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Abstract: This contribution reports the syntheses, structural analyses and properties of europium
(Eu3+)- and terbium (Tb3+)-based coordination complexes of poly(N-isopropyl,N-methylacrylamide-
stat-N,N-dimethylacrylamide) (poly(iPMAm-stat-DMAm)) copolymer, named as poly-Eu(III) and
poly-Tb(III), respectively. In greater detail, poly(iPMAm85-stat-DMAm15) is first prepared by ran-
dom copolymerization of N-isopropyl,N-methylacrylamide (iPMAm) and N,N-dimethylacrylamide
(DMAm) via group transfer polymerization (GTP). Next, poly(iPMAm85-stat-DMAm15) is used as the
polymer matrix for chelating with Eu3+ and Tb3+ cations at its side amide groups, to produce poly-
Eu(III) and poly-Tb(III). Their structural characterizations by FT-IR spectroscopy and XPS confirm
the formation of polymeric complexes. The study on their fluorescence emission characteristics and
luminescence lifetime demonstrates that Poly-Eu(III) shows four strong emission peaks at 578, 593,
622, and 651 nm, which are responsible for the electron transitions from the excited 5D0 state to the
multiplet 7FJ (J = 0, 1, 2, 3) states, respectively, and poly-Tb(III) also displays four emission peaks at
489, 545, 588, and 654 nm, mainly due to the electron transitions of 5D4 → 7Fi (i = 6, 5, 4, 3). The lumi-
nescence lifetimes of poly-Eu(III) (τpoly-Eu(III)) and poly-Tb(III) (τpoly-Tb(III)) are determined to be 4.57
and 7.50 ms, respectively. In addition, in aqueous solutions, poly-Eu(III) and poly-Tb(III) are found
to exhibit thermoresponsivity, with their cloud temperatures (Tcs) locating around 36.4 and 36.8 ◦C,
respectively. Finally, the cytotoxicity study on the human colon carcinoma cells LoVo and DLD1
suggests that the luminescent Eu3+ and Tb3+ in the chelated state with poly(iPMAm-stat-DMAm)
show much better biocompatibility and lower toxicity than their inorganic salts.

Keywords: group transfer polymerization; rare earth complexes; thermoresponsive; fluorescent
property; cell viability

1. Introduction

Luminescent rare earth complexes have become the research hotspot of new rare earth
functional materials, because of their unique luminescence properties, such as extremely
sharp emission bands [1,2], long excited-state lifetimes [3–5], and potential high internal
quantum efficiency [6–8]. When rare earth metals are complexed with appropriate organic
ligands, their improved solubility and dispersion would make their luminescence proper-
ties more prominent than they are in states of inorganic salts [9,10]. Furthermore, rare earth
metals complexed with a polymeric matrix, namely, the so-called polymer–rare earth com-
plexes, possess the combined properties of luminescent rare earth metals and the polymer

Polymers 2022, 14, 1815. https://doi.org/10.3390/polym14091815 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14091815
https://doi.org/10.3390/polym14091815
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-1978-9438
https://orcid.org/0000-0002-5597-6751
https://orcid.org/0000-0001-9668-1442
https://doi.org/10.3390/polym14091815
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14091815?type=check_update&version=1


