our ability to directly link any

temporal changes in distribution or abundance directly to the oil

spill.

Results

Of the four taxa examined, blackfin tuna were numerically

dominant and this species accounted for 87% of the total catch of

selected taxa (Table 1). Dolphinfish and sailfish larvae were also

relatively well represented, although the abundance of these taxa

was an order of magnitude lower than blackfin tuna. Blue marlin

larvae were present at the lowest density. Percent occurrence was

highest for blackfin tuna (81%) and dolphinfish (57%), with larvae

of both species being widely distributed throughout our sampling

corridor (Fig. S1). Percent occurrence was considerably lower for

billfish larvae: sailfish (28%), blue marlin (18%).

Due to the presence of short-term temporal differences in both

density (i.e., month effect) and the oceanographic factors that

influence the abundance of larvae, inter-annual variability was

investigated with separate models for June and July. In June

surveys, a significant year effect was observed for all four species:

blackfin tuna (p = 0.030), blue marlin (p = 0.001), dolphinfish

(p = ,0.001), and sailfish (p = 0.006). Despite the fact that the

mean density of each species was lower in June 2010 than any of

the other June surveys (Table 1), this year was often statistically

similar to other pre-spill year(s) (Fig. 1). In July surveys, a

significant year effect was also observed for blackfin tuna

(p,0.001) and blue marlin (p = 0.003). Again, the lowest observed

density present among July surveys occurred in 2010 for three

species (blue marlin, dolphinfish, and sailfish; Table 1); however,

non-parametric comparisons indicated that 2010 was statistically

similar to other years examined (Fig. 1).

GAMs based on presence/absence data developed for each

species indicated that the influence of 7 oceanographic factors

(chlorophyll a concentration, depth, distance to feature, feature

classification, salinity, sea surface temperature, sea surface height

anomaly) on the occurrence of larvae varied across species and

within species when contrasting June and July models (Table 2,

Fig. S2, S3). Final GAMs for blackfin tuna (June AIC = 139.3, July

AIC = 182.8) retained four explanatory variables for both June

and July, with sea surface temperature and salinity common to

both models. Percent deviance explained for blackfin tuna GAMs

was 30.4% (June) and 15.7% (July). Final GAMs for blue marlin

(June AIC = 66.3, July AIC = 141.7) also included four explana-

tory variables in both models. Sea surface temperature, chloro-

phyll a concentration, and depth were influential parameters

common to both June and July models, and percent deviance

explained for blue marlin GAMs was 62.5% (June) and 44.3%

(July). Final GAMs for dolphinfish (June AIC = 213.0, July

AIC = 267.1) retained three explanatory variables in the June

model and four in the July model, with depth being the only

Table 1. Summary data on the density [larvae? 1000 m23 (61 standard deviation)] and percent occurrence of blackfin tuna
(Thunnus atlanticus), blue marlin (Makaira nigricans),dolphinfish (Coryphaena hippurus), and sailfish (Istiophorus platypterus).

