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Abstract

Background: Although genome-wide association studies (GWAS) have identified over 100 genetic loci associated
with rheumatoid arthritis (RA), our ability to translate these results into disease understanding and novel
therapeutics is limited. Most RA GWAS loci reside outside of protein-coding regions and likely affect distal
transcriptional enhancers. Furthermore, GWAS do not identify the cell types where the associated causal gene
functions. Thus, mapping the transcriptional regulatory roles of GWAS hits and the relevant cell types will lead to
better understanding of RA pathogenesis.

Results: We combine the whole-genome sequences and blood transcription profiles of 377 RA patients and
identify over 6000 unique genes with expression quantitative trait loci (eQTLs). We demonstrate the quality of the
identified eQTLs through comparison to non-RA individuals. We integrate the eQTLs with immune cell epigenome
maps, RA GWAS risk loci, and adjustment for linkage disequilibrium to propose target genes of immune cell
enhancers that overlap RA risk loci. We examine 20 immune cell epigenomes and perform a focused analysis on
primary monocytes, B cells, and T cells.

Conclusions: We highlight cell-specific gene associations with relevance to RA pathogenesis including the
identification of FCGR2B in B cells as possessing both intragenic and enhancer regulatory GWAS hits. We show that
our RA patient cohort derived eQTL network is more informative for studying RA than that from a healthy cohort.
While not experimentally validated here, the reported eQTLs and cell type-specific RA risk associations can prioritize
future experiments with the goal of elucidating the regulatory mechanisms behind genetic risk associations.

Keywords: Genome-wide association studies (GWAS), Epigenomics, Expression quantitative trait loci (eQTLs),
Rheumatoid arthritis

Background
Rheumatoid arthritis (RA) is a common autoimmune
disease that results in progressive disability. RA primar-
ily affects the small joints of the hands and feet, where
immune cells invade the lining of the joint, causing syn-
ovial inflammation and hyperplasia. Disease progression
leads to cartilage and bone destruction as well as sys-
temic comorbidities that result in higher mortality rates
in RA patients than healthy adults [1]. The genetic

factors underlying susceptibility to RA have been exam-
ined with multiple genome-wide association studies
(GWAS) that have identified over 100 single nucleotide
polymorphisms (SNPs) associated with RA [2]. However,
the translation of these findings into disease understand-
ing and therapeutic interventions is not straightforward.
Besides the difficulty in identifying disease-casual vari-
ants (and not those in high linkage disequilibrium [LD]
with the true causal variant), most reported GWAS
SNPs do not reside in protein-coding regions and may
be near many candidate genes. These challenges have
limited the ability to translate genetic studies into RA
disease understanding.
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While most identified disease-associated genetic vari-
ants do not result in functional mutations, multiple lines
of evidence support a gene regulatory role for these vari-
ants. It has been demonstrated that non-coding GWAS
SNPs are more likely to reside in DNaseI hypersensitivity
sites indicative of cis-regulatory elements [3]. Moreover,
immune disease-associated SNPs are highly enriched at
intergenic regulatory enhancers, with a limited set per-
turbing known transcription factor motifs [3–7]. There
are also several mechanistic demonstrations of specific
GWAS-identified SNPs that have been linked to disease
through gene mis-regulation [8, 9]. Together, these stud-
ies provide strong evidence that SNPs identified through
GWAS need to be further annotated with additional
data to understand their function.
The regulatory role of GWAS loci is further supported

by the finding that GWAS SNPs are enriched at DNA
variants correlated with gene expression changes, known
as expression quantitative trait loci (eQTLs) [10]. eQTLs
are a powerful tool to connect SNPs of unknown func-
tion with expression of putative disease-relevant genes.
Toward the goal of elucidating the gene regulatory role
of disease-associated variants, previous studies have used
publicly available eQTL datasets to annotate GWAS
SNPs [2, 11, 12]. Increasingly, eQTLs mapped from
sorted cell populations or tissues are used because of
evidence that gene regulation is highly context specific
[4, 13–15]. It is often prohibitively difficult to obtain
eQTL datasets from large patient cohorts or access
disease-relevant cells or tissues; therefore, data from
healthy cohorts and not the disease of interest are used.
However, we hypothesize that studies of relevant patient
populations could provide better information than these
non-disease datasets.
Herein, we present the results of an investigation to

address some of the challenges described above. We
mapped eQTLs using whole-genome sequencing data
and whole blood gene expression data from a population
of 377 unrelated RA patients. To our knowledge, this is
the first study to map eQTLs from RA patient samples.
We find greater than 6000 genes with significant eQTLs
that are enriched with RA relevant pathways. The RA
mapped eQTLs are enriched at RA GWAS loci and en-
hancers from immune cell epigenome maps. Compari-
son to eQTLs from healthy donors revealed greater
enrichment in RA GWAS loci in our dataset derived
from RA patients. Next, we associated known RA
GWAS loci with proposed gene and cell type annota-
tions by performing an integrative genomics analysis of:
RA eQTLs, RA GWAS loci, and immune cell epigenome
maps. We find greater cell type-specific chromatin activ-
ity at enhancers overlapping RA GWAS loci compared
to gene body/promoters overlapping GWAS loci across
various cell type datasets. As our deconvolution converts

loci associations into cell type and gene associations, it
simplifies the choice of an experimental system for valid-
ation. As an example, we identify FCGR2B in B cells as
possessing both intragenic and enhancer regulatory
GWAS hits, suggesting that this gene is potentially a key
RA driver in B cells. We provide our results as a founda-
tion to generate hypotheses for the design of validation
experiments, which could tease apart the genetic and
biologic mechanisms underlying the development and
progression of RA, a disease where there remains a large
unmet therapeutic need.

Results
eQTL mapping from a RA cohort
Gene expression and genotype data were combined to
map eQTLs from a population of 377 RA patients with
moderate to severe disease and inadequate response to
methotrexate [16]. A summary of patients used in this
study is given in Table 1. Transcriptome data (Affyme-
trix microarray) from whole blood were compared to
matching genotypes generated from whole-genome se-
quencing [17]. In brief, eQTL mapping was performed
by linear regression on adjusted data and false discovery
rate (FDR) was estimated with a permutation method
separately for local (cis defined as less than 1 Mb dis-
tance from SNP to gene) and distant associations (trans,
greater than 1 Mb from SNP to gene including across
chromosomes; see “Methods”).
We identified cis-eQTLs corresponding to 6194

unique genes (referred to as egenes) at the 5 % FDR level
(described in Fig. 1a, Table 2, Additional file 1 for the
complete set of connections and Additional file 2 for the
list of all SNPs tested but not necessarily found to be
associated with gene expression). An additional 236
unique egenes were mapped to trans loci (5 % FDR;
Additional file 3). In order to identify the biological pro-
cesses represented in this set of genes, we performed
enrichment analysis using knowledge-based canonical

Table 1 Summary statistics on patient population

Age (years) Min 18

Mean 52

Max 83

Gender Male 81 (21.5 %)

Female 296 (78.5 %)

Disease duration (years) Min 0.3

Mean 7.3

Max 39.7

DAS28-CRP score Min 3.6

Mean 5.9

Max 7.9
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pathways (see “Methods”). The top associated pathways
were genes involved in the immune system and the
adaptive immune system. Other associated terms were
biological processes with known importance in RA such
as antigen processing and presentation and pathways
such as lipid metabolism and cell cycle (Fig. 1b). Genes
with trans-eQTLs were enriched for pathways related to
immune regulation with the top enrichment for antigen

processing and presentation. The pathway enrichment
for trans-eQTL egenes was largely driven by HLA genes
(e.g. HLA-DRB4, HLA-C, HLA-B, HLA-DPA1, and
HLA-DQA1 appear in the gene sets for graft-versus-
host disease, allograft rejection, and cell adhesion mole-
cules). This is in agreement with previous studies that
found ~50 % of trans-eQTLs from peripheral blood map
within the HLA region [18].