Polymers 2022, 14, 1815 2 of 13

matrix, making them have good solubility in solution, high mechanical strength in bulk,
excellent processability, and outstanding luminescent emission properties. These features
are of great significance for the potential applications in many fields, such as lumines-
cent therapy probes in vivo, photo-driven catalysts, photoluminescent/electroluminescent
polymer films, and active layers in solar cells [11–13]. Wang et al. [14] synthesized lumines-
cent polymer-functionalized mesoporous SBA-16-type hybrid materials with encapsulated
lanthanide (Eu3+ and Tb3+) complexes, which significantly improved the luminescent
properties with the introduction of the organic ligand phen. Gao et al. [15] first synthe-
sized a bidentate Schiff base ligand with side chains of polysulfone (PSF), then prepared
polymer−rare earth complexes, PSF-(SB)3-Eu(III), and a ternary complex, PSF-(SB)3-Eu(III)-
(Phen)1, through the coordination reaction, and the luminescent properties were greatly
improved. Krsmanovic et al. [16] explored a synthesis route based on the polymer complex
solution method for the production of rare earth-doped Lu2O3 crystalline nano powders.
Xie et al. [17] reported a series of polymer–rare earth complexes with Eu3+, including
binary complexes containing the single ligand poly(ethylene-co-acrylic acid) (EAA) and
the ternary complexes, using 1,10-phenanthroline (phen), dibenzoylmethane (DBM) or
thenoyltrifluoroacetone (TTA) as the second ligand, which possessed potential applications
as luminescent materials.

For more than a decade, the application scope of polyacrylamide (PAm) and its
derivatives, such as N-substituted and N,N-disubstituted PAms (N-PAms and N,N-PAms,
respectively), has rapidly expanded to the fields of biomedical applications, including plas-
tic and reconstructive applications [18,19], contact lenses [20,21], nucleic acid and protein
separation [22,23], and drug delivery [24,25]. In addition, the use of PAm as a polymer ma-
trix to synthesize luminescent polymer–rare earth complexes can fully combine the water
solubility and thermoresponsive properties of PAm with rare earth ions, to improve their
fluorescence properties [26–29]. However, N-PAms and N,N-PAms, with controlled molar
masses, narrow dispersity, and well-defined structures, have rarely been used as polymer
matrices to synthesize luminescent polymer–rare earth complexes. In this field, Duan et al.
first synthesized D-glucosamine end-functionalized poly(N-isopropylacrylamide) (GA-
PNIPAM) by atom transfer radical polymerization (ATRP), and studied the coordinating
interaction with Eu(III), and the thermoresponsive and fluorescence properties of the
Eu(III)/PNIPAM complexes [30,31].

Therefore, it is meaningful to expand the scope of PAms as polymer ligands for rare
earth elements, to realize the functions derived from both components. In our previous
work, we developed a new type of N,N-PAms, poly(N-isopropyl,N-methylacrylamide)
(PiPMAm), by organocatalytic group transfer polymerization (GTP), and studied the ther-
moresponsive properties of its homopolymers and statistical and block copolymers, consist-
ing of N-isopropyl,N-methylacrylamide (iPMAm) and N,N-dimethylacrylamide (DMAm)
structural units [32]. The metal-free poly(iPMAm-stat-DMAm), with a controlled molar
mass and narrow dispersity, showed quasi-controllable cloud temperature (Tc). In this
work, we chose europium (Eu3+) and terbium (Tb3+), which showed red and green emis-
sions, respectively, as rare earth ions, and poly(iPMAm85-stat-DMAm15) as the polymer
matrix to synthesize thermoresponsive luminescent polymer–rare earth complexes, named
poly-Eu(III) and poly-Tb(III). The present contribution describes, in detail, (i) the syntheses
and characterizations of poly-Eu(III) and poly-Tb(III) complexes, (ii) their fluorescent and
thermoresponsive properties, and (iii) an assessment of their cell viability.

2. Experimental Section
2.1. Materials and Measurements

N,N-dimethylacrylamide (DMAm) was purchased from Tokyo Kasei Kogyo Co.,
Ltd., Tokyo, Japan (TCI) and used after distillation over CaH2 under reduced pressure.
Tris(pentafluorophenyl)borane (B(C6F5)3) (TCI) was used after the recrystallization from
n-hexane at −30 ◦C. Acryloyl chloride (TCI) was used after distillation at 77 ◦C. Acetone
(>98%), deuterated chloroform (CDCl3, >99.8%), n-hexane (98%), tetrahydrofuran (THF,
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>99%), methanol (MeOH, >98%), toluene (99%), triethylamine (>99.0%), 3,5-dibromoaniline,
triisopropylsilylacetylene, trimethylsilylacetylene and sodium hydride (60 wt.% in min-
eral oil) were purchased from TCI Chemicals. Dichloromethane (CH2Cl2, >99.5%; extra
dry, with molecular sieves, water < 50 ppm) and tetrahydrofuran (THF, >99.5%; extra
dry, with molecular sieves, water < 50 ppm) were purchased from Energy Chemical Co.,
Ltd., Shanghai, China. Toluene and THF were distilled over Na/benzophenone under an
argon atmosphere and degassed by three freeze–pump–thaw cycles prior to use. All other
chemicals were purchased from available suppliers and used without further purification.

