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Abstract

Background: Ccr4-Not is a highly conserved multi-protein complex consisting in yeast of 9 subunits, including Not5 and the
major yeast deadenylase Ccr4. It has been connected functionally in the nucleus to transcription by RNA polymerase II and
in the cytoplasm to mRNA degradation. However, there has been no evidence so far that this complex is important for RNA
degradation in the nucleus.

Methodology/Principal Findings: In this work we point to a new role for the Ccr4-Not complex in nuclear RNA metabolism.
We determine the importance of the Ccr4-Not complex for the levels of non-coding nuclear RNAs, such as mis-processed
and polyadenylated snoRNAs, whose turnover depends upon the nuclear exosome and TRAMP. Consistently, mutation of
both the Ccr4-Not complex and the nuclear exosome results in synthetic slow growth phenotypes. We demonstrate
physical interactions between the Ccr4-Not complex and the exosome. First, Not5 co-purifies with the exosome. Second,
several exosome subunits co-purify with the Ccr4-Not complex. Third, the Ccr4-Not complex is important for the integrity of
large exosome-containing complexes. Finally, we reveal a connection between the Ccr4-Not complex and TRAMP through
the association of the Mtr4 helicase with the Ccr4-Not complex and the importance of specific subunits of Ccr4-Not for the
association of Mtr4 with the nuclear exosome subunit Rrp6.

Conclusions/Significance: We propose a model in which the Ccr4-Not complex may provide a platform contributing to
dynamic interactions between the nuclear exosome and its co-factor TRAMP. Our findings connect for the first time the
different players involved in nuclear and cytoplasmic RNA degradation.
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Introduction

In eukaryotic cells RNAs are synthesized by 3 different RNA

polymerases and they are extensively processed to reach their

mature forms. In many cases the processing is accompanied by

degradation of processed RNA fragments and degradation of

aberrantly processed RNAs occurs through surveillance path-

ways. The exosome is a conserved multi-subunit 39 to 59

exoribonuclease complex that plays a central role in a large

number of the pathways related to RNA degradation. It also

plays a major role in RNA processing pathways, both in the

cytoplasm and in the nucleus (for review see [1]). The targets for

the exosome are multiple since the exosome contributes to the

turnover of cytosolic mRNAs, the normal processing of nuclear

rRNAs and snoRNAs, and it participates in surveillance

mechanisms leading to degradation of aberrant forms of different

RNAs in the nucleus. The eukaryotic exosome is made up of 9

core subunits, with 6 subunits carrying the fold of bacterial

RNase PH, a phosphorolytic RNase, namely Rrp41, Rrp42,

Rrp43, Rrp45, Rrp46 and Mtr3, and 3 putative RNA-binding

proteins, Csl4, Rrp4 and Rrp40 [2]. It is constitutively associated

with a processive hydrolytic exoribonuclease, Rrp44, which is the

only active nuclease of the yeast core exosome [3]. In the nucleus,

the core exosome is associated with 2 additional proteins, Rrp6

[4], another hydrolytic RNase, which provides hydrolytic activity

to the nuclear exosome but might also function independently of

the core exosome [5], and Rrp47, which cooperates with Rrp6

[6,7]. In general, the activity of the exosome is regulated through

association with co-factors such as Ski7 and the Ski2, 3, and 8

complex in the cytoplasm [8] or the TRAMP complex in the

nucleus [9,10,11].

TRAMP is particularly important for surveillance pathways in

the nucleus, where it is thought that it recognizes structural

features of aberrant RNAs, leading to their selective polyadenyl-

ation, followed by recruitment and activation of the nuclear

exosome (for review see [12]). TRAMP is composed of a poly(A)

polymerase, either Trf4 or Trf5, a putative RNA binding protein,

Air1 or Air2, and a 39 to 59 RNA helicase Mtr4 [9,10,11].

TRAMP also functions with the nuclear exosome to degrade

cryptic non-protein coding transcripts generated by RNA

polymerase II, rendering the transcripts highly unstable (CUTs)

[13]. Recent evidence has demonstrated that such transcripts
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control transcription initiation of stable mRNAs by RNA

polymerase II using different mechanisms [14,15,16,17].