Enrichment of RA eQTLs in the GWAS catalog and
comparison to other published eQTL studies
Previous studies have found that GWAS SNPs are
enriched in eQTLs [10]. In order to determine the
overlap of disease-associated SNPs with eQTLs in
our study, we compared the identified RA eQTLs
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Fig. 1 Overview of eQTLs from the blood of RA subjects and canonical pathway enrichment of genes with eQTLs. a Circos plot for eQTLs
mapped in whole blood from RA subjects. Outermost track of gray dots shows a Manhattan plot of cis-eQTLs (FDR < 5 %) with egenes
with lowest p values labeled. The inner links connect trans-eQTLs to the associated egene (only trans-eQTLs with nominal p values <10−14

are shown for clarity). Blue links represent associations within the same chromosome whereas gray links represent associations that span
across chromosomes. b egenes associated with eQTLs in RA whole blood samples were tested for enrichment with the MSigDB term
database separately for egenes associated in cis (left) or in trans (right)

Table 2 Summary of eQTLs detected in whole blood of RA
patients

Unique eSNPs Unique egenes FDR

Cis 712,539 6194 0.05

Trans 24,316 236 0.05

Walsh et al. Genome Biology  (2016) 17:79 Page 3 of 16



with the NHGRI catalog of published GWAS [19].
The diseases or traits with the most significant over-
lap with RA cis-eQTLs are shown in Fig. 2a. Of the
184 variants reported to be associated with RA sus-
ceptibility, 75 were associated with gene expression
in cis in our analysis. There were 69 unique genes
mapped to these eQTLs. When considering SNPs in
high LD (r2 ≥ 0.8) with the GWAS reported SNPs, 82
reported RA GWAS SNPs were associated with 80
unique genes in cis in our analysis. The RA eQTLs
were also enriched for other known autoimmune
disease GWAS, including ulcerative colitis, Crohn’s
disease, and multiple sclerosis. The RA cis-eQTLs
detected in this study were compared to cis-eQTLs
from previously published studies, including those

mapped from sorted populations of B cells, T cells,
and monocytes from healthy donors [13, 14, 18]
(Additional file 4: Figure S1). We repeated the com-
parison of cis-eQTLs to GWAS loci in these non-RA
populations (Fig. 2b). The enrichment with RA
GWAS SNPs was highest in our RA whole blood
study; with some overlap also present in the Raj
et al. study of T cells [14]. This demonstrates that
eQTL studies of RA patients may yield improved
power to discover potential disease-regulatory genes
compared to studies using non-RA donors. The cis-
eQTLs from Fehrmann et al. are enriched in inflammatory
bowel disease GWAS SNPs, which is in agreement with
the fact that the subjects in that study included 49 individ-
uals with inflammatory bowel disease [18].
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Fig. 2 Comparison of RA eQTLs to published GWAS catalog and fold-enrichment of RA eQTLs in chromatin states from diverse tissues. a Comparison
of RA cis-eQTLs to reported GWAS SNPs in the NHGRI catalog. The top 17 diseases or traits are shown, ranked by enrichment p value from one-sided
Fisher’s exact test. The number of GWAS reported SNPs overlapping with RA eQTLs in our dataset are shown for each disease or trait. b Comparison of
enrichment of GWAS SNPs in several eQTL studies. The top ten GWAS diseases or traits are shown. The eQTL studies are labeled by their first author
and cell type or tissue where gene expression was measured. Only cis-eQTLs were considered. c Enrichment of RA eQTLs in chromatin states. Both
cis- and trans-eQTLs were compared to positions of the following chromatin states in diverse tissues: transcription start sites (TSS), actively transcribed
(Tx), enhancers (Enh), active enhancers (EnhA), heterochromatin (Het), bivalent enhancers (EnhBiv), bivalent/poised TSS (TssBiv), repressed Polycomb
(ReprPC), and quiescent/low (Quies) regions. Only a subset of the cell or tissue types with the highest or lowest fold-enrichment in enhancer states are
shown to ease representation. The full results are shown in Additional file 5: Figure S2
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Comparison of RA eQTLs with epigenomics datasets
Genetic variants associated with immune diseases have
been shown to overlap distal regulatory enhancer ele-
ments [4]. Based on this finding, we sought to compare
the location of the RA eQTLs with enhancer elements
(derived from histone modification epigenome studies)
from cell or tissue specific datasets. We expect that
when eQTLs and epigenomes are compared between
cell types, both cell type-specific elements and common
elements will be found. This expectation is based on
previously published analysis indicating that more than
50 % of eQTLs are shared when comparing tissues [15]
and data from the Roadmap Epigenomics Project, which
identified 2.3 million enhancers across 111 epigenomes,
of which 57,840 formed a housekeeping cluster that was
active across all lineages [5]. Nonetheless, we sought to
confirm that RA whole blood eQTLs were enriched in
peripheral immune cell types. We used annotated chro-
matin states from 97 cell or tissue-specific datasets from
the Roadmap Epigenomics project and ENCODE [5, 20]
generated with ChromHMM [21] (see “Methods”). The
eQTLs were enriched at actively transcribed regions and
active transcription start sites (TSS) in all cell types but
exhibited greater fold-enrichment in the enhancers and
active enhancers of primary cell types from peripheral
blood (Fig. 2c; Additional file 5: Figure S2). The greater
specificity of enrichment of RA eQTLs at enhancer
elements than promoters may result from enhancer
activity being more cell type-specific than promoter
activity [5, 22].
Analysis based on a local permutation method demon-

strated that the enrichment of RA eQTLs in enhancer
elements was statistically significant [23] (see “Methods”
and Additional file 5: Figure S2B, C).

Identification of RA therapeutic targets in monocytes,
B cells, and T cells
RA GWAS variants at enhancers likely function by caus-
ing dysregulation of their target genes; therefore, these
genes may represent novel therapeutic targets or path-
ways for the treatment of RA. Having confirmed that
RA blood eQTLs are enriched at immune cell enhancers
and RA GWAS loci, we combined the datasets to iden-
tify the potential target genes of RA GWAS loci that
overlap immune cell enhancers. By integrating RA blood
eQTLs, RA GWAS, and immune cell enhancer datasets,
we identified triple hit regulatory regions of the genome
and their potential target genes. Our approach addresses
three major problems with the interpretation of RA
GWAS loci: LD between SNPs, a lack of cell type-
specific information, and that the target genes of puta-
tive regulatory SNPs are unknown. To overcome these
challenges, we developed an integrative analysis method-
ology that takes all SNPs in LD with the RA GWAS hits,

identifies those that overlap blood cell type enhancers,
and then uses eQTLs to link these to genes that pos-
sess active chromatin marks in the corresponding cell
type (Fig. 3a). Through this approach we annotate
intergenic GWAS hits with a cell type of activity and
target gene(s).
In brief, we started by identifying enhancer regions

using ChIP-seq maps of histone H3 that are modified
with acetylation of lysine 27 (H3K27ac) and mono-
methylation of lysine 4 (H3K4me1). Then we identified
RA GWAS SNPs from Okada et al. [2] and SNPs in high
LD (r2 ≥ 0.8) with the RA GWAS SNPs and overlapped
these with the enhancer regions (HLA-region SNPs on
chromosome 6 were excluded from this analysis and will
be treated separately). Active genes were identified by
looking for active promoter marks, H3K27ac or tri-
methylation of lysine 4 (H3K4me3), at gene TSS. Next,
enhancers overlapping RA GWAS loci were linked to
target genes using eQTLs between the active genes and
the SNPs overlapping the enhancers (see “Methods” for
complete description). We focused our interpretation on
primary monocytes, primary B cells, and primary T cells
from peripheral blood (Fig. 3b) and we provide the
complete results for all cell types in Additional file 6.
While monocytes are not directly involved in RA dis-
ease, they differentiate into other cell types that are
involved in disease, such as dendritic cells and macro-
phages. H3K4me1 peaks identified more RA GWAS/
eQTL overlapping enhancers than H3K27ac, which
may be reflective of the higher genome coverage of
H3K4me1. We plotted H3K4me1 connections in all
available T cell datasets and found that 69 % of genes
were identified in multiple T cell types (Additional file 7:
Figure S3) suggesting the majority of H3K4me1 connec-
tions do not result from the chance placement of
H3K4me1. Previous publications have suggested that en-
hancers possessing H3K27ac are likely active in that
lineage [24, 25], whereas enhancers possessing only
H3K4me1 are likely to represent enhancers that are
primed to become activated upon stimulation, in sub-
lineages, or in disease [4, 26, 27]. Hierarchical clustering
demonstrated that the three cell types had distinct pat-
terns of SNP-enhancer-gene connections. Interestingly, B
cells and monocytes were more similar than B cells and T
cells, potentially reflecting shared roles in antigen presen-
tation during RA versus genes shared from common
progenitors.
Our methodology prioritized testable connections be-

tween GWAS loci at enhancers, target genes, and the
cell types in which the GWAS regulate expression. Of
the 58 genes that had cis-eQTLs overlapping RA GWAS
and enhancer regions (either H3K27ac or H3K4me1
marks), 12 genes were associated with all three cell
types. These genes were ACTR2, HSPA6, IL10RB, PAM,
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PPIP5K2, PSMD5-AS1, RAB14, RNASET2, TMEM50B,
TMEM116, TRAF1, and UBE2L3. There were other
genes, such as FCRL5 and BLK, that had cis-eQTLs
overlapping enhancer regions and GWAS loci in B cells,
but not monocytes and T cells. Genes with monocyte-
specific cis-eQTLs included SUOX and PCCB. Genes
with RA GWAS overlapping enhancers in T cells only
included IL2 and LY9.