Polymerization was carried out in an MIKROUNA stainless-steel glove box equipped
with a gas purification system under a dry argon atmosphere (H2O, O2 < 0.01 ppm). The
moisture and oxygen contents in the glove box were monitored by an MB-MO-SE 1 and an
MB-OX-SE 1 sensor, respectively. The 1H and 13C NMR spectroscopy was recorded using
a Bruker AVANCE III HD 400, Billerica, MA USA. Size exclusion chromatography (SEC)
in DMF was performed at 40 ◦C at a flow rate of 0.35 mL min−1 using a TosohHLC-8320
GPC System equipped with two TSK gel Super Multipore HZ-M columns (4.6 mm I.D.
× 15 cm × 2), an EcoSEC GPC System with an RI detector (+, 0.5 s), a UV-8320 detector (254
nm, +0.5 s), a GPC workstation EcoSEC-WS, and an auto sampler, to which 10 µL of sample
was injected in a concentration of 0.2 wt.%. The number-average molecular weight (Mn,SEC)
and polydispersity index (
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) of the polymers were calculated based on PMMA standards.
FT-IR spectra were recorded on a Perkin Elmer Frontier, and samples fashioned into KBr
pellet disks were placed into a holder for transmission IR spectral analysis. The fluorescence
spectra were recorded using a fluorescence spectrophotometer (RF-5301PC, Shimadzu,
Kyoto, Japan). Quantum yields were determined by comparison of the total light emitted
from the solutions to the total light emitted from a known standard [Ru(bipy)3]Cl2 [33].
XPS spectra (Al Kα) were recorded with a Thermo Fisher Scientific K-Alpha instrument,
Waltham, MA USA. The cloud point measurements were performed on the ultraviolet–
visible (UV–vis) spectra by passing through a 10 mm path-length cell using a Jasco V-770
spectrophotometer equipped with a temperature controller (Jasco CTU-100, Tokyo, Japan).
The hydrodynamic radii (Rhs) of the obtained polymer in deionized water were analyzed
using a dynamic light scattering (DLS) detector (Wyatt Technology, Dyna Pro Nanostar®,
Santa Barbara, CA, USA). Cell viability was evaluated by MTT, and the optical density
(OD) was measured at 490 nm with a microplate reader (Bio-Rad, Hercules, CA, USA). Cell
viability was determined as a percentage of the negative control (untreated cells).

2.2. Synthesis of Statistical Copolymer Poly(iPMAm85-stat-PDMAm15)

iPMAm (246 µL, 1.7 mmol), DMAm (33 µL, 0.3 mmol), SKAEt (40 µL, 20.0 µmol;
0.50 mol L−1 CH2Cl2), and CH2Cl2 (1.60 mL) were added to a test tube, followed by the
addition of the B(C6F5)3 stock solution in CH2Cl2 (80 µL, 4.0 µmol; 0.05 mol L−1) for
2 h in a glove box. The polymerization was quenched by adding a small amount of a
2-PrOH/pyridine mixture to the polymerization solution. Aliquots were removed from
the reaction mixture to determine the conversion of iPMAm and DMAm using 1H NMR
measurements. The polymer product was purified by dialysis against methanol using
a cellophane tube, after which the product was lyophilized to give poly(iPMAm85-stat-
PDMAm15) as a white solid. Yield, 244.8 mg (98.2%); number-average molecular weight
(Mn,SEC), 13.0 kg mol−1; polydispersity index (
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2.3. Synthesis of Poly-Eu(III) and Poly-Tb(III) Complexes