The Ccr4-Not complex is another conserved eukaryotic multi-

subunit complex whose activity has been associated both with

RNA degradation and transcriptional regulation (for reviews see

[18,19]). Indeed, one of its subunits, Ccr4, is the major yeast

deadenylase [20], which catalyzes the first step leading to the

subsequent degradation of cytoplasmic mRNAs. This activity is

supported by another Ccr4-Not subunit, Caf1. Besides Ccr4 and

Caf1, the yeast Ccr4-Not complex has 7 other subunits, Caf40,

Caf130 and 5 Not subunits, Not1-Not5. The only subunit that is

essential for yeast viability is Not1, the scaffold of the complex

[21]. Not4 is an E3 ligase whose only known substrate is the

EGD/NAC complex [22], a chaperone associated with ribosomes

that is in contact with nascent peptides [23,24,25]. Ubiquitination

of this chaperone by Not4 was recently shown to be important for

its association with the ribosome and with the proteasome [26].

The role of the other subunits has not been clearly defined. Several

studies have demonstrated the importance of the Ccr4-Not

complex for appropriate transcription initiation, in particular for

the appropriate promoter distribution of the general transcription

factor TFIID [27], and both genetic and physical interactions

between the Ccr4-Not complex and TFIID have been described

[28,29]. Transcription functions of the Ccr4-Not complex are also

consistent with the observation that a mutation in NOT1 is

suppressed by the deletion of SPT3 [30], encoding a subunit of the

SAGA co-activator complex [31,32] and a protein that interacts

with TBP. Though many studies have suggested roles of the Ccr4-

Not complex in other cellular functions, such as resistance to

ionizing radiation and DNA damage or replication stress [33,34],

mechanistic understanding of the connection between the Ccr4-

Not complex and these other pathways is lacking. However,

consistent with transcription and cytoplasmic RNA degradation

functions, the Ccr4-Not complex, like the exosome, has been

reported to have both cytoplasmic and nuclear localizations

[20,35]. Indeed, while association of certain subunits with

promoters has been described [28,36], the presence of others

was revealed in cytoplasmic P bodies [37].

A recent investigation of the role of the 8 non-essential Ccr4-

Not subunits in the expression of the yeast genome revealed that

each subunit had a very specific function in the expression of the

genome [38]. Surprisingly, an excessive presence of polyadenyl-

ated snRNAs and snoRNAs was highly and significantly identified

in certain mutants. Such a phenotype is characteristic of nuclear

exosome mutants that fail to degrade aberrant nuclear RNAs [39].

In this study we demonstrate genetic and biochemical interactions

between the Ccr4-Not complex and the nuclear RNA degradation

machinery provided by TRAMP and the nuclear exosome. Our

findings shed a new light on the functional organization of the

Ccr4-Not complex and connect the different players involved in

cellular RNA degradation.

Results

Synthetic genetic interactions between the Ccr4-Not
complex and the nuclear exosome

Micro-array experiments designed to measure polyadenylated

RNAs [38] revealed that U4 and U6 snRNAs, as well as many

snoRNAs of all different types and origin (H/ACA or C/D boxes,

intronic, mono-cistronic or polycistronic), were over-expressed in

certain mutants of the Ccr4-Not complex, especially ccr4D, not2D,

not4D and not5D (Fig. 1 and Table S1). These nuclear non-coding

RNAs should in principle not be polyadenylated. However,

transcripts for a wide variety of snoRNAs have been shown to

accumulate as 39-extended polyadenylated species in mutants of

the nuclear exosome [39]. In this context it is interesting to note

that we isolated Rrp6, an exonuclease specific of the nuclear

exosome, as a two-hybrid partner of Not1 in a genome-wide

screen performed several years ago (described in [27]). These

observations from former studies led us to investigate a possible

link between the Ccr4-Not complex and the nuclear exosome in

this work.

We created strains lacking Rrp6 and individual subunits of the

Ccr4-Not complex. The double mutant strains displayed synthetic

slow growth phenotypes when compared to the single mutants

(Fig. S1). The most extreme phenotype was observed in the case of

not5D, since the double mutant grew so poorly (Fig. 2) that it was

very difficult to obtain a growth curve in liquid medium. To

determine whether the synthetic growth phenotypes might

correlate with synthetic defects in expression of nuclear snoRNAs,

we studied the expression of one snoRNA identified in our micro-

arrays, namely U14, in single or double mutant cells. Indeed, this

snoRNA is processed from a polycistronic RNA [40] and is

inappropriately processed and accumulates in larger polyadenyl-

ated forms in nuclear exosome mutants [41].