The above methodology identified genes likely associ-
ated with intergenic RA GWAS. However, we also
wanted to consider RA GWAS loci that overlap genes or
their promoters in the immune cell types considered.
We identified 68 genes that had RA GWAS loci overlap-
ping their promoter or any part of their transcript and
were considered “active” in the immune cell epige-
nome maps (possessed active chromatin marks at their
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promoters; see “Methods” and Additional file 8: Figure
S4). The majority of these genes (51 of 68 genes) are active
in all three cell-specific datasets (e.g. GATA3 and IL6R),
which is reflective of the lower cell-type specificity of pro-
moters [5, 22]. However, some genes are specific to certain
cell types, such as PADI4, which overlaps a RA-associated
SNP, and only possess active chromatin marks at its pro-
moter in monocytes (Additional file 9: Figure S5). It was
also tested whether H3K4me3 outside of gene promoter
regions near TSSs would be useful to provide additional
connections between GWAS loci and putative causal
genes. We found that analysis of H3K4me3 peaks
complemented the analysis described here and did
not point to any additional genes that could be asso-
ciated with GWAS loci.
Separately from the cis-eQTLs described in detail

above, we also queried whether there were any RA
GWAS SNPs associated with gene expression of distal
genes (trans-eQTLs). We identified trans-eQTLs corre-
sponding to three unique egenes that overlapped re-
ported RA GWAS SNPs (or those in high LD with the
reported SNPs). These trans-eQTLs were all located in
the HLA region on chromosome 6 and were associated
with expression of SAMD14, BICD1, and PTCRA. SAMD14
encodes for Sterile Alpha Motif Domain Containing 14, a
protein without known function or relation to auto-
immunity. BICD1 encodes for Bicaudal D Homolog 1,
a protein involved in golgi-endoplasmic reticulum
transport. BICD1 is known to interact with STAT3,
GSK3B, PLK1, and MAPK14, proteins involved in im-
mune cell signaling. PTCRA encodes for Pre T-Cell
Antigen Receptor Alpha, which forms part of the pre-
T-cell receptor complex and regulates T cell develop-
ment. The trans-eQTLs for these genes are visualized
in Additional file 10: Figure S6. These genes have
not, to our knowledge, previously been documented
as associated with any RA GWAS loci.

Disease-relevance of RA GWAS-associated genes
We tested whether the genes associated with RA GWAS
SNPs (not including MHC class II risk SNPs) were
enriched for genes related to RA pathogenesis. We
tested the set of genes described above derived using
epigenome maps from peripheral B cells, T cells, and
monocytes. The immune cell RA-associated genes were
enriched for general immune system pathways and more
specific pathway terms such as JAK-STAT signaling
pathway, IL-12-mediated signaling events, and T cell re-
ceptor signaling pathway (Fig. 4a). These RA-associated
genes were also enriched for genes expressed in certain
peripheral blood cell types. The greatest enrichment was
observed for genes associated with mononuclear cell of
peripheral blood, T lymphocyte (regulatory) of periph-
eral blood, and B lymphocyte (pre-B) of bone marrow

(Fig. 4b). Because there were several RA GWAS SNPs
that were not annotated with a gene in the chosen per-
ipheral blood cell types by our approach, we expanded
our set of genes to include genes that had been previ-
ously been associated with these reported risk SNPs.
The results of this analysis are shown in Additional
file 11: Figure S7.
We next tested whether the genes we identified were

enriched in genes identified as differentially expressed in
RA datasets. Unlike the use of knowledge-based gene
sets, this allows for the inclusion of genes that may be
important for disease but are not yet well established in
the literature and absent from pathway databases. The
immune cell RA-associated genes we identified were
enriched for genes increased in RA synovial tissue
compared to normal tissue or in inflamed compared to
non-inflamed synovial tissue (Fig. 4c). Between 21 and
33 RA GWAS-associated genes were significantly in-
creased in these datasets. A total of 68 out of 120 RA
GWAS-associated genes were differentially expressed in
at least one of these datasets. We compared these results
to gene sets derived from other automated methodolo-
gies to annotate GWAS SNPs with genes. First, a gene
set was generated from the same set of GWAS SNPs an-
notated by our method, by simply choosing the closest
gene(s) to the reported GWAS SNP using the same
number of genes per SNP (“closest genes”). A second
gene set was generated by choosing any genes within
5000 bp of the reported SNP (“within 5000 bp”). We ob-
served that our method selected more genes that were
differentially expressed in the orthogonal disease data-
sets, resulting in lower enrichment p values (Fig. 4d).
Overall, this analysis suggests that we identified genes
expressed in immune cell types that are increased in in-
flamed synovial tissue of RA patients and that our
method can nominate more disease-relevant genes than
previous approaches that do not incorporate eQTL and
epigenome datasets.
In addition to this traditional enrichment analysis, the

RA-associated genes were analyzed with a network-
based methodology to assess the network connectiv-
ity and identify biologically relevant associated genes
(Additional file 12: Figure S8). It has previously been
shown that disease associated genes cluster together
on gene interaction networks [28–31]. For our com-
parison, we compared the genes identified in Fig. 4
(as well as MHC class II risk genes) to genes from
the NCBI Phenotype-Genotype Integrator for the trait
“Arthritis, Rheumatoid” (http://www.ncbi.nlm.nih.gov/gap/
phegeni). A publicly available human interactome was uti-
lized [28]. We found that, indeed, the GWAS-associated
genes we identified formed a connected component with
16 members (and a second large component of nine genes)
compared to ten directly connected genes for the NCBI
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annotated gene list (corresponding to a z-score based on
100,000 permutations of 4.6 and 2.7, respectively). The
GWAS-associated genes we identified have a mean shortest
distance of 1.78 versus 1.90 for the NCBI list.

Discussion
Mapping gene regulatory components of RA
Understanding the genetic and regulatory component of
complex diseases such as RA remains a large challenge.
Here, we present a resource to study the connections

between RA risk loci and gene expression. We used
matched whole-genome sequencing and mRNA profiling
from 377 patients with moderate to severe RA. This
dataset has the advantage of being disease-specific, un-
like eQTLs derived from healthy (non-RA) subjects. We
demonstrated that the eQTLs mapped from the whole
blood of RA patients are more enriched for RA GWAS
SNPs than other eQTL datasets (Fig. 2). We confirmed
that eQTLs mapped from RA patients are enriched in
enhancer regions of relevant cell types such as peripheral
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blood B cells and T cells. We mapped previously re-
ported RA GWAS loci to enhancers from peripheral
blood datasets and then genes using our eQTLs. This
method was able to identify connections between genes
and regions associated with RA risk, providing a mech-
anism to better understand RA disease biology as well as
potential pathways for drug discovery.
The finding that our eQTL dataset mapped from RA

patients is more enriched with RA GWAS loci that pre-
viously published datasets in non-RA cohorts could be
due to several factors, which are explored further in
Additional file 13: Figure S9. One possible explanation is
that the eQTL variants have higher allele frequencies in
RA subjects, therefore boosting the power to detect as-
sociations with gene expression. However, GWA studies
indicate that the allele frequencies should not be greatly
different for most variants in RA cases versus healthy
controls. Therefore, this is unlikely to explain the ob-
served difference. We confirmed this by comparing the
allele frequencies of eQTLs observed in our cohort to
the allele frequencies for the same variants in the 1000
genomes EUR population (Additional file 13: Figure
S9A–C). A second possible explanation for the enrich-
ment of RA GWAS loci in our RA dataset is that RA
blood contains a larger proportion of relevant cell types
compared to healthy blood, which could boost the
power to detect eQTLs for genes expressed predomin-
antly in these cell types. Indeed, there are several publi-
cations documenting changes in cell frequency in
peripheral blood of RA patients compared to non-RA
healthy controls [32–34]. A comparison of egenes from
our study to those from healthy donors demonstrated
that egenes detected uniquely in RA blood (and not
healthy donors) were highly expressed in relevant cell
populations such as T lymphocytes (Additional file 13:
Figure S9F). A third explanation for the difference be-
tween RA and healthy eQTLs, which is potentially the
most intriguing, is that the conditions present in RA pa-
tients result in context-specific gene regulation resulting
in detection of eQTLs not present in healthy donors.
In support of this hypothesis, stimulation-dependent
eQTLs have been reported in human monocytes
stimulated with lipopolysaccharide or interferon- [35].
In order to further explore this possibility for the eQTLs
detected here, further focused studies would need to be
performed.