A typical method for the synthesis of poly-Eu(III) and poly-Tb(III) complexes is
described as follows: EuCl3 (100.0 mg, 3.87 mmol), poly(iPMAm85-stat-PDMAm15) (1.0 g,
0.07 mmol), and ethanol (15 mL) were added into a flask, then stirred at 40 ◦C for 24 h. The
product was purified by dialysis against methanol using a cellophane tube (Spectra/Por
6 Membrane; MWCO: 1000), after which the product was lyophilized to produce the
poly-Eu(III) complex as a white solid.
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2.4. Determination of the Cloud Point (Tc)

An aqueous solution of the polymer (1 wt.%) was sonicated for several minutes, and
the resulting clear solution was then transferred to a 10 mm quartz cell. The transmittance
of the aqueous solution at 500 nm was recorded by a UV–vis spectrophotometer equipped
with a temperature controller. The solution was heated at a heating rate of 1.0 ◦C min−1.

2.5. Determination of Hydrodynamic Radius (Rh)

A sonicated aqueous solution of the polymer (1 wt.%) was filtrated into glass cells
using a 0.45 µm PTFE filter. The relaxation time (τ) distribution and particle size distribution
were obtained by the CONTIN analysis of the autocorrelation function. The apparent
diffusion coefficients D were calculated using the following equation:

Γ
q2

∣∣∣∣
q → 0

= D

where Γ is the relaxation frequency (Γ = τ−1) and q is the wavevector defined by the
following equation:

q =
4πn

λ
sin

(
θ

2

)
where λ is the wavelength of the laser beam (532 nm), θ is the scattering angle, and n is the
refractive index of the media. Consequently, the hydrodynamic radius (Rh) was calculated
from the Stokes–Einstein relation as follows:

Rh =
kBT

6πηΓ
q2 =

kBT
6πηD

where kB is the Boltzmann constant, T is the temperature, and η is the viscosity of the medium.

2.6. Cell Viability Study

Typically, cell viability was investigated using the human colon carcinoma cells LoVo
and DLD1 in culture. After incubation for 24 h in 96-well plates (8× 104 cells mL−1 per well)
using Dulbecco’s modified Eagles medium (DMEM) in an incubator (36 ◦C, 5% CO2), the
culture medium was mixed with 200 µL of DMEM containing a sample of poly(iPMAm85-
stat-PDMAm15), poly-Eu(III), poly-Tb(III), EuCl3 and TbCl3 under concentrations from
0.1 to 1000.0 µg mL−1. The mixture was further incubated for 48 h [34]. Each sample was
tested in five replicates per plate, then 20 µL of MTT solution was added to the mixture in
each well, which was incubated for an additional 4 h. Next, 200 µL of DMSO was added
and the mixtures were shaken at room temperature. Five replicate wells were used for the
control and test concentrations for each microplate. The cell viability (%) was calculated by
the following equation:

Cell viability (%) = (Asample/Acontrol) × 100%

where Asample was the absorbance of the cells incubated in DMEM and mixture, and Acontrol
was the absorbance of the cells incubated in DMEM [35].