Blackfin tuna Dolphinfish

Year Month Stations N Density (SD) % Freq N Density (SD) % Freq

2007 June 59 1208 8.43 (12.54) 90 235 1.72 (3.44) 71

2007 July 55 3048 24.75 (34.88) 96 61 0.48 (0.67) 51

2008 June 72 1135 6.90 (10.16) 72 110 0.64.04) 50

2008 July 76 854 4.80 (10.19) 61 87 0.51 (0.67) 55

2009 June 49 540 5.05 (8.21) 84 132 1.26 (1.61) 82

2009 July 77 4430 30.63 (61.31) 91 110 0.73 (1.97) 39

2010 June 48 657 4.74 (9.76) 67 58 0.42 (0.70) 48

2010 July 48 1012 7.13 (14.92) 83 61 0.45 (0.50) 60

Blue marlin Sailfish

Year Month Stations N Density (SD) % Freq N Density (SD) % Freq

2007 June 59 62 0.37 (0.93) 25 113 0.75 (3.52) 22

2007 July 55 97 0.77 (1.52) 38 65 0.57 (1.34) 31

2008 June 72 10 0.05 (0.25) 7 196 1.03 (2.95) 33

2008 July 76 61 0.34 (0.80) 26 83 0.52 (2.31) 24

2009 June 49 11 0.11 (0.57) 6 143 1.40 (3.08) 47

2009 July 77 78 0.46 (1.84) 10 80 0.55 (1.27) 30

2010 June 48 4 0.03 (0.11) 6 18 0.13 (0.31) 21

2010 July 48 19 0.14 (0.31) 25 18 0.13 (0.42) 19

Larvae were collected during ichthyoplankton surveys conducted in the northern Gulf of Mexico from 2007 to 2010. Numbers of stations sampled each survey are also
provided.
doi:10.1371/journal.pone.0076080.t001
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variable common between the two models. Percent deviance

explained for dolphinfish GAMs was 13.2% (June) and 13.5%

(July). Final GAMs for sailfish (June AIC = 199.5, July

AIC = 221.9) included three common explanatory variables in

June and July models (sea surface height anomaly, salinity,

distance to mesoscale feature), and percent deviance explained was

20.3% (June) and 15.3% (July).

The spatial distribution of suitable habitat in 2010, predicted

with GAMs developed from 2007–2009 data, indicated that the

geographic location and areal coverage of high quality habitat

(defined here as probability of occurrence $0.50) varied markedly

among species (Fig. 2). The spatial extent of predicted high quality

habitat of blackfin tuna and dolphinfish was broader than either

billfish species, encompassing 331,224–402,791 km2 and 262,869–

334,879 km2, respectively (Table 3). High quality habitat of

blackfin tuna occurred across large areas of outer shelf to upper

slope (100–1000 m) and lower slope (1000–2000 m), while high

quality habitat of dolphinfish was typically in the deeper abyssal

region (.2000 m) or south of 28uN. High quality habitat of sailfish

was also generally located in slope and abyssal regions of the

northern GoM, covering between 189,172–276,384 km2 in the

area examined. The distribution of high quality habitat for blue

Figure 1. Mean density [larvae? 1000 m23 (61 standard error)] of pelagic fish larvae collected from 2007 to 2010 for A) blackfin
tuna (Thunnus atlanticus), B) blue marlin (Makaira nigricans), C) dolphinfish (Coryphaena hippurus), and D) sailfish (Istiophorus
platypterus). Left and right panels represent results for June and July surveys, respectively. Upper case letters on plots represent significant
differences based on multiple comparisons with Wilcoxon non-parametric test (p,0.05).
doi:10.1371/journal.pone.0076080.g001

Variation in Abundance of Pelagic Fishes in GoM

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e76080



marlin was more limited than the other species examined and

present primarily in abyssal regions.

The spatial extent of surface oil from the DH event was viewed

in relation to the total available area of high quality habitat

predicted with GAMs to determine whether suitable habitat of

each species was exposed to oil contamination. In June 2010, the

estimated overlap between high quality habitat and surface oil was

relatively low for blue marlin (0%) and sailfish (4.5%). Conversely,

percent overlap for blackfin tuna and dolphinfish was considerably

higher, with 15.3% and 13.9% of the predicted high quality

habitat exposed to surface oil in the northern GoM. Species-

specific patterns for July 2010 were similar, and again the

percentage of high quality habitat exposed to surface oil was

considerably lower for blue marlin (0.2%) and sailfish (7.2%) when

compared to blackfin tuna (19.4%) or dolphinfish (11.4%). Given

the predicted overlap observed for blackfin tuna, it is not

surprising that the areal coverage of high quality habitat exposed

to surface oil was relatively large, exceeding 60,000 km2 in both

June and July.