Identification of novel disease-relevant genes
While many of the genes we identified have been
mapped to RA GWAS loci in previous reports and have
documented associations with RA, such as PTPN22
(protein tyrosine phosphatase, non-receptor type 22)
[36], others are less well studied, such as PAM (Peptidyl-
glycine alpha-amidating monooxygenase), an enzyme

that catalyzed the C-terminal amidation of peptides. An-
other example of a gene not previously linked to RA
genetics is CTSB (Cathepsin B), a proteinase involved in
amyloid precursor protein processing that is known to
be elevated in the synovial fluid of RA patients and
could be involved in collagen destruction [37].
Our approach facilitates the interpretation of GWAS

loci in specific cellular contexts, suggesting an experi-
mental cell type that could be used for validation of pro-
posed therapeutic targets or disease-specific biomarkers.
As an illustrative example, FCRL5 (Fc receptor-like 5)
was identified as associated with rs2317230 on chromo-
some 1 and overlapping a B cell-specific enhancer
(Fig. 5a, c). Recent literature reports support our cell-
type association for FCRL5. FCRL5 is known to be
involved in B cell signaling and is highly expressed in
tonsil plasma cells, naïve B cells, and memory B
cells [38]. The FCRL5 cytoplasmic domain has both
an immunoreceptor tyrosine-based activation motif
(ITAM)-like sequence and two consensus immunore-
ceptor tyrosine-based inhibitory motifs (ITIM) and
appears to have an inhibitory effect on BCR signaling [39].
FCRL5/IgG interaction results in IgG auto-regulation, al-
though FCRL5 does not bind IgG in a traditional manner
via the Fc like Fc receptors [40]. Furthermore, in the treat-
ment of RA with Rituxan (anti-CD20), low FCRL5 mRNA
levels in B cells from whole blood have been shown to
predict positive response [41]. Taken together, there is
strong evidence to support the genetic association with
FCRL5 in the B cell lineage. In contrast, FCRL3 is asso-
ciated RA in both T cells and B cells but is repressed
by H3K27me3 in monocytes (Fig. 5a, c).
FCGR2B is an example of a gene that overlaps a

GWAS SNP and also has a cis-eQTL that overlaps a dif-
ferent reported GWAS SNP. A cis-eQTL for FCGR2B
overlaps with enhancers in monocytes and B cells and
the reported risk SNP rs72717009 (OR 1.13; [2]). A dif-
ferent reported risk SNP at chr1:161644258 (OR 1.15;
[2]) also overlaps with the FCGR2B transcript (Fig. 5b,
c). The two independent GWAS associations between
RA and FCGR2B highlight its potential importance.
Literature supports the association between RA and
FCGR2B expression in B cells as FCGR2B expression is
reduced in memory B cells and plasmablasts from RA
patients compared to healthy controls and FCGR2B ex-
pression is associated with levels of anti-citrullinated
autoantibodies [42].
TAGAP (T-cell activation Rho GTPase activating pro-

tein) is another example gene that was also identified
with a cis-eQTL overlapping a B cell-specific enhancer,
but a specific role for TAGAP in RA disease has not pre-
viously been demonstrated. Our study suggests that the
function could be specific to B cells. This is further sup-
ported by gene expression data that demonstrate that
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TAGAP expression is highest in naïve B cells compared
to CD4-positive and CD8-positive T cell subtypes or
other B cell subtypes [43]. Furthermore, a previous pub-
lication found that the association of a TAGAP variant
(rs182429) was stronger in patients with anti-cyclic
citrillinated peptide (anti-CCP) antibodies [44 ].

Limitations of the current approach
While our study was able to annotate many reported RA
GWAS SNPs with potential genes, there were several

SNPs that were not associated with enhancers or located
within any active genes in the blood cell types evaluated.
One possibility is that the medications used by the sub-
jects in this study altered gene transcription in the blood
and either masked some true effects or created false pos-
itives. The cohort used here was relatively homogeneous
in current medications because this was an inclusion
criterion of the study [16]. All subjects were on a
stable dose of methotrexate with no exposure to biologics
such as TNF-alpha inhibitors. A second possibility is that
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these GWAS SNPs are associated with regulation of genes
expressed in other cell types. The known pathology of RA
suggests these SNPs could function in fibroblast-like syno-
viocytes (FLS), as it is known that the FLS in affected
joints of individuals with RA exhibit a transformed, inva-
sive phenotype [45]. Additionally, genome-wide analysis of
DNA methylation has identified a stable RA-specific sig-
nature at disease-related genes [46–48]. In these studies,
several of the SNPs that were not annotated in blood cell
types, were previously described in analyses of RA FLS
[49]. For example, the reported risk SNP rs10175798 was
not annotated by any gene in our study, but is proximal to
LBH. This gene was found to be differentially expressed
and differentially methylated in RA FLS [49]. Further-
more, LBH was shown to regulate proliferation in FLS
[50]. Unfortunately, FLS could not be included in our ana-
lysis as there is currently no histone modification or eQTL
data available in this cell type. To date, the large number
of RA FLS samples needed for eQTL mapping has been
difficult to obtain as synovial biopsies are not routinely
performed. However, new methods to improve synovial
biopsy collection may make this type of study possible in
the near future [51].
Besides FLS, our study may also not be able to detect

eQTLs from cell types that are rare in whole blood. We
focused our analysis on epigenome maps from mono-
cytes, B cells, and T cells, but a focused study using iso-
lated regulatory T cells or other cell types of interest will
likely be necessary to fully annotate the RA risk loci with
prioritized gene connections. In our present study, we
use co-overlap of GWAS SNP and eQTL SNP with his-
tone modification ChIP-seq peaks to link GWAS loci to
target genes without assessing the exact colocalization of
the two signals at one SNP. The two pieces of informa-
tion are used distinctly: (1) the RA GWAS hit is used to
associate the enhancer’s dysregulation with RA; and (2)
the eQTL is used to link the enhancer to target genes.
Further insights into RA genetics would be obtained
through careful measurement and testing of eQTL and
GWAS signal colocalization; however, such studies
would require larger samples sizes and eQTLs from a
wide variety of purified cell types in resting, active,
healthy, and diseased states [52].
Additional limitations of the present study are the

availability of epigenomic datasets, coverage of histone
marks within epigenomic datasets, and the potential for
false positives. More datasets from the cell types of
interest from added donors would allow for estimations
of the variability of chromatin states across the genome.
Therefore, allowing researchers to assign confidence to
the likelihood of a particular mark in each cell type. Fur-
thermore, the inclusion of epigenomes from RA patients
(and not only healthy donors) is likely to identify differ-
ential enhancer activity. Related to this limitation is the

unknown accuracy of the method for selecting gene
and cell type connections for a given GWAS loci. All
the proposed connections need to be confirmed with
focused experimentation. We demonstrated that H3K4me1
peaks identified more RA GWAS/eQTL overlapping en-
hancers than H3K27ac. Because of the higher genomic
coverage of H3K4me1, it is possible a greater number of
these connections are caused by chance.

Conclusions
To our current knowledge, the study presented here is
the most comprehensive dissection of the transcriptional
regulation of RA GWAS in immune cell types. We lev-
eraged a large study of DNA variation and gene expres-
sion from RA patients to map eQTLs. Then, using this
dataset and publicly available epigenome maps, we
attempted to deconvolute the RA GWAS loci into po-
tential protein and cell type associations. This integrative
analysis provides a bridge to better understand RA
GWAS and enable future validation studies to elucidate
disease mechanisms.