3. Results and Discussion
3.1. Synthesis of Poly-Eu(III) and Poly-Tb(III)

For the preparation of poly-Eu(III) and poly-Tb(III), we first synthesized poly(iPMAm85-
stat-DMAm15) as the polymer matrix, according to the previously reported B(C6F5)3-catalyzed
GTP method, using 1-methoxy-2-methyl-1-(triethylsilyloxy)propene (SKAEt) as the initiator in
CH2Cl2, under the condition of [iPMAm]0/[DMAm]0/[SKAEt]0/[B(C6F5)3] = 85/15/1/0.2, as
shown in Scheme 1.
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The monomers, iPMAm and DMAm, were completely consumed after 2 h, and the
structure of the obtained polymer was verified using 1H NMR, as shown in Figure 1. The
methyl and methoxy protons, as the α-terminal group of the polymer, were observed at
1.16–1.20 (signal a) and 3.67 ppm (signal b), respectively. The signals due to the methyl
protons of the N-isopropyl group in PiPMAm (signal f) and the N-methyl group in PDMAm
(signal h) were observed at 0.98–1.20 and 2.81–3.19 ppm, respectively. The methenyl protons
of the N-isopropyl group in PiPMAm (signal g) were observed at 4.69–4.92 ppm. The
monomer composition in the copolymer could be regarded as the same as the monomer
feed ratio of 85/15, due to the quantitative monomer conversion confirmed by the 1H NMR
spectrum, i.e., the obtained copolymer was poly(iPMAm85-stat-DMAm15).
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The SEC trace of poly(iPMAm85-stat-DMAm15) exhibited a unimodal distribution,
as shown in Figure 2. The SEC-determined number-average molar mass (Mn,SEC) and
dispersity (
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determined by comparison of the total light emitted from the solutions to the total light 
emitted from a known standard [Ru(bipy)3]Cl2 [33]. XPS spectra (Al Kα) were recorded 
with a Thermo Fisher Scientific K-Alpha instrument, Waltham, MA USA. The cloud point 
measurements were performed on the ultraviolet–visible (UV–vis) spectra by passing 
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a percentage of the negative control (untreated cells). 
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iPMAm (246 µL, 1.7 mmol), DMAm (33 µL, 0.3 mmol), SKAEt (40 µL, 20.0 µmol; 0.50 

mol L−1 CH2Cl2), and CH2Cl2 (1.60 mL) were added to a test tube, followed by the addition 
of the B(C6F5)3 stock solution in CH2Cl2 (80 µL, 4.0 µmol; 0.05 mol L−1) for 2 h in a glove 
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mixture to the polymerization solution. Aliquots were removed from the reaction mixture 
to determine the conversion of iPMAm and DMAm using 1H NMR measurements. The 
polymer product was purified by dialysis against methanol using a cellophane tube, after 
which the product was lyophilized to give poly(iPMAm85-stat-PDMAm15) as a white solid. 