Geo-location estimates from electronic tag deployments on

adult blue marlin during the May-July spawning period were used

to determine their spatial distribution before (2007–2009) and after

(2010) the DH oil spill (Fig. 3). From 2007–2009, core use areas

(based on 50% kernel utilization distribution [KUD]) of adult blue

marlin were present throughout the northwestern and north-

central GoM, while 50% KUD in 2010 was primarily limited to

the western GoM. Estimates of area from 50% KUD before

(2007–2009) the DH oil spill were coupled with the location of

surface oil to determine whether suitable spawning habitat may

have been exposed to surface oil. Our overlap analysis indicated

that 1,034 km2 (9.3%) of the core use area in 2007–2009 was

exposed to surface oil in 2010. Based on daily mean positions, we

also observed that use of a region subsequently closed to fishing in

2010 by the National Oceanic and Atmospheric Administration

(based on June 21, 2010 closure due to the DH oil spill; Fig. S4)

was twofold higher in 2007–2009 (16.4%) compared to 2010

(8.2%), possibly indicating lower occurrence of adult blue marlin

in areas proximal to the DH oil spill in 2010.

Discussion

Both the abundance and percent occurrence of fish larvae for

selected pelagic fishes declined in 2010 relative to the three years

prior to the DH oil spill, suggesting that changes in environmental

conditions, possibly linked to the presence of oil and dispersants,

may have contributed to observed inter-annual variability.

Previous studies have demonstrated a clear relationship between

these contaminants and the demographics of a wide range of

marine organisms including invertebrates, fishes, birds, and

mammals [15–17]. Early life stages of invertebrates and fishes

with a pelagic larval phase are particularly vulnerable to oil spills

because toxic compounds accumulate in near surface waters

(epipelagic zone) where larvae reside. In addition, the same

physical processes that transport larvae also transport oil and

dispersants, which may increase the probability of exposure [11].

For fish, exposure to toxic compounds in oil such as polycyclic

aromatic hydrocarbons (PAHs) result in a variety of different

Table 2. Explanatory variables retained in final presence/absence generalized additive models (GAMs) for blackfin tuna (Thunnus
atlanticus), blue marlin (Makaira nigricans), dolphinfish (Coryphaena hippurus), and sailfish (Istiophorus platypterus).

June Models Blackfin tuna Blue marlin Dolphinfish Sailfish

AIC = 139.3, DE = 30.4% AIC = 66.3, DE = 62.5% AIC = 213.0, DE = 13.2% AIC = 199.5, DE = 20.3%

Variable GAM D AIC GAM D AIC GAM D AIC GAM D AIC

Sea surface temperature X 9.8 X 14.5

Sea surface height anomaly X 19.2 X 10 X 23.6

Chlorophyll a X 20.6 X 5.3

Salinity X 5.6 X 4.9 X 6.3 X 3.6

Depth X 11 X 4.6

Distance to feature X 15.8 X 2.3

Feature classification

July Models Blackfin tuna Blue marlin Dolphinfish Sailfish

AIC = 182.8, DE = 15.7% AIC = 141.7, DE = 44.3% AIC = 267.1, DE = 13.5% AIC = 221.9, DE = 15.3%

Variable GAM D AIC GAM D AIC GAM D AIC GAM D AIC

Sea surface temperature X 17.4 X 2.3

Sea surface height anomaly X 3 X 11.1

Chlorophyll a X 18.6 X 12.8

Salinity X 1.8 X 23.1

Depth X 2.7 X 7.7 X 2.3

Distance to feature X 2.4 X 7.2

Feature classification X 1.9 X 8.9

Akaike’s Information Criterion (AIC) and percent deviance explained (DE) are given for each final model. DAIC values are based on the difference if the variable was
excluded from the final model.
doi:10.1371/journal.pone.0076080.t002
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adverse biological effects including genotoxicity, oxidative stress,

and growth retardation [18–20]. The disruption of developmental

processes due to early life exposure to PAHs and dispersants is also

well documented [21–22], and altered functions during the

embryonic or larval period are often lethal [16], leading to

weakened cohort strength and potential recruitment failure. The

most conspicuous declines in 2010 were observed for billfish larvae

(sailfish, blue marlin), which reside primarily in the epipelagic

zone. Given that the larvae of these species are typically restricted

to surface waters relative to other taxa surveyed (i.e., tunas), it is

possible that their increased exposure to toxic compounds may

have affected early life survival.