Methods
Patient cohort
RA patient samples were collected from a phase III
clinical trial of golimumab in Patients with Active
Rheumatoid Arthritis Despite Methotrexate Therapy
(GO-FURTHER) [16]. A subset of subjects from the
entire trial population at baseline (before golimumab
treatment) was utilized (Table 1).

Peripheral blood gene expression
Peripheral whole blood was collected in PAXgene tubes
(Preanalytix, Switzerland). RNA was isolated using the
Qiagen Biorobot (Qiagen, Valencia, CA, USA), which
followed the protocol from the Qiagen PAXgene MDX
kit (cat# 752431), and was modified to collect both total
and microRNA. Subject cDNA was amplified through
utilization of the NuGEN Ovation Pico WTA System
V2 (NuGEN, San Carlos, CA, USA). Microarray
hybridization was performed on GeneChip Human
Genome U133 Plus 2.0 Array according to the manufac-
turer’s protocol (Affymetrix, Santa Clara, CA, USA). Data
were normalized using Robust Multi-array Average
(RMA) algorithm and log base 2 transformed using R.
Data are available from NCBI GEO with accession num-
ber GSE74143.
Prior to eQTL detection, the gene expression data were

adjusted by the first ten principal components (PCs) from
principal component analysis and transformed with in-
verse normal transformation as in previous eQTL studies
[14, 18, 53]. The variation captured by these PCs was
associated with factors such as sex, age, and technical
factors such as RNA quality and microarray batch
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effect (Additional file 14: Figure S10). We chose to
remove ten PCs to balance removing as much un-
wanted sample differences without also removing gen-
etically determined variation. Removal of 2–200 PCs
was tested to choose ten PCs, although the maximal
number of cis-eQTLs was detected with removal of
50 PCs.

SNP data from whole-genome sequencing
Genotypes were generated from whole-genome sequen-
cing as described in Standish et al. [17]. DNA isolated
from whole blood was sequenced and DNA variants
called using a modified GATK pipeline.

eQTL mapping
eQTL associations were tested for bi-allelic, auto-
somal SNPs with minor allele frequency (MAF) >0.05,
Hardy-Weinberg equilibrium p value >10−6, and map-
ping to a reference SNP ID number. The total num-
ber of SNPs tested was 6,012,773. Probe sets mapping
to non-autosomal chromosomes, not mapping to known
genes, or with ambiguous mappings were excluded, leav-
ing 39,515 probe sets for eQTL mapping. After QC of
genotype and transcriptomics data, there were 377 match-
ing samples for eQTL mapping. It was confirmed that
transcriptomics and DNA samples matched as described
previously [54].
Association of SNP genotypes (coded as 0, 1, or 2)

and gene expression data was performed using the
matrixeQTL R package with a linear model [55].
Subject age and the first three PCs from genotype
population stratification (performed with SNPRelate R
package) were included as covariates [56]. For cis-
eQTLs, associations were tested for SNPs less than
1 Mb from a probe set, while trans-eQTLs were
considered all other distal associations. Multiple hy-
pothesis correction was performed separately for cis-
and trans-eQTLs using permutations as described
previously [57].

Pathway enrichment analysis
Enrichment of gene sets was performed with Nextbio
(Illumina, San Diego, CA, USA) with Broad Institute
MSigDB canonical pathways for terms in the range of
1–5000 genes in size and the Nextbio Body Atlas for
Homo sapiens cell types [58]. All enrichment p values
were corrected for multiple hypotheses using the Bonfer-
roni correction.
Differentially expressed genes from RA synovial tissue

were identified from three publicly available datasets
(NCBI GEO dataset IDs: GSE1919 [59], GSE55235 [60],
GSE48780 [61]). Conditions were compared using a
moderated t-test and a p value <0.05 cutoff to define
gene sets.

Comparison to GWAS studies
For the comparison to the NHGRI catalog, a snapshot of
the catalog was downloaded on 22 December 2014 from
the NHGRI website (http://www.genome.gov/gwastudies/).
Diseases or traits with ten or more associated SNPs were
considered for analysis. P values were calculated using a
one-sided Fisher’s exact test and adjusted for multiple hy-
potheses using the Bonferroni correction. The background
considered was all SNPs for any disease/trait in the catalog.
For the remaining comparisons to RA GWAS results, the
101 RA risk SNPs reported in Okada et al. from the trans-
ethnic meta-analysis were used [2]. For each reported SNP,
SNPs in LD were defined based on 1000 genomes Project
Consortium phase 1 data as those with r2 ≥ 0.8, using Hap-
loReg (http://www.broadinstitute.org/mammals/haploreg/
haploreg_v3.php; [62]).

Enrichment in tissue-/cell type-specific chromatin states
We compared the locations of the RA eQTLs to
regulatory elements of 97 different cell types taken
from the Roadmap Epigenomics project and ENCODE
[5, 20]. Chromatin states produced by the Roadmap
Epigenomics project using six histone modifications
(H3K4me3, H3K4me1, H3K27ac, H3K27me3, H3K9me3,
and H3K36me3) and ChromHMM [21] were downloaded.
The Roadmap Epigenomics project also produced a set of
chromatin states using only five marks but including 127
cell types, but we chose not to use this set because
H3K27ac was not included and this histone modification
has been shown to be the most predictive is enhancer ac-
tivity [25]. The six histone modifications used produce 18
chromatin states, but many of these states correspond to
similar regulatory elements (e.g. “Active TSS” and
“Flanking TSS” both represent the TSS); thus to sim-
plify interpretation, the 18 states were collapsed into
nine states. The fold-enrichment of the eQTLs in
each of the cell type’s chromatin states was calculated
by dividing the proportion of total eQTLs that over-
lapped the state by the proportion of the total gen-
ome covered by the state.
To better account for local genomic structure and test

whether the enrichment within enhancer regions was
statistically significant, we used a recently published al-
gorithm, goshifter [23]. This method uses local permuta-
tions of annotation locations (e.g. enhancers marked by
H3K27ac) to generate a null distribution and then calcu-
late a p value based on the observed overlap of a set of
variants (here eQTLs) and those in LD with the given
annotation. Enrichment was tested for a given chromatin
state annotation for the peak eQTLs (eQTL for each
gene with the lowest p value). The tests were run using
104 permutations and LD information from the 1000 ge-
nomes EUR population with an r2 threshold of 0.8 and a
window size of 5 × 105 bases.
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Deconvolution of RA GWAS and RA whole blood eQTLs
using histone modifications
The deconvolution of RA GWAS hits into cell type and
protein associations was carried out for each cell type’s
epigenome using a four-step methodology: (1) creating
sets of RA GWAS enhancers; (2) creating sets of active
genes; (3) using eQTLs to link RA GWAS enhancers
and active genes; and (4) adding active genes that over-
lap the RA GWAS loci.
Creating sets of RA GWAS enhancers was done by

downloading lists of genomic loci that are enriched
(known as peaks) with H3K27ac and H3K4me1 from the
Roadmap Epigenomics project [5]. The Roadmap Epige-
nomics project had identified these regions by perform-
ing chromatin immunoprecipitation followed by high-
throughput sequencing (ChIP-seq) using antibodies that
are specific to these histone modifications. To facilitate
comparison between epigenomes, the Roadmap Project
performed all data processing with a common bioinfor-
matics pipeline, which first used Pash 3.0 [63] to map
sequencing reads to the genome. Then the program
MACS2 [64] was used to identify regions of the genome
where significant enrichment of sequence reads group to
form peak regions. In this analysis, only peaks with a
fold-enrichment >4 were used. From each set we re-
moved any peaks that overlapped (−1500 bp to +500 bp)
a transcription start site (TSS; locations obtained from
RefSeq [65]) as these likely correspond to promoters and
not enhancers (and were handled separately; see below).
We used H3K27ac peaks to represent enhancers that are
active in a cell type whereas H3K4me1 peaks represent
enhancer regions that likely to become active in the cell
type upon stimulation or further differentiation. Then to
identify the enhancer regions that are associated with
RA, we used bedtools [66] to overlap the enhancer sets
with the reported RA GWAS SNPs and SNPs that are
in LD (r2 > 0.8). This resulted in 17 to 90 (H3K27ac) and
20 to 138 (H3K4me1) RA GWAS enhancers per cell type.
Creating sets of active genes was done by overlapping

their TSSs (−1500 bps to +500 bps) with H3K4me3 (also
obtained from the Roadmap Project) or H3K27ac. Only
peaks with a fold-enrichment >4 were used. This resulted
in between 12,389 and 16,320 active genes per cell type.
Using eQTLs to link RA GWAS enhancers and active

genes was done by re-mapping the eQTLs using only RA
GWAS enhancers and genes that are active in a particular
cell type (as defined above). To do this, we performed
eQTL mapping (as described in the “eQTL mapping” sec-
tion in “Methods” above) using only the SNPs that overlap
the RA GWAS enhancers and only the genes that were
called as active for each cell type. Thus, RA GWAS en-
hancers are annotated with one or more genes if there is a
significant eQTL association in our dataset and the gene(s)
are considered active in the cell type being considered.