) were 13.0 kg mol−1 and 1.17, respectively. All the results confirm the desired
synthesis of this polymer matrix.
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Poly-Eu(III) and poly-Tb(III) were prepared by coordination reactions between
poly(iPMAm85-stat-DMAm15) and the rare earth chlorides EuCl3 and TbCl3, respectively.
The structural analyses of poly-Eu(III) and poly-Tb(III) were first commenced by FT-IR
spectroscopy. Figure 3 shows the FT-IR spectra of poly(iPMAm85-stat-PDMAm15), poly-
Eu(III), and poly-Tb(III). For poly(iPMAm85-stat-PDMAm15), the characteristic adsorptions
due to the stretching and bending vibrations of the acylamino group (νN-H and δN-H) and
stretching vibration of carbonyl (νC=O) appear at 3301, 1550, and 1674 cm−1, respectively.
In comparison, the same bond vibrations in poly-Eu(III) are observed at 3293, 1538, and
1657 cm−1, and those for poly-Tb(III) appear at 3295, 1540, and 1658 cm−1. The redshift of
these characteristic absorptions after the coordination reactions resulted from the formation
of coordination bonds between Eu3+/Tb3+ and the carbonyl groups in poly(iPMAm85-stat-
PDMAm15). Namely, part of the lone pair electrons of the O atom transfers to the outer
orbitals of the rare earth ion, which weakens the σ covalent bond and force constant of the
C=O. In addition, the inductive effect along the NH-C=O→ Eu3+/Tb3+ also lowers the
electron density of the N atom, leading to the redshift phenomenon [36].
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The structural characterizations of poly-Eu(III) and poly-Tb(III) were further imple-
mented by X-ray photoelectron spectroscopy (XPS). Figure 4a shows the XPS profiles of
poly(iPMAm85-stat-PDMAm15), poly-Eu(III), and poly-Tb(III), and their average binding
energies of O 1s, N 1s, Eu 4d, and Tb 4d are listed in Table 1. Poly(iPMAm85-stat-DMAm15)
shows peaks at 283.71, 530.51, and 399.12 eV, corresponding to the C 1s, N 1s, and O
1s, respectively, while, in addition to these peaks, poly-Eu(III) and poly-Tb(III) display
additional Eu 4d and Tb 4d peaks at 139.68 and 145.12 eV, respectively. The average binding
energies of O 1s and N 1s in poly-Eu(III) are 531.25 and 399.58 eV, respectively, showing
a +0.74 and +0.46 eV shift, in comparison with those in poly(iPMAm85-stat-PDMAm15).
Meanwhile, the average binding energy of Eu 4d in poly-Eu(III) (139.68 eV) is 5.44 eV
smaller than that of EuCl3 (145.12 eV). The change in average binding energy before and
after the coordination reaction between poly(iPMAm85-stat-PDMAm15) and TbCl3 shows
the similar tendency, i.e., the average binding energies of O 1s and N 1s in poly-Tb(III)
are +0.70 and +0.32 eV greater than those in poly(iPMAm85-stat-PDMAm15), respectively,
while the average binding energy of Tb 4d in poly-Tb (148.97 eV) is 2.86 eV smaller than
that of TbCl3 (151.83 eV). In summary, the increase in the average binding energies of O
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1s and N 1s of poly-Eu(III) and poly-Tb(III) is caused by the decrease in electron density
for the O 1s and N 1s atoms. On the contrary, the decrease in the average binding energy
of Eu 4d and Tb 4d in the polymer–rare earth complexes is due to the enhanced electron
density around the rare earth metal cations after the lone pair electrons of O and N atoms
of the acylamino group are coordinated to the outer orbital of Eu3+ or Tb3+. These results
strongly indicate the formation of the target poly-Eu(III) and poly-Tb(III) complexes [37].
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Table 1. Binding energy of O 1s, N 1s, Eu 4d and Tb 4d.

Sample
Binding Energy (eV)

O 1s N 1s Eu 4d Tb 4d

poly(iPMAm85-stat-DMAm15) 530.51 399.12
poly-Eu(III) 531.25 399.58 139.68
poly-Tb(III) 531.21 399.74 148.97

EuCl3 145.12
TbCl3 151.83

3.2. Luminescence Properties of Poly-Eu(III) and Poly-Tb(III)

The luminescence properties of the poly-Eu(III) and poly-Tb(III) complexes are shown
in Figure 5. The excitation spectrum of poly-Eu(III) exhibits wide-range absorption peaks
from 350 to 472 nm, and the peak at 355 nm shows the maximum excitation intensity, while
only a negligible excitation peak is observed for EuCl3 in all the excitation fluorescence
spectra (Figure 5a). This phenomenon can be attributed to the π-π* transition by exciting
the carbonyl and amide groups of the complexes. In addition, the conjugated structure
increases the electron delocalization and the absorption of ultraviolet light [33], which
makes the intensity of the excitation peak increase sharply. Figure 5b indicates that EuCl3
exhibits very weak emission peaks, but poly-Eu(III) gives four strong emission peaks at
578, 593, 622, and 651 nm, which are responsible for the transition from an excited 5D0 state
to multiplet 7FJ, (J = 0, 1, 2, 3) states, respectively. Moreover, the 4f orbital is shielded by the
outer shell of the 5s and 5p orbitals, and the f -f absorption bands are very narrow, which
makes the intensity of the emission peak at 622 nm (5D0 → 7F2) 13.2 times that of EuCl3.
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(v/v = 1:1) mixed solvent at 25 ◦C).