Although results from this study suggest a possible connection

between reduced abundance of pelagic fish larvae in 2010 and the

DH oil spill, inter-annual variability is relatively common for

cohorts of pelagic larvae in the GoM [13,23]. The apparent

decline in billfish, dolphinfish, and tuna larvae therefore may be

due in part to shifts in biological or oceanographic conditions

unrelated to the DH oil spill. Several studies have reported

significant changes in larval biomass or abundance from year to

year, and recruitment failures have been linked to a variety of

Figure 2. Predicted probability of occurrence for larvae of each species in offshore waters (.100 m) of the Gulf of Mexico. Spatial
distributions are based on using explanatory variables from GAMs (based on 2007–2009 data) to predict the probability of occurrence in 2010 for A)
blackfin tuna (Thunnus atlanticus), B) blue marlin (Makaira nigricans), C) dolphinfish (Coryphaena hippurus), and D) sailfish (Istiophorus platypterus). Left
and right panels represent predictions for June and July, respectively. Gray shading on plots represents the estimated cumulative extent of surface oil
on both June 15th (June plots) and July 30th (July plots), 2010 derived from daily oil spill coverage accessed from www.nesdis.noaa.gov and combined
within ArcGIS. Continental shelf (,100 m) represented in areas without color and 2000 m depth contour also shown (white line) on plot A.
doi:10.1371/journal.pone.0076080.g002

Table 3. Estimated areal coverage (km2) of high quality (HQ) early life habitat available for blackfin tuna (Thunnus atlanticus), blue
marlin (Makaira nigricans), dolphinfish (Coryphaena hippurus), and sailfish (Istiophorus platypterus) in both June and July, 2010.

June July

Species
HQ Habitat
(km2)

HQ Habitat
Exposed (km2) Percent Overlap

HQ Habitat
(km2)

HQ Habitat
Exposed (km2) Percent Overlap

Blackfin tuna 402,791 61,529 15.3% 331,224 64,146 19.4%

Blue marlin 9,464 0 0.0% 92,444 200 0.2%

Dolphinfish 334,879 46,561 13.9% 262,869 29,868 11.4%

Sailfish 276,384 12,233 4.5% 189,172 13,549 7.2%

Areal coverage of surface oil within HQ habitat also provided along with estimates of percent overlap between HQ habitat and surface oil. HQ habitat defined as
probability of occurrence $0.50.
doi:10.1371/journal.pone.0076080.t003
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natural conditions including mismatches between zooplankton

(prey) and fish larvae [24–25], unfavorable meteorological or

hydrodynamic processes [26–27], and shifts in physicochemical

conditions [28]. Because the pre-spill data used here were limited

in duration (2007–2009), our baseline may not have adequately

represented the entire range of biological and oceanographic

conditions commonly experienced by cohorts of pelagic fish larvae

in the GoM. It is also important to note that abundances in 2010

were often found to be statistically similar to other year(s) in our

baseline. Moreover, temporal variability in the abundance of

certain species were in phase (i.e., low abundance blackfin tuna

and blue marlin in 2008 and 2010), suggesting that observed

declines were at least within the range of expected natural

variation for these taxa, and thus may not be related to the DH oil

spill.