Adding active genes that overlap the RA GWAS loci was
performed to include GWAS hits that overlap promoters
and gene bodies. To do this we used bedtools to identify
RA GWAS SNPs and those in LD (r2 > 0.8) with the gene
bodies and promoters of the active genes (−1500 bp from
TSS to +500 bp from the transcript termination site) identi-
fied in each cell type’s epigenome. This resulted in between
60 and 81 genes in each cell type’s epigenome.

Network analysis
Network calculations were made as described in Meche
et al. using the same publicly available interaction
network [28].

Data visualization
Figures were created using Microsoft Excel, R, Cytoscape,
Circos [67], and ArrayStudio (Omicsoft, Cary, NC, USA).
Hierarchical clustering as shown in heatmap figures was
performed using one minus the Pearson correlation as a dis-
tance measure and Ward’s method for linkage. Additional
file 10: Figure S6 was created with LocusZoom [68] using
“1000 Genomes Nov 2014 EUR” as the LD population.

Ethics approval
RA patient samples were collected from a phase III
clinical trial of golimumab in Patients with Active
Rheumatoid Arthritis Despite Methotrexate Therapy
(GO-FURTHER). [16] The study (NCT00973479, EudraCT
2008-006064-11) was conducted according to the Declar-
ation of Helsinki and the International Committee on
Harmonisation good clinical practices. The protocol was
reviewed and approved by each site’s institutional review
board or ethics committee. All patients provided written in-
formed consent to genetic and transcriptomics analyses.

Availability of data and materials
The microarray gene expression data are available from
NCBI GEO with accession number GSE74143. The
eQTLs are provided as supplemental data files.

Additional files
The following additional data are available with the on-
line version of this paper:

Additional file 1: Contains the cis-eQTLs with FDR <5 %. (TXT 104041 kb)

Additional file 2: Contains the list of all SNPs tested in the eQTL
mapping. (TXT 67993 kb)

Additional file 3: Contains the trans-eQTLs with FDR <5 %. (TXT 1275 kb)

Additional file 4: Figure S1. Comparison of RA cis-eQTLs identified in
this study to previously published eQTL studies. The eQTLs mapped in
this study (“current study, RA blood”) were compared to those from three
published studies, labeled by the first author of each study and the cell
type or tissues where gene expression was measured. When compared
to the current study, each previous study replicated between ~25 % and
50 % of egenes A and up to ~30 % of eQTL SNPs B reflecting the higher
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number of SNPs used in this study based on whole-genome sequencing
versus the previous studies. When comparing the current study with the
previous studies as references, between ~40 % and 60 % of egenes repeated
C and ~30 % to 50 % of eQTL SNPs replicated D. (PDF 7622 kb)

Additional file 5: Figure S2. Fold-enrichment of RA eQTLs in
chromatin states of diverse tissues. A The full results from analysis of 97
datasets. A subset of the full results was shown in Fig. 2c. Both cis- and
trans-eQTLs were compared to positions of the following chromatin
states in diverse tissues: active transcription start sites (TSS), actively
transcribed (Tx), enhancers (Enh), active enhancers (EnhA), heterochromatin
(Het), bivalent enhancers (EnhBiv), bivalent/poised TSS (TssBiv), repressed
Polycomb (ReprPC), and quiescent/low (Quies) regions. PB, peripheral blood.
B Results from enrichment analysis with peak eQTLs performed using the
goshifter method. The values given are the p values from permutation and
the enrichment in parentheses (number of SNPs overlapping the
annotation divided by the total number of SNPs). C Enrichment of peak
eQTLs in H3K27ac stratified on annotations in other cell types performed
using the goshifter method. The p values from permutation are shown.
(PDF 7890 kb)

Additional file 6: Contains the full results of the integration with
enhancers described by H3K27ac or H3K4me marks. (XLSX 276 kb)

Additional file 7: Figure S3. Genes associated with RA GWAS in T cell
specific epigenomic datasets. Heatmap of genes associated with RA
GWAS SNPs overlapping enhancers in the shown T cell datasets. PB,
peripheral blood. Two T cell epigenomes uniquely identify genes that
might be explained by unique aspects of the selection markers and
(when carried out) in vitro differentiation protocols: (1) “Primary T cells
from PB” was the only T cell sample to use CD3+ as a selection marker;
and (2) “Primary T helper cells PMA-I stimulated” was the only sample
that used Magnetic-activated cell sorting (MACS) [5]. The differences
between the two “Primary T helper memory cells from PB” samples
might be explained by their different differentiation protocols (number 1
uniquely used CD25M and CD45RO as selection markers) or by the
differing donors of origin [5]. (PDF 7665 kb)

Additional file 8: Figure S4. Heatmap of genes identified to overlap
blood enhancers and RA GWAS loci. Heatmap of genes associated with
RA GWAS SNPs in primary monocyte, B cell, or T cell datasets. In addition
to the associations from overlapping enhancers and eQTLs (as shown in
Fig. 3b), genes that overlap RA GWAS loci in the given cell-type datasets
are shown. (PDF 7638 kb)

Additional file 9: Figure S5. PADI4 is active in monocytes but not T
cells or B cells. Genome browser view of the PADI4 region with tracks
from peripheral blood datasets. Histone modification tracks show the
fold-change between ChIP and control read counts. Active histone
modifications have red bars next to their labels while repressive marks
have blue. Genes on the positive and negative strands are shown in
blue and cyan, respectively. (PDF 7791 kb)

Additional file 10: Figure S6. Trans-eQTLs that overlap RA risk loci on
chromosome 6. Genome browser view showing eQTL peaks for three genes
associated distally with RA GWAS loci in the HLA region. For each gene, the
most significant eQTLs are shown. The color of the eQTL markers corresponds
to LD r2 in reference to the strongest eQTL for each gene (as labeled and data
shown to the right). The yellow highlights the position of the strongest eQTL
for each gene. Histone modification tracks show the fold-change between
ChIP and control read counts. Active histone modifications have red bars next
to their labels while repressive marks have blue. (PDF 7709 kb)

Additional file 11: Figure S7. Enrichment of RA-associated genes
including genes for those RA GWAS SNPs that were not annotated with
our approach. Genes identified as associated with RA GWAS SNPs in
monocytes, B cells, or T cells were tested for enrichment with the MSigDB
term database. This corresponds to Fig. 4a, except including additional
genes for the RA GWAS SNPs that were not identified with our approach
using the monocyte, B cell, and T cell datasets. Genes were chosen for
each SNP based on previously published annotation [2]. (PDF 7609 kb)

Additional file 12: Figure S8. Network connectivity and
neighborhoods of genes identified through overlap with enhancers and
active genes in primary B cell, T cell, and monocyte datasets. A Network
connectivity parameters compared for GWAS-associated genes identified

in this study compared to those annotated by NCBI phenotype-genotype
integrator. B Enrichment of interactome subnetwork genes in cell types
and canonical pathways. C Subnetwork of genes that were found to be
unique to T cells. D Enrichment of T cell specific interactome subnetwork
genes in cell types and canonical pathways [2, 28]. (ZIP 7.33 mb)