The excitation spectra of the poly-Tb(III) complex and TbCl3 are shown in Figure 5c.
Poly-Tb(III) displays wide-range absorption from 280 to 390 nm, and the maximum peak
appears at 350 nm. When compared with poly-Tb(III), TbCl3 shows very weak absorption,
mainly due to the extremely low solubility of TbCl3 in water. Figure 5d is the emission
spectra of poly-Tb(III) and TbCl3. Similarly to poly-Eu(III), poly-Tb(III) has four emission
peaks at 489, 545, 588, and 654 nm, due to the transitions of 5D4 → 7Fi (i = 6, 5, 4, 3). The
intensity at the maximum emission (545 nm) of poly-Tb(III), due to the 5D4→ 7F5 transition,
is 13.4 times that of TbCl3, which originated from the transitions between the 4f states
in poly-Tb(III).

The fluorescent lifetimes of the poly-Eu(III) and poly-Tb(III) complexes are calculated
according to the luminescence decay curves in Figure 6. Poly-Eu(III) and poly-Tb(III) have
τpoly-Eu(III) = 4.57 ms and τpoly-Tb(III) = 7.50 ms, respectively. The photoemission efficiency
of the two rare earth complexes is increased, because the much higher coordination ability
of the poly(iPMAm85-stat-DMAm15) matrix than the chloride anion further stabilizes the
Eu3+ or Tb3+. The more stable coordination in the rare earth complexes can largely enhance
the absorption coefficient. Therefore, the initial strong absorption of ultraviolet energy
excites the amide ligand to the excited singlet (S1) state, and the transition from the S1 state
to the triplet (T) state, and then the energy transfers non-radiatively from the lowest triplet
state of the ligand to the resonance state of Eu3+ or Tb3+ [38,39]. The energy undergoes
multiphoton relaxation and subsequent emission in the visible light region.
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3.3. Thermoresponsive Properties

The thermal phase transition behavior of poly(iPMAm85-stat-DMAm15), poly-Eu(III),
and poly-Tb(III) is studied by a UV–vis spectrophotometer and dynamic light scattering
(DLS) measurements. The temperature at light transmittance of 1 wt.% polymer aqueous
solution = 50% on the transmittance–temperature curve is used as the cloud temperature (Tc).
DLS is used to monitor the polymer assembly state, by determining the hydrodynamic radius
(Rh) of a polymer in the same aqueous solution. Figure 7 shows the transmittance dependence
of poly(iPMAm85-stat-DMAm15), poly-Eu(III), and poly-Tb(III) on the temperature. Each
transmittance–temperature curve shows a sharp transmittance decrease at 32–40 ◦C, indicating
that the polymer undergoes a quick thermal phase transition. The Tcs of poly(iPMAm85-stat-
DMAm15), poly-Eu(III), and poly-Tb(III) are 36.1, 36.4, and 36.8 ◦C, respectively (Table 2). It
seems that the complexes have a slightly higher Tc than poly(iPMAm85-stat-DMAm15), but
the difference in Tc is so small that we cannot exclude the possibility that it may be caused
by experimental error. In general, the incorporation of highly hydrophilic metal cations into
thermoresponsive polymers would increase the Tc value.

Table 2. A summary of cloud point (Tc) and hydrodynamic radius (Rh).

Sample
Tc

(◦C)
Rh

a (nm)

28 ◦C 42 ◦C

poly(iPMAm85-stat-DMAm15) 36.1 3.1 1758.4
poly-Eu(III) 36.4 5.2 4216.3
poly-Tb(III) 36.8 6.9 3952.5