Variability in mesoscale circulation has been shown to influence

the spatial distribution of larvae in the GoM [13], which in turn

can affect the abundance of pelagic larvae collected from surveys

that cover the same relative areas year after year [29]. In

particular, larvae of several pelagic taxa occur at higher densities

near the margin of the Loop Current (LC) in the GoM, and the

spatial dynamics of this large anticyclonic feature varies seasonally

and across years. The northern and western penetration of the LC

has been shown to influence the abundance of larvae for several of

the taxa examined here [30], and therefore temporal differences in

larval abundance may be linked to inter-annual variability in the

penetration and shape of the LC. During June and July 2010, the

northward penetration of the LC and associated features

(anticyclonic eddies shed from the LC) was slightly less than

observed during the same periods in 2007–2009, with little

evidence of anticyclonic conditions north of 27uN in the GoM (Fig.

S1). Consequently, fewer stations in 2010 were located on or near

the margins of anticyclonic features relative to other years, which

may have contributed to the reduced densities observed in 2010.

Determining the primary cause of annual fluctuations in the

abundance of pelagic fish larvae is challenging, and establishing a

direct link between the abundance of larvae and the DH oil spill is

not possible given the data available. However, our estimates of

overlap between surface oil and high quality habitat of billfish,

dolphinfish, and tuna larvae, support the premise that highly

suitable nursery areas (or spawning areas) of these taxa were

impacted by the DH oil spill. Oil contamination occurred across

several hundred thousand square kilometers of suitable habitat of

pelagic fish larvae, accounting for approximately 10–20% of the

available high quality habitat for blackfin tuna and dolphinfish in

the northern GoM. Estimates of percent overlap were lower for

billfish larvae (blue marlin, sailfish), and suitable habitat for these

taxa appeared to be more limited in coverage and farther offshore

(i.e., slope to abyssal regions), possibly out of reach of significant oil

contamination from the DH oil spill. While the presence of surface

oil may have impacted larval survival within a restricted area, the

majority of the high quality habitat for each species occurred in

areas of the northern GoM unaffected by the oil spill. Therefore,

anticipated effects of the DH oil spill on early life survival or

reduced larval abundance are expected to be relatively modest,

which interestingly is in accord with observed annual patterns of

abundance.

Apart from early life processes that directly impact the dispersal

and survival of larvae, differences in the demographics (age

structure) and abundance (spawning stock biomass) of spawning

adults can also influence the abundance of larvae within a given

area [31]. Clearly, movement away from or failure to return to a

specific spawning area will reduce the production of eggs, and

therefore alter patterns of distribution and abundance for larvae

within a given region. Detailed information on the demographics

of spawning adults of the species examined are not available for

the GoM from 2007–2010; however, PAT tagging data provided

useful information on the occurrence patterns of one pelagic

species (blue marlin) during its spawning period before and after

the DH oil spill. Our results showed that the occurrence of adult

blue marlin in the area impacted by the DH oil spill was reduced

in 2010, possibly indicating that blue marlin did not return to their

spawning area in response to altered environmental conditions.

Deleterious changes in environmental conditions associated with

anthropogenic disturbances (e.g., oil spills, vessel activity, noise)

can alter movement patterns causing spatial shifts in the

Figure 3. Habitat utilization of adult blue marlin (Makaira nigricans) generated from electronic tag deployments A) before (2007–
2009) and B) after (2010) the DH oil spill. Probability density (cell size = 0.01u) was calculated from daily mean position estimates during the
months of May to July (spawning season). For clarity, only 90% of the utilization distribution was projected. m denotes location of Deepwater Horizon
platform. Gray shading on plots represents cumulative oil coverage through July 30th 2010, derived from daily oil spill coverage accessed from www.
nesdis.noaa.gov and combined within ArcGIS.
doi:10.1371/journal.pone.0076080.g003
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distribution of marine organisms such as sea birds [32–33] and