As expected from previous studies [6,42], northern blot analysis

with a probe specific to the sequence downstream of the 39 end of

mature U14 revealed several 39-extended heterogeneously poly-

adenylated forms of this snoRNA in cells lacking Rrp6 (Fig. 3, lane

2). In particular three stabilized U14 39-extended-species were

seen: the slowest migrating one indicated by D on the left of Fig. 3

may correspond to the dicistronic precursor thought to be

stabilized in the absence of Rrp6 [43]. The second one indicated

by an arrow is likely to be the 39-extended U14 precursor that does

not get processed in the absence of Rrp6 [6,42]. Finally, the third

one indicated by a star has not been clearly identified, but its

accumulation has been reported to be specific to deletions of Rrp6

or Rrp47 [6]. In the single mutants of the Ccr4-Not complex

(Fig. 3, lanes 3 and 5), there appeared to be an accumulation of

heterogenous U14 that was faint in this experiment, but more

visible in others (Fig. S2, panel A). Strikingly, when NOT4 or

NOT5 were deleted in the rrp6D mutant (Fig. 3, lanes 4 and 6), the

largest precursor D accumulated less than in the single rrp6D
mutant, whereas the faster migrating 39-extended U14 precursor

(indicated by a star) accumulated to a greater extent. It was

difficult to assess the levels of precursor D in the not4D and not5D
single mutants, though it seemed to accumulate somewhat (Fig. 3,

lanes 3 and 5).

Hence, the profile of inappropriately processed and polyade-

nylated U14 forms that accumulate in rrp6D cells is affected by

concomitant mutations of the Ccr4-Not complex. We extended

this analysis to several other snoRNAs, namely U18, snR71 and U3

and observed that similarly to the situation described for U14, the

profile of extended snoRNAs that accumulate in rrp6D cells is

affected by concomitant deletion of either Not4 or Not5 (Fig. S2

panel B).

Integrity of the largest Rrp41-containing complexes
depends upon the Ccr4-Not complex

This effect of the Ccr4-Not complex on accumulation of

aberrant U14 in the absence of Rrp6 led us to determine whether

the Ccr4-Not complex might have an impact on the exosome.

For this, we created wild-type and ccr4-not mutant strains

expressing Tap-tagged Rrp41, a core exosome subunit. The

expression of the tagged protein was similar in wild-type and

mutant strains (Fig. 4A, upper panel) and the tagged protein

could be affinity-purified from all strains (Fig. 4A, lower panel).

Interestingly, a specific subunit of the Ccr4-Not complex, namely

CCR4-NOT-TRAMP-Exosome Link
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Not5, was recovered when Rrp41 was affinity purified from cells

lacking Not4 or Caf40, but not from wild-type cells or from the

other mutants (Fig. 4A, middle panel).

These observations led us to analyze the affinity-purified Rrp41

from wild-type, not4D or caf40D cells by separation on SDS-PAGE

followed by mass spectrometry. We identified most of the exosome

subunits, and the nuclear exosome subunit Rrp6, in all 3

purifications (Fig. 4B and Table S2), but the recovery of exosome

seemed greater in the case of not4D and caf40D This was not due to

increased expression of exosome subunits in mutants as verified by

analyzing wild-type, not4D and caf40D strains expressing each of

the exosome subunits as a Tap-tagged fusion protein (data not

shown). The presence of Not5 in the purifications from the two

mutants was confirmed by mass spectrometry (Table S2), and

Not5 was not identified in the purification from the wild-type,

supporting the analysis by western blot (Fig. 4A). Control affinity

purifications performed with wild-type and ccr4-not mutant strains

not expressing any Tap-tagged protein revealed the presence of a

low level of proteins isolated non-specifically (Fig. S3), but none of

them could be determined as exosome or Ccr4-Not subunits (data

not shown).