a Calculated based on CONTIN analysis.
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The Rh values of poly(iPMAm85-stat-DMAm15), poly-Eu(III), and poly-Tb(III) in
Table 2 are 3.1, 5.2, and 6.9 nm, respectively, at 28 ◦C lower than Tc. In this case, all
of them should be in a unimolecular hydrated state. It is interesting that poly-Eu(III) and
poly-Tb(III) have much greater Rh values than the parent poly(iPMAm85-stat-DMAm15). It
is rational to assume that poly-Eu(III) and poly-Tb(III) incorporated with rare earth metal
cations, in a sense, are polyelectrolytes, which have stretched chain structures and, thus,
hydrated dimensions, i.e., greater Rh values. When the temperature is enhanced to 42 ◦C
higher than Tc, the Rh values are 1758.4, 4216.3, and 3952.5 nm, respectively. Undoubtedly,
the polymer chain undergoes a coil-to-globule transition from the hydrated unimolecular
state at 28 ◦C to the dehydrated aggregated state at 42 ◦C. It should be noted that the
Rh size of poly(iPMAm85-stat-DMAm15) at 42 ◦C was almost the same in our previous
work [32], while poly-Eu(III) and poly-Tb(III) had a 2.4 times larger Rh than poly(iPMAm85-
stat-DMAm15). This phenomenon could also be caused by the polyelectrolyte nature of
poly-Eu(III) and poly-Tb(III) [40,41].

3.4. Assessment of Cell Viability

Since the Tc values of poly-Eu(III) and poly-Tb(III) are very close to the human body
temperature, they are of great potential to be used as drug delivery systems (DDSs).
Precisely for this, the assessment of cell viability is further carried out to evaluate their
cytotoxicity for DDS materials. LoVo (CCL-229TM) is a cell line isolated in 1971 from the
large intestine of a 56-year-old male, Caucasian, grade IV Dukes C colorectal cancer pa-
tient. LoVo cells can be used for cancer, toxicology, and immuno-oncology research, and
high-throughput screening. DLD1 (CCL-221TM) is a colorectal adenocarcinoma cell line
isolated from the large intestine of a colon adenocarcinoma patient. It can be used for cancer
research. The cytotoxicity towards the human colon carcinoma cells LoVo and DLD1 is
studied by comparing the biocompatibility of poly(iPMAm85-stat-DMAm15), poly-Eu(III),
and poly-Tb(III), as well as EuCl3 and TbCl3. The percentage of cell viability is determined
by comparing them with the control group, in which the cells are not exposed to polymer
samples. When exposed to EuCl3 and TbCl3, the cell viability of LoVo and DLD1 drops
sharply, as shown in Figure 8. Furthermore, the lethality resulting from EuCl3 and TbCl3
increases when increasing the salt concentration from 0.1 to 1000.0 µg mL−1, indicating
a dose-dependent cytotoxic effect. In contrast to the rare earth chlorides, poly(iPMAm85-
stat-DMAm15), poly-Eu(III), and poly-Tb(III) turn out to be non-toxic in both LoVo and
DLD1 cells, with nearly 100% vitality in a wide concentration range (0.1 to 1000.0 µg mL−1),
and no obvious difference in cytotoxicity is observed between the parent polymer ma-
trix and its complexes. These results suggest that the complexation of a polymer matrix,
poly(iPMAm85-stat-DMAm15), and Eu3+ or Tb3+ greatly reduces the toxicity of inorganic
rare earth chlorides. These results confirm that the coordination of poly(iPMAm85-stat-
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DMAm15) with Eu3+ and Tb3+ to form complexes can enhance the biocompatibility and
eliminate the cell. These new types of complexes are potential luminescent probing materi-
als for targeted applications in cytology and immune omics, and anti-tumor therapy.
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4. Conclusions

Poly-Eu(III) and poly-Tb(III) complexes are synthesized by a coordination reaction
between poly(iPMAm85-stat-DMAm15) and their parent chloride salts. The complexes have
coordination interactions between the O and N atoms of the acylamino group with Eu3+

and Tb3+, which bring about the strong emission peaks at 622 and 545 nm, respectively.
Poly-Eu(III) and poly-Tb(III) have Tcs near the human body temperature and slightly
higher than that of the parent polymer matrix. The assessment of cell viability verifies that
poly-Eu(III) and poly-Tb(III) can greatly enhance the biocompatibility and reduce the cell
toxicity. These PAm rare earth complexes are expected to be used as luminescent probes in
the biomedical field.
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