free ranging cetaceans [34–35]. Direct links between oil and

habitat use are equivocal even for marine organisms with

advanced cognitive function such as marine mammals [36], and

thus behaviorally mediated movement due to surface oil alone is

less likely for a marine teleost such as blue marlin. Alternatively,

shifts in the occurrence of marine predators, including highly

migratory species, are often attributed to changes in prey

distributions [37–38], and declines in prey availability within the

area impacted by the DH oil spill may have been responsible for

the increased presence of adult blue marlin in areas outside the

impacted area (western and southern GoM) during their presumed

spawning period. Regardless of the underlying mechanism, the

apparent shift in the spatial occurrence of adult spawners in 2010

likely affected the production and distribution of larvae within our

sampling corridor, albeit precaution must be exercised when

interpreting these data due to the small sample size available for

2010.

The influence of direct (i.e., larval mortality) and/or indirect

(i.e., spatial shifts in spawning stock biomass) effects of the DH oil

spill on the abundance and distribution pelagic fishes is currently

unresolved, and caution must be exercised when interpreting time-

series data that are limited in scope and duration. While larval

abundances of all four species examined were lower in 2010

relative to the three-year baseline sample, abundance in 2010 was

statistically similar to at least one of the other years surveyed,

suggesting that observed declines are within the bounds of

expected natural variability. Despite the fact that we cannot

explicitly link observed inter-annual trends in the abundance of

larvae to the DH oil spill, we can conclude that large areas of high

quality habitat of pelagic fishes were exposed to oil contamination.

In turn, oil contamination may have contributed to observed

temporal patterns of abundance, but the main driver (oil spill vs.

natural variability) of observed temporal patterns is unknown.

Methods

Early Life Collections
Ichthyoplankton surveys were conducted over a four-year

period (2007–2010) from approximately 26.5 to 28.0uN latitude

and 87.5 to 92.0uW longitude in the northern GoM. Summer

surveys were conducted each year during the same two months

(June, July), which corresponds to the primary spawning periods of

many pelagic fishes in the GoM [14]. All sampling was conducted

during the day (ca. 0700 to 1900 h), and fish larvae were collected

with paired neuston nets (2-m width61-m height frame). At each

station, 500 mm and 1200 mm mesh neuston nets were deployed

simultaneously. Nets were towed through surface waters for

approximately 10 minutes at 2.5 knots, and a small portion of

neuston net frame (,0.25 m) was typically above water. The

depth of the surface water sampled during net tows was

approximately 0.75 m, and sampling was conducted at approx-

imately 15-km intervals between stations. General Oceanics

flowmeters (Model 2030R, Miami, FL) were placed within each

neuston net to determine surface area sampled during each tow.

Permits for collections of fish larvae were issued by the Highly

Migratory Species Division of the National Oceanic and

Atmospheric Administration (permits: Billfish-SRP-06-01, Bill-

fish-EFP-07-03, Billfish-EFP-08-03, Billfish-EFP-09-01, Billfish-

EFP-10-01).

Fish larvae were sorted in the laboratory, and density and

occurrence were determined for blackfin tuna Thunnus atlanticus

(family Scombridae), blue marlin Makaira nigricans and sailfish

Istiophorus platypterus (family Istiophoridae), and dolphinfish Cor-

yphaena hippurus (family Coryphaenidae). Density at each station

was determined by combining numbers of individuals in both 500

and 1200 mm mesh nets and adjusted to reflect a sampling depth

of 0.75 m. Average volume of water sampled with both nets at

each station was approximately 3500 m3. Percent occurrence at

the species level was also determined and based on the number of

stations where selected taxa were present divided by the total

number of stations sampled.