Additional file 13: Figure S9. Comparison of RA eQTLs to healthy
donor eQTLs. A Comparison of allele frequencies in the RA population
used in this study compared to the 1000 genomes dataset for those
SNPs that were eQTLs in our dataset. The allele frequency of the peak
eQTL for every egene (SNP with lowest p value) was compared to the
1000 genomes project dataset (accessed with Haploreg; http://
www.broadinstitute.org/mammals/haploreg/haploreg_v3.php). B
Comparison of allele frequencies for all peak eQTLs in our RA population
versus the 1000 genomes EUR population. C Comparison of allele
frequencies for peak eQTLs that overlap RA GWAS loci or those in high
LD (GWAS loci from Okada et al. [2]). D Overlap of egenes in our RA
population and the GTEx whole blood dataset (v6). E Comparison of
enrichment in RA synovium datasets for egenes that were unique to the
RA dataset, the GTEx dataset, or common to both. These datasets used
were: RA synovium compared to healthy controls (GSE1919), inflamed RA
synovium compared to non-inflamed controls (GSE48780), and RA synovium
compared to healthy controls (GSE55235). The p values were generated by
a one-sided Fisher’s exact test as described in the manuscript methods. F
Selection of enrichment results for the egenes using Nextbio body atlas.
The top results for each gene list are shown. The p values are adjusted using
the Bonferroni correction. (PDF 7730 kb)

Additional file 14: Figure S10. PCs removed from gene expression
data are correlated with technical and non-biological sources of variation.
The spearman correlation coefficient between sample metadata and
gene expression PCs is displayed for the first 20 PCs derived from the
whole blood gene expression data. (PDF 7591 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AMW and JWW designed the analysis, performed the analysis, and
wrote the manuscript. CCH, YC, and SL processed samples and
generated data and analysis used in this study. CB, MC, and RD
designed and supervised the work. All authors read and approved
the final manuscript.

Acknowledgements
The authors would like to thank Sunil Nagpal and Kurtis E. Bachman for
contributions to the interpretation and review of the manuscript. The
authors would also like to thank Yuchen Bai for guidance and Antonio R.
Parrado for his contributions to the genome sequencing data.

Funding
Janssen Research and Development, LLC provided support for this study.
The authors are employees of Janssen Research and Development, LLC.

Author details
1Immunology, Janssen Research and Development, LLC., 1400 McKean Rd.,
Spring House, PA 19477, USA. 2Discovery Sciences, Janssen Research and
Development, LLC., 3210 Merryfield Row, San Diego, CA 92101, USA.

Received: 9 November 2015 Accepted: 12 April 2016

References
1. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J

Med. 2011;365:2205–19.
2. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid

arthritis contributes to biology and drug discovery. Nature. 2014;506:376–81.
3. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al.

Systematic localization of common disease-associated variation in
regulatory DNA. Science. 2012;337:1190–5.

Walsh et al. Genome Biology  (2016) 17:79 Page 14 of 16

dx.doi.org/10.1186/s13059-016-0948-6
dx.doi.org/10.1186/s13059-016-0948-6
dx.doi.org/10.1186/s13059-016-0948-6
dx.doi.org/10.1186/s13059-016-0948-6
dx.doi.org/10.1186/s13059-016-0948-6
dx.doi.org/10.1186/s13059-016-0948-6
dx.doi.org/10.1186/s13059-016-0948-6
dx.doi.org/10.1186/s13059-016-0948-6
dx.doi.org/10.1186/s13059-016-0948-6
http://www.broadinstitute.org/mammals/haploreg/haploreg_v3.php
http://www.broadinstitute.org/mammals/haploreg/haploreg_v3.php
dx.doi.org/10.1186/s13059-016-0948-6


4. Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, et al.
Genetic and epigenetic fine mapping of causal autoimmune disease
variants. Nature. 2015;518:337–43.

5. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J,
Bilenky M, Yen A, et al. Integrative analysis of 111 reference human
epigenomes. Nature. 2015;518:317–30.

6. Freudenberg J, Gregersen P, Li W. Enrichment of genetic variants for rheumatoid
arthritis within T-cell and NK-cell enhancer regions. Mol Med. 2015;21:180–4.

7. Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS, et al. Chromatin marks
identify critical cell types for fine mapping complex trait variants. Nat Genet.
2013;45:124–30.

8. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, et
al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol
locus. Nature. 2010;466:714–9.

9. Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, et al.
9p21 DNA variants associated with coronary artery disease impair
interferon-gamma signalling response. Nature. 2011;470:264–8.

10. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-
associated SNPs are more likely to be eQTLs: annotation to enhance
discovery from GWAS. PLoS Genet. 2010;6:e1000888.

11. Lamontagne M, Timens W, Hao K, Bosse Y, Laviolette M, Steiling K, et al.
Genetic regulation of gene expression in the lung identifies CST3 and CD22
as potential causal genes for airflow obstruction. Thorax. 2014;69:997–1004.

12. Whitaker JW, Nguyen TT, Zhu Y, Wildberg A, Wang W. Computational
schemes for the prediction and annotation of enhancers from epigenomic
assays. Methods. 2015;72:86–94.

13. Fairfax BP, Makino S, Radhakrishnan J, Plant K, Leslie S, Dilthey A, et al.
Genetics of gene expression in primary immune cells identifies cell
type-specific master regulators and roles of HLA alleles. Nat Genet.
2012;44:502–10.

14. Raj T, Rothamel K, Mostafavi S, Ye C, Lee MN, Replogle JM, et al. Polarization
of the effects of autoimmune and neurodegenerative risk alleles in
leukocytes. Science. 2014;344:519–23.

15. GTEx Consortium. Human genomics. The Genotype-Tissue Expression
(GTEx) pilot analysis: multitissue gene regulation in humans. Science.
2015;348:648–60.

16. Weinblatt ME, Bingham 3rd CO, Mendelsohn AM, Kim L, Mack M, Lu J, et al.
Intravenous golimumab is effective in patients with active rheumatoid
arthritis despite methotrexate therapy with responses as early as week 2:
results of the phase 3, randomised, multicentre, double-blind, placebo-
controlled GO-FURTHER trial. Ann Rheum Dis. 2013;72:381–9.

17. Standish KA, Carland TM, Lockwood GK, Pfeiffer W, Tatineni M, Huang CC, et
al. Group-based variant calling leveraging next-generation supercomputing
for large-scale whole-genome sequencing studies. BMC Bioinformatics.
2015;16:304.

18. Fehrmann RS, Jansen RC, Veldink JH, Westra HJ, Arends D, Bonder MJ, et al.
Trans-eQTLs reveal that independent genetic variants associated with a
complex phenotype converge on intermediate genes, with a major role for
the HLA. PLoS Genet. 2011;7:e1002197.

19. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The
NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic
Acids Res. 2014;42:D1001–6.

20. Encode Project Consortium. An integrated encyclopedia of DNA elements
in the human genome. Nature. 2012;489:57–74.

21. Ernst J, Kellis M. Discovery and characterization of chromatin states for
systematic annotation of the human genome. Nat Biotechnol. 2010;28:817–25.

22. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, et al.
Histone modifications at human enhancers reflect global cell-type-specific
gene expression. Nature. 2009;459:108–12.

23. Trynka G, Westra HJ, Slowikowski K, Hu X, Xu H, Stranger BE, et al.
Disentangling the effects of colocalizing genomic annotations to
functionally prioritize non-coding variants within complex-trait loci. Am J
Hum Genet. 2015;97:139–52.

24. Heinz S, Romanoski CE, Benner C, Glass CK. The selection and function of
cell type-specific enhancers. Nat Rev Mol Cell Biol. 2015;16:144–54.

25. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et
al. Histone H3K27ac separates active from poised enhancers and predicts
developmental state. Proc Natl Acad Sci U S A. 2010;107:21931–6.

26. Ostuni R, Piccolo V, Barozzi I, Polletti S, Termanini A, Bonifacio S, et al. Latent
enhancers activated by stimulation in differentiated cells. Cell.
2013;152:157–71.

27. Sakabe NJ, Savic D, Nobrega MA. Transcriptional enhancers in development
and disease. Genome Biol. 2012;13:238.

28. Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, et al.
Disease networks. Uncovering disease-disease relationships through the
incomplete interactome. Science. 2015;347:1257601.

29. Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, et
al. Understanding multicellular function and disease with human
tissue-specific networks. Nat Genet. 2015;47:569–76.

30. Califano A, Butte AJ, Friend S, Ideker T, Schadt E. Leveraging models of cell
regulation and GWAS data in integrative network-based association studies.
Nat Genet. 2012;44:841–7.

31. Poelmans G, Pauls DL, Buitelaar JK, Franke B. Integrated genome-wide
association study findings: identification of a neurodevelopmental
network for attention deficit hyperactivity disorder. Am J Psychiatry.
2011;168:365–77.

32. Shen H, Goodall JC, Hill Gaston JS. Frequency and phenotype of peripheral
blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis
Rheum. 2009;60:1647–56.