To understand why Not5 co-purified with Rrp41 specifically in

certain mutants of the Ccr4-Not complex, we determined the size

distribution of Rrp41-containing complexes in wild-type and

mutant cell extracts. This was investigated by glycerol gradient

Figure 2. Synthetic growth phenotype when deletions of RRP6
and NOT5 are combined. The indicated strains were streaked on YPD
plates and let to grow for several days at 30uC.
doi:10.1371/journal.pone.0006760.g002

Figure 1. Polyadenylated non-coding snRNAs and snoRNAs are over-expressed in specific mutants of the Ccr4-Not complex. This
figure lists all of non-coding snoRNAs and snRNAs identified in our previous micro-array experiments [38] as being differentially expressed in any
mutant of the Ccr4-Not complex growing exponentially compared to the wild-type. Black, red and green shows genes that are not affected, over-
expressed or under-expressed, respectively. In the last column is indicated which category the gene belongs to either a H/ACA or C/D snoRNA, or a
snRNA.
doi:10.1371/journal.pone.0006760.g001

CCR4-NOT-TRAMP-Exosome Link
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fractionation of total cell extracts followed by western blot analysis

of the fractions with antibodies against the calmodulin binding

peptide entity of the Tap-tag (CBP). In wild-type cells Rrp41

eluted with a very broad profile suggesting that it was present in

complexes of very different sizes (Fig. 4C), including very large

complexes (fractions 17–21 at the bottom of the gradient, in which

both 25S and 18S rRNAs could be found (Fig. S4)). Not5 also

eluted with a broad profile, consistent with previous studies using

superose 6 gel filtration analyses of total protein extracts [21]. In

particular, it was also present in fractions 17–21 (Fig. 4C). The

deletion of Not4 and Caf40 lead to a loss of Not5 in the fractions

corresponding to these largest complexes (see fractions 17–21 in

Fig. 4C). This was not surprising for Not5 in not4D, since previous

studies have already demonstrated a partial disruption of Ccr4-

Not complexes in this deletion strain [21,38], but it was new for

Not5 in caf40D, since the importance of Caf40 for Ccr4-Not

complex integrity has not yet been studied. Surprisingly however,

these mutations of the Ccr4-Not complex also had a great impact

on the elution profile of Rrp41, since the largest Rrp41-containing

complexes were disrupted in caf40D and not4D (Fig. 4C, see

fractions 13–21). Thus the more efficient purification of Rrp41 in

caf40D and not4D in one hand and the co-purification of Not5 with

Rrp41 in other hand are correlated with the release of Rrp41 from

large soluble structures.

RNA limits accessibility of the Not5-interacting exosome
to purification

These results are compatible with the idea that the Not5-

associated Rrp41 that was affinity purified in the mutants might

have been released from the larger Rrp41 complexes in not4D and

caf40D. However, it could also be that co-purification of Not5 with

Rrp41 was detectable in the mutants simply because Rrp41 itself

was more efficiently purified. Finally, the association of Not5 with

Rrp41 could be an aberrant mutant phenotype resulting from the

disruption of the Ccr4-Not complex.

To first exclude this latter possibility, and to additionally

determine whether Not5 interacted with the entire exosome or

only with Rrp41, we determined whether Not5 co-purified with

any other exosome subunit in wild-type and mutant cells. Indeed,

detectable levels of Not5 co-immunoprecipitated with Tap-tagged

Csl4 from wild-type cell extracts and from extracts of cells lacking

Caf40 (Fig. 5A). The purification of Tap-tagged Csl4 from total

extracts of wild-type cells was generally more efficient than that of

Rrp41 (data not shown) suggesting that the tag on Csl4 might be

more accessible in the different exosome-containing complexes. In

any event, these results indicate that Not5 is likely to interact with

the exosome, and that this interaction occurs in wild-type cells.

Indeed, Not5 could also be co-immunoprecipitated with several

other Tap-tagged exosome subunits from wild-type cells (Fig. S5).

We next wanted to determine the nature of the large Rrp41-

containing structures whose integrity was dependent upon the

Ccr4-Not complex. In particular we wanted to determine whether

they might contain RNA, since both the Ccr4-Not complex and

the exosome are RNA-degrading machines. For this purpose, we

prepared total protein extracts from wild-type cells expressing

Tap-tagged Rrp41 that we treated or not with RNAse A prior to

tandem affinity purification of Rrp41. In both cases the exosome

was purified, as determined by western blot analysis with

antibodies against CBP (to detect Rrp41), and against Rrp4 or

Rrp43 (Fig. 5B). Not5 co-purified with Rrp41 from wild-type cell

extracts treated with RNAse A but not from untreated wild-type

cell extracts (Fig. 5B). Thus, in wild-type cell extracts RNA limits

the accessibility of Not5-associated Rrp41. In good correlation

with this finding, digestion of RNA in total cellular extracts prior

to their separation by glycerol gradient centrifugation showed that

the integrity of the largest Rrp41-containing complexes was indeed

RNA-dependent (Fig. S6).