Fish larvae were identified visually to family level based on

anatomical and morphometric features [39]. Identification to

species level was also determined using diagnostic characters;

however, identification of smaller larvae (,10 mm standard

length, SL) can be problematic for certain species of billfishes,

dolphinfishes, and tunas. In response, species-specific multiplex

polymerase chain reaction (PCR) assays were used to identify

billfish and dolphinfish larvae less than 10 mm SL to the species

level. Multiplex PCR assays followed protocols described previ-

ously for billfishes [13] and dolphinfishes [40]. Identification of

true tuna larvae (genus Thunnus) to species was based on sequence

variability of mitochondrial DNA [41) and High Resolution

Melting (HRM) assays based on fixed nucleotide differences

among species [42]. HRM assays were conducted on subsamples

taken from each station containing Thunnus larvae to determine the

abundance of blackfin tuna (T. atlanticus) in our collections. Two

congeners were also present in our collections (yellowfin tuna T.

albacares and bluefin tuna T. thynnus), and blackfin tuna accounted

for nearly 90% of the Thunnus larvae collected.

Temporal differences in the densities of larvae collected over the

four-year period were compared with a Kruskal-Wallis (rank sums)

one-way analysis of variance (ANOVA). This non-parametric

method does not assume a normal distribution, which was

required due to the large number of zero values in our data set

(skewed distribution). Species-specific models were developed for

each species in both June and July to investigate temporal

differences in larval density for all four species. Non-parametric

multiple comparison tests (Wilcoxon method) were run to

determine which factor levels or years differed from others.

Statistical significance for all tests was based on a= 0.05.

Habitat Suitability Models
Generalized additive models (GAMs) were used to investigate

the influence of environmental conditions on the occurrence of

each species. Presence/absence models were fit with a binomial

distribution using a logit link function in R software [43].

Occurrence of each species (0 = absent, 1 = present) was modeled

against environmental variables over a three-year period (2007–

2009). Explanatory variables used in GAMs included oceano-

graphic and biological factors (sea surface temperature, salinity,

sea surface height anomaly, chlorophyll a, depth), and parameters

related to mesoscale oceanographic features (feature classification

[cyclonic, anti-cyclonic, open ocean], and distance to closest

mesoscale feature) (Table S1). Mesoscale oceanographic features

were detected and defined using the Okubo-Weiss algorithm [44],

which estimates vorticity and strain from sea surface height images

(Aviso) to locate features and then classifies these features as either

cyclonic or anticyclonic based on curvature of the ocean surface.

Distances from sampling sites to the perimeter of the nearest

mesoscale feature were estimated using Spatial Analyst toolbox

functions in ArcGIS. Sea surface temperature and salinity were

measured at each sampling station using a Sonde 6920 Environ-

mental Monitoring System (YSI Inc.). Other environmental data

at sampling stations were extracted from remotely sensed data to

match sampling dates and locations [14]. Prior to running GAMs,

collinearity among explanatory variables was examined with
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Spearman rank correlation coefficient (Spearman r), and variables

used in GAMs were not highly correlated.

A manual backwards stepwise procedure based on minimizing

the Akaike Information Criterion (AIC, [45]] was used to select

explanatory variables influencing the presence of all four species.

Selection of the final model for each species was based on

minimizing AIC values, which is a tradeoff between model

complexity (number of variables) and fit (based on goodness of fit)

[46]. Final GAMs were then used to predict the probability of

occurrence for each species based on environmental conditions in

2010. Explanatory variables were linked to prediction grids (cell

size = 0.0833u) using the predict.gam function in the mgcv library

[47] to estimate the probability of occurrence for each species at

each grid point in 2010. For each species-month combination, grid

points were converted to a raster surface in ArcGIS 10.0 (ERSI

Inc.) and smoothed using bilinear interpolation to visualize

suitable habitats. Next, the spatial extent of surface oil from the

DH oil spill was viewed in relation to the total available area of

high quality habitat (probability of occurrence $0.5) to determine

the degree of overlap and assess whether this event may have

reduced the areal coverage of suitable habitat in the northern

GoM in 2010.