33. van Amelsfort JM, Jacobs KM, Bijlsma JW, Lafeber FP, Taams LS.
CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the
presence, phenotype, and function between peripheral blood and synovial
fluid. Arthritis Rheum. 2004;50:2775–85.

34. Ptacek J, Hawtin RE, Louie B, Evensen E, Cordeiro J, Mittleman B, et al. Novel
biomarkers from peripheral blood mononuclear cells indicate disease activity
in rheumatoid arthritis patients. Arthritis Rheum. 2013;65 Suppl 10:2288.

35. Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, Lau E, et al. Innate
immune activity conditions the effect of regulatory variants upon monocyte
gene expression. Science. 2014;343:1246949.

36. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP,
Alexander HC, et al. A missense single-nucleotide polymorphism in a gene
encoding a protein tyrosine phosphatase (PTPN22) is associated with
rheumatoid arthritis. Am J Hum Genet. 2004;75:330–7.

37. Hashimoto Y, Kakegawa H, Narita Y, Hachiya Y, Hayakawa T, Kos J, et al.
Significance of cathepsin B accumulation in synovial fluid of rheumatoid
arthritis. Biochem Biophys Res Commun. 2001;283:334–9.

38. Davis RS. Fc receptor-like molecules. Annu Rev Immunol. 2007;25:525–60.
39. Haga CL, Ehrhardt GR, Boohaker RJ, Davis RS, Cooper MD. Fc receptor-like 5

inhibits B cell activation via SHP-1 tyrosine phosphatase recruitment. Proc
Natl Acad Sci U S A. 2007;104:9770–5.

40. Franco A, Damdinsuren B, Ise T, Dement-Brown J, Li H, Nagata S, et al.
Human Fc receptor-like 5 binds intact IgG via mechanisms distinct from
those of Fc receptors. J Immunol. 2013;190:5739–46.

41. Owczarczyk K, Lal P, Abbas AR, Wolslegel K, Holweg CT, Dummer W, et al. A
plasmablast biomarker for nonresponse to antibody therapy to CD20 in
rheumatoid arthritis. Sci Transl Med. 2011;3:101ra192.

42. Catalan D, Aravena O, Sabugo F, Wurmann P, Soto L, Kalergis AM, et al. B
cells from rheumatoid arthritis patients show important alterations in the
expression of CD86 and FcgammaRIIb, which are modulated by anti-tumor
necrosis factor therapy. Arthritis Res Ther. 2010;12:R68.

43. Ranzani V, Rossetti G, Panzeri I, Arrigoni A, Bonnal RJ, Curti S, et al. The long
intergenic noncoding RNA landscape of human lymphocytes highlights the
regulation of T cell differentiation by linc-MAF-4. Nat Immunol.
2015;16:318–25.

44. Eyre S, Hinks A, Bowes J, Flynn E, Martin P, Wilson AG, et al. Overlapping
genetic susceptibility variants between three autoimmune disorders:
rheumatoid arthritis, type 1 diabetes and coeliac disease. Arthritis Res Ther.
2010;12:R175.

45. Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in
rheumatoid arthritis. Immunol Rev. 2010;233:233–55.

46. Nakano K, Whitaker JW, Boyle DL, Wang W, Firestein GS. DNA methylome
signature in rheumatoid arthritis. Ann Rheum Dis. 2013;72:110–7.

47. Whitaker JW, Shoemaker R, Boyle DL, Hillman J, Anderson D, Wang W, et al.
An imprinted rheumatoid arthritis methylome signature reflects pathogenic
phenotype. Genome Med. 2013;5:40.

48. Ai R, Whitaker JW, Boyle DL, Tak PP, Gerlag DM, Wang W, et al. DNA
methylome signature in early rheumatoid arthritis synoviocytes compared
with longstanding rheumatoid arthritis synoviocytes. Arthritis Rheumatol.
2015;67:1978–80.

49. Whitaker JW, Boyle DL, Bartok B, Ball ST, Gay S, Wang W, et al. Integrative
omics analysis of rheumatoid arthritis identifies non-obvious therapeutic
targets. PLoS One. 2015;10:e0124254.

Walsh et al. Genome Biology  (2016) 17:79 Page 15 of 16



50. Ekwall AK, Whitaker JW, Hammaker D, Bugbee WD, Wang W, Firestein GS.
The rheumatoid arthritis risk gene LBH regulates growth in fibroblast-like
synoviocytes. Arthritis Rheumatol. 2015;67:1193–202.

51. Kelly S, Humby F, Filer A, Ng N, Di Cicco M, Hands RE, et al. Ultrasound-
guided synovial biopsy: a safe, well-tolerated and reliable technique for
obtaining high-quality synovial tissue from both large and small joints in
early arthritis patients. Ann Rheum Dis. 2015;74:611–7.

52. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace
C, et al. Bayesian test for colocalisation between pairs of genetic association
studies using summary statistics. PLoS Genet. 2014;10:e1004383.

53. Stegle O, Parts L, Durbin R, Winn J. A Bayesian framework to account for
complex non-genetic factors in gene expression levels greatly increases
power in eQTL studies. PLoS Comput Biol. 2010;6:e1000770.

54. Schadt EE, Woo S, Hao K. Bayesian method to predict individual SNP
genotypes from gene expression data. Nat Genet. 2012;44:603–8.

55. Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix
operations. Bioinformatics. 2012;28:1353–8.

56. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-
performance computing toolset for relatedness and principal component
analysis of SNP data. Bioinformatics. 2012;28:3326–8.

57. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, et al. Mapping the
genetic architecture of gene expression in human liver. PLoS Biol.
2008;6:e107.

58. Kupershmidt I, Su QJ, Grewal A, Sundaresh S, Halperin I, Flynn J, et al.
Ontology-based meta-analysis of global collections of high-throughput
public data. PLoS One. 2010;5:e13066.

59. Ungethuem U, Haeupl T, Witt H, Koczan D, Krenn V, Huber H, et al.
Molecular signatures and new candidates to target the pathogenesis of
rheumatoid arthritis. Physiol Genomics. 2010;42A:267–82.

60. Woetzel D, Huber R, Kupfer P, Pohlers D, Pfaff M, Driesch D, et al.
Identification of rheumatoid arthritis and osteoarthritis patients by
transcriptome-based rule set generation. Arthritis Res Ther. 2014;16:R84.

61. Sun Y, Caplazi P, Zhang J, Mazloom A, Kummerfeld S, Quinones G, et al.
PILRalpha negatively regulates mouse inflammatory arthritis. J Immunol.
2014;193:860–70.

62. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states,
conservation, and regulatory motif alterations within sets of genetically
linked variants. Nucleic Acids Res. 2012;40:D930–4.

63. Coarfa C, Yu F, Miller CA, Chen Z, Harris RA, Milosavljevic A. Pash 3.0: A
versatile software package for read mapping and integrative analysis of
genomic and epigenomic variation using massively parallel DNA
sequencing. BMC Bioinformatics. 2010;11:572.

64. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al.
Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

65. Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O,
et al. RefSeq: an update on mammalian reference sequences. Nucleic Acids
Res. 2014;42:D756–63.

66. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;26:841–2.

67. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al.
Circos: an information aesthetic for comparative genomics. Genome Res.
2009;19:1639–45.

68. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al.
LocusZoom: regional visualization of genome-wide association scan results.
Bioinformatics. 2010;26:2336–7.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Walsh et al. Genome Biology  (2016) 17:79 Page 16 of 16


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	eQTL mapping from a RA cohort
	Enrichment of RA eQTLs in the GWAS catalog and comparison to other published eQTL studies
	Comparison of RA eQTLs with epigenomics datasets
	Identification of RA therapeutic targets in monocytes, �B cells, and T cells
	Disease-relevance of RA GWAS-associated genes

	Discussion
	Mapping gene regulatory components of RA
	Identification of novel disease-relevant genes
	Limitations of the current approach

	Conclusions
	Methods
	Patient cohort
	Peripheral blood gene expression
	SNP data from whole-genome sequencing
	eQTL mapping
	Pathway enrichment analysis
	Comparison to GWAS studies
	Enrichment in tissue-/cell type-specific chromatin states
	Deconvolution of RA GWAS and RA whole blood eQTLs using histone modifications
	Network analysis
	Data visualization

	Ethics approval
	Availability of data and materials
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Funding
	Author details
	References