The Ccr4-Not complex interacts with the exosome
The co-purification of Not5 with the exosome isolated via

Rrp41 or Csl4 raised the question of whether the entire Ccr4-Not

complex interacts with the exosome, or whether Not5 interacts

with the exosome independently of the Ccr4-Not complex. Indeed

to date it is still unclear whether Ccr4-Not subunits function

outside the context of a complex or not. The improved recovery of

the exosome by affinity purification of tagged Rrp41 when the

Ccr4-Not complex was compromised supported the idea that the

entire Ccr4-Not complex was involved, but its role could have

been indirect. To address this issue, we first purified Tap-tagged

Not5 itself and identified Not1, Not2, Not3, and Caf40, as well as

Rrp41, as co-purifying proteins (Fig. 6A and Table S3). These

results confirmed an interaction between Not5 and Rrp41, but did

not clearly determine whether the Ccr4-Not subunits co-purifying

with Not5 were within the same complex as Rrp41. We next

tandem-affinity purified the Ccr4-Not complex through different

subunits from wild-type cells or from the caf40D mutant in which

accessibility of the Not5-exosome complexes was improved (see

above). Depending upon which subunit of the Ccr4-Not complex

was tagged, the success in purifying intact Ccr4-Not complexes

Figure 3. Accumulation of 39-extended and polyadenylated
U14 in rrp6D cells is affected by the Ccr4-Not complex. Total
cellular RNA isolated from the indicated strains was analyzed by
northern blot first with a probe against 39-extended U14 (upper panel)
and then with a probe for mature U14 (middle panel) and a probe for 5S
rRNA (lower panel). The position of several extended U14 forms and
mature U14 are indicated on each side of the blot (see the text for
details). Hybridization against the 5S mature rRNA is shown as a control
for loading.
doi:10.1371/journal.pone.0006760.g003

CCR4-NOT-TRAMP-Exosome Link
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from wild-type cells was variable. For instance, purification of

Tap-tagged Not4 led to isolation of complexes lacking Not2 and

Caf130, purification of Tap-tagged Not2 led to isolation of

complexes lacking Caf130, whereas purification of Tap-tagged

Caf130 was inefficient, and only led to co-purification of Not1

(Fig. 6B). The deletion of Caf40 had a major impact in all cases.

For Not2 or Not4, the co-purification of several subunits of the

Ccr4-Not complex, namely Not3, Ccr4 and Caf1, was less

efficient, suggesting that the core Ccr4-Not complex might be

less stable in the absence of Caf40. In contrast, for Caf130 the co-

purification of Not2 and Not5 was greater, suggesting that the tag

on Caf130 within Ccr4-Not complexes might have become more

accessible because of the Caf40 deletion. Most importantly, for the

caf40D strains, Rrp41 and Rrp42 co-purified with the Tap-tagged

Ccr4-Not subunits (Fig. 6B and Table S3). Thus, the isolation of

exosome subunits by purifying different Ccr4-Not subunits besides

Not5 suggests that these exosome subunits most likely interact with

the integral Ccr4-Not complex.

Figure 4. Large complexes containing Rrp41 and Not5 are disrupted in cells lacking Caf40 or Not4. A. Equal amounts of total protein
extracts (TE) from the indicated strains expressing Tap-tagged Rrp41 were analyzed by western blot for the expression of Rrp41 with antibodies
against CBP. Purified materials (E) were analyzed for the presence of Not5 and Rrp41 by western blotting with antibodies against Not5 and CBP as
indicated. B and C. Wild-type, caf40D or not4D cells expressing Tap-tagged Rrp41 were grown for extract preparation. B. 2 g of extract were used to
purify Rrp41 and the eluted proteins were loaded on SDS-PAGE. The gel was stained with coomassie. The nuclear exosome subunits and Not5
identified by mass spectrometry (Table S3) are indicated. Molecular weight markers are indicated on the left (in kDa). C. 5 mg of extracts were loaded
on a 10–30% glycerol gradient. Proteins in the different fractions of the gradient were analyzed by western blotting for the presence of Tap-tagged
Rrp41 with antibodies against CBP, and for Not5 with antibodies against Not5, as indicated.
doi:10.1371/journal.pone.0006760.g004

CCR4-NOT-TRAMP-Exosome Link
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Mtr4 of TRAMP interacts with the Ccr4-Not complex
The purification of Not2 and Not4 from caf40D cell extracts also

led to the co-purification of Mtr4, an RNA helicase of the

TRAMP complex, which serves as a co-factor for the nuclear

exosome (Fig. 6B and Table S3). Mtr4 also co-purified with Tap-

tagged Caf40 from wild-type cell extracts (data not shown). To

confirm this interaction between Mtr4 and the Ccr4-Not complex,

Mtr4 was immunoprecipitated from extracts prepared from not4D
cells expressing myc-tagged Not4 from an episome or from caf40D
cells expressing HA-tagged Caf40 from an episome. Both Caf40

and Not4 co-immunoprecipitated with Mtr4, and these interac-

tions were RNA-independent (Fig. 7A and Fig. S7). We also

observed the co-immunoprecipitation of other subunits of the

Ccr4-Not complex (Ccr4, Not3, Not5 and Caf1) with Mtr4, using

Tap-tagged Mtr4, and polyclonal antibodies against the Ccr4-Not

complex subunits (data not shown). RNA degradation had no

effect on the co-precipitation of Caf40 with Mtr4, whilst the co-

precipitation of Not4 with Mtr4 was improved. Since Mtr4 was

the bait protein each time, these results suggested that complexes

containing Mtr4 and Caf40 might not entirely overlap those

containing Mtr4 and Not4. We hence tested the association of

Mtr4 with Not4 in caf40D, and the association of Mtr4 with Caf40

in not4D. The deletion of Not4 led to a reduced co-precipitation of

Mtr4 with Caf40. In contrast, the co-precipitation of Mtr4 with

Not4 was improved in the absence of Caf40 (Fig. 7B) and the same

was observed for the co-precipitation of Mtr4 with the other

subunits of the Ccr4-Not complex mentioned above (not shown).

Hence Not4 contributes to the interaction between Caf40 and

Mtr4, but Caf40 seems to be in competition with the interaction

between Mtr4 and other subunits of the Ccr4-Not complex.

Interestingly, Caf40 co-immunoprecipitated with another subunit

of the TRAMP complex, the Trf4 polymerase, and this co-

immunoprecipitation was also decreased in cells lacking Not4

(Fig. 7C). In addition, Not5 co-immunoprecipitated not only with

Tap-tagged Mtr4 (as mentioned above) and with Tap-tagged Air1

(data not shown) but also with Tap-tagged Air2 (Fig. S5). These

results suggest that the Ccr4-Not complex interacts with TRAMP

and that probably in this context Not4 contributes to the

association of Caf40 with TRAMP.

Association of Mtr4 with Rrp6 depends upon Caf40
The results presented so far show that the Ccr4-Not complex

can interact with the nuclear exosome on one hand and with Mtr4

on the other hand. This led us to question whether it might play a

role in the interaction of the nuclear exosome with its co-factor. To

address this question, we created wild-type and ccr4-not mutant

strains expressing Tap-tagged Rrp6 and immunopurified Rrp6

using a single affinity step. Equal levels of Rrp6 were purified from

all strains (Fig. 8A, upper panel), and Mtr4 generally co-purified

with Rrp6, but to reduced levels from not4D compared to wild-type

cells and not at all from caf40D (Fig. 8A, lower panel). However,

expression of Mtr4 was similar in wild-type and ccr4-not mutant

strains (Fig. 8B), and the co-purification of Rrp6 with the exosome

was similar in wild-type and mutant strains (shown for not4D in

Fig. 8C). Thus, it seems that the association of Mtr4 with Rrp6

might be compromised in caf40D. To confirm this finding we

created wild-type and caf40D strains expressing myc-tagged Rrp6,

and immunoprecipitated Mtr4 to determine the presence of Rrp6

in the immunoprecipitate. Though equal levels of Mtr4 were

immunoprecipitated from both strains, no co-precipitation of

Figure 5. Not5 co-precipitates with Csl4 and Rrp41. A. Total protein extracts were prepared from wild-type or caf40D cells expressing Tap-
tagged Csl4. 2 mg of total protein was incubated with (IP) or without (IP0) antibodies against CBP. 50 mg of total extract (TE), equivalent volume of
unbound extract (FT) and the immunoprecipitate were loaded on SDS-PAGE followed by western blotting with antibodies against Not5, which
revealed both Not5 and Tap-tagged Csl4 as indicated. B. 2 g of total protein extract from wild-type cells expressing Tap-tagged Rrp41 treated or not
with RNAse as indicated were processed for tandem affinity purification of Rrp41. Equivalent amounts of total extract (TE), flow through (FT) or one
fourth of the eluate precipitated by TCA, were loaded on SDS-PAGE and analyzed with antibodies against CBP to follow Rrp41, or against Rrp4, Rrp43
and Not5 as indicated.
doi:10.1371/journal.pone.0006760.g005

CCR4-NOT-TRAMP-Exosome Link
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Rrp6 with Mtr4 was detected in caf40D (Fig. 8D). Thus, the

interaction between Mtr4 and Rrp6 is indeed compromised in

caf40D.

Discussion

The Ccr4-Not complex is physically and functionally
connected to TRAMP and the nuclear exosome

In this work, we have made the exciting finding that the Ccr4-

Not complex, whose role in cytoplasmic RNA degradation has

been clearly demonstrated [20], is also connected to the nuclear

RNA degradation machinery. Starting from our finding in a

previous study of a very significant accumulation of polyadenyl-

ated snoRNAs in several mutants of the Ccr4-Not complex [38]

we observed synthetic growth phenotypes when mutants of the

Ccr4-Not complex were combined with the deletion of the nuclear

exonuclease Rrp6, whose role in processing and degradation of

aberrantly processed snoRNAs has been clearly established. These

genetic interactions are consistent with our identification of a

remarkable alteration in the profile of aberrantly processed and

polyadenylated U14 snoRNA in rrp6Dwhen the Ccr4-Not complex

was mutated. We could determine that these genetic and

functional interactions correlate with physical interactions between

the Ccr4-Not complex and the nuclear RNA degradation

machinery provided by TRAMP and the nuclear exosome.

Indeed, we demonstrated that Not5 co-purified with the exosome

through Rrp41 or Csl4, that the purification of Ccr4-Not

complexes through different subunits led to the co-purification of

the Rrp41 and Rrp42 subunits of the exosome, and that the

association of the exosome subunit Rrp41 in very large soluble

structures was dependent upon subunits of the Ccr4-Not complex.

We also provided evidence that the Ccr4-Not and exosome

complexes are likely to be associated in RNA-containing

structures. Finally, we showed that the Ccr4-Not complex was

physically associated with the Mtr4 RNA helicase, a subunit of the

TRAMP complex and co-factor of the nuclear exosome.

Though we did not demonstrate that Mtr4 and Rrp41 were a

part of the same Ccr4-Not containing complex, it is interesting to

note that Mtr4 and exosome subunits were purified together with

the Ccr4-Not complex in the same affinity purifications. At present

we cannot be sure that these interactions occur within a single

soluble structure, but these results are nevertheless compatible with

a model in which the Ccr4-Not complex physically connects the

nuclear exosome and its co-factor Mtr4 of TRAMP. Because the

exosome and Ccr4-Not interactions occur in RNA-containing

structures, it is very tempting to speculate that the Ccr4-Not

complex may contribute to the dynamic assembly of the nuclear

RNA degradation machinery with its target RNAs.

It may seem surprising that such interactions have not been

described so far, despite extensive work and purification of both

TRAMP and exosome complexes in many different studies,

including [3,4,6,9,10,44,45,46,47]. However, we identified these

Figure 6. Subunits of the Ccr4-Not, exosome and TRAMP complexes co-purify. 2 g of total proteins extracted from (A) wild-type cells
expressing Tap-tagged Not5 or (B) wild-type and caf40D cells expressing Tap-tagged Not4, Not2, or Caf130 as indicated, were subject to tandem
affinity purification. After separation on SDS-PAGE, and coomassie staining, the purified proteins were identified by mass spectrometry analysis (see
Table S3). The components of the Ccr4-Not, TRAMP or exosome complexes identified are indicated on the right of the gel lanes by numbers which
refer to the following proteins: 1 is Not1, 2 is Caf130, 3 is Not3, 4 is Ccr4, 5 is Not5, 6 is Not4, 7 is Caf1, 8 is Caf40, 9 is Not2, 10 is Mtr4, 11 is Rrp41 and
12 is Rrp42. Molecular weight markers (M) are indicated on the left of the gels (in kDa).
doi:10.1371/journal.pone.0006760.g006
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interactions first in situations where the integrity of the Ccr4-Not

complex was perturbed, situations in which the exosome and

TRAMP have not been purified previously.

Not5 and Rrp41 connect the exosome and the Ccr4-Not
complex

As mentioned above, our study revealed a series of physical

interactions between Ccr4-Not, exosome or TRAMP subunits.

However curiously, when purifying the Ccr4-Not complex in

different ways, we only co-purified at most a couple of the exosome

subunits and only Mtr4 of TRAMP, and similarly when purifying

the exosome, we only co-purified Not5 of the Ccr4-Not complex.

This raises the question of whether the partial entities that we

isolated exist as such in vivo. However, we believe that this is highly

unlikely and rather imagine that in vivo the Ccr4-Not complex

interacts with the integral exosome and maybe also the integral

TRAMP complex. Nevertheless, we cannot exclude that the Ccr4-

Not complex might serve as some form of a chaperone for

TRAMP and/or the exosome in vivo, and that this explains why it

can be isolated interacting only with certain subunits of these

complexes. Alternatively, it could be that the interactions between

these entities are highly dynamic and only stabilized in the largest

structures where however the accessibility to purification of the

different components is reduced. Hence, partial disruption of these

structures required to access the different components may also

disrupt or destabilize certain entities such that only the directly

interacting partners are captured during purification. If this is the

case, according to the different analyses that we performed, Not5

Figure 7. Mtr4 co-immunoprecipitates with subunits of the Ccr4-Not complex independently of RNA. A. Equivalent amounts of total
protein extract (5 mg) treated or not (+ or 2) with RNAse A as indicated, prepared from not4D cells expressing complementing myc6-Not4 from an
episome or caf40D cells expressing complementing HA7-Caf40 from an episome, were immunoprecipitated with antibodies against Mtr4.
Immunoprecipiates were analyzed by western blotting for the presence of Mtr4 and tagged Not4 or Caf40 as indicated. The efficient digestion of RNA
in total extracts (TE) was verified on an agarose gel stained with ethidium bromide (see Fig. S7). B. The same experiment as in A was performed
except caf40D not4D cells expressing complementing myc6-Not4 from an episome or not4D caf40D cells expressing complementing HA7-Caf40 were
analyzed. C. 2 mg of total protein extracts from wild-type or not4D cells expressing Tap-tagged Trf4 were incubated with (IP) or without (IP0)
antibodies against CBP. 50 mg of total extract (TE), equivalent volume of unbound extract (FT) and the immunoprecipitate were analyzed by western
blotting with antibodies against Caf40, which revealed both Caf40 and Tap-tagged Trf4 as indicated.
doi:10.1371/journal.pone.0006760.g007
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and Rrp41 would be the subunits within each complex that

directly interact. Rrp42 was isolated in certain cases with Rrp41

and the Ccr4-Not complex and may be closely connected to

Rrp41 within the exosome. This is certainly supported by the three

dimensional interaction map derived by isolating exosome

complexes directly from cells [48]. It will be interesting to see

whether an interaction between Rrp41 and Not5 can indeed be

recapitulated in vitro.

In the case of the interactions between the Ccr4-Not complex

and TRAMP, Mtr4, but none of the other subunits of TRAMP

were identified by mass spectrometry in any of our purifications,

suggesting that it is the most direct partner of the Ccr4-Not

complex. Concerning which subunit of the Ccr4-Not complex

may be the privileged partner of Mtr4, this is still an open

question.

It is clear that none of our experiments have actually

determined that the interactions between the Ccr4-Not complex

and either the exosome or TRAMP are directly mediated by

interactions between subunits of these different complexes.

However we have no evidence for the presence of additional

proteins in our purifications