Electronic Tagging of Adults
Pop-up archival transmitting (PAT) tags were deployed

opportunistically on blue marlin from sport fishing vessels in the

GoM from 2007–2010, following methods previously described

[48]. State-space models that implement the Kalman filter

algorithm were used to estimate the most probable tracks of blue

marlin from light-based location data generated from PAT tags

[49–50]. These models explicitly account for stochasticity in both

measurement (uncertainty in location) and process (fish move-

ment), and further refine movement tracks according to sea surface

temperature by comparing tag observations with historical remote

sensing data. Reduced state-space models for each blue marlin

PAT tag were developed interactively from the light-based

locations by removing non-significant parameters as measured

by likelihood ratio tests and by considering erroneous locations on

land. In cases where the number of observations was small and the

pop-up location was relatively close to the deployment location, we

used a model with uniform variance structure lacking sea surface

temperature parameters and/or advection parameters to estimate

a reasonable track solution. Otherwise, the full model often

provided the most reasonable solution. Refined estimates from the

reduced state-space models were used to approximate daily mean

position of blue marlin in the GoM during the presumed spawning

period of this species [13].

Daily mean position estimates from the primary spawning

season of blue marlin (May–July) were compared before (2007–

2009) and after (2010) the DH oil spill. PAT tag data from

deployments prior to the DH oil spill (n = 13) ranged from 60 to

365 days. Daily mean positions of adult blue marlin after the spill

were based on geo-location estimates generated from 1-year tag

deployments on blue marlin (n = 4). These fish were tagged in

summer/fall 2009 and the tags released from fish during or after

July 2010. Our analysis is based on the assumption that individuals

return to the same general spawning area the following year,

which is supported by long-term tag deployments on blue marlin

and white marlin before or after 2010 (Fig. S5). Gridded

probability density was calculated and converted to volume

(kernel density based on cell size = 0.01u) using the spatial analyst

extension in ArcView 10.0 (ESRI Inc.).

Supporting Information

Figure S1 Spatial and temporal variability in the
density of pelagic fish larvae collected from 2007 to
2010 for A) blackfin tuna (Thunnus atlanticus), B) blue
marlin (Makaira nigricans), C) dolphinfish (Coryphaena
hippurus), and D) sailfish (Istiophorus platypterus). June

(red) and July (blue) survey shown and colored lines represent the

observed margin of the Loop Current during each sampling trip

(coded by color). Density (larvae. 1000 m23) denoted by circle size.

(TIF)

Figure S2 Response plots from final presence/absence
generalized additive models (GAMs) based on June data
for A) blackfin tuna (Thunnus atlanticus), B) blue marlin
(Makaira nigricans), C) dolphinfish (Coryphaena hip-
purus), and D) sailfish (Istiophorus platypterus).

(PDF)

Figure S3 Response plots from final presence/absence
generalized additive models (GAMs) based on July data
for A) blackfin tuna (Thunnus atlanticus), B) blue marlin
(Makaira nigricans), C) dolphinfish (Coryphaena hip-
purus), and D) sailfish (Istiophorus platypterus).

(PDF)

Figure S4 Map showing the region closed to fishing on
June 21, 2010 by the National Oceanic and Atmospheric
Administration due to the Deepwater Horizon oil spill.

(TIF)

Figure S5 Long-term tracks (ca. 1 year) of individual A)
white marlin (Kajikia albida) and B) blue marlin
(Makaira nigricans) from pop-up archival transmitting
(PAT) tags deployed in the Gulf of Mexico. Blue shading

depicts kernel density (95% volume of utilization distribution

shown) based on daily mean positions the first month of the

deployment (dark blue) and the same month the next year (light

blue). Colored symbols represent quarterly geo-location estimates

for each individual over the deployment period and all geo-

location data were generated using state-space models that

implemented the Kalman filter algorithm from light-based

location data generated from PAT tags. Estimated weights of

white marlin (ID: WM-09-01) and blue marlin (ID BM-10-02)

shown here were 30 and 120 kg, respectively.

(TIF)

Table S1

(DOCX)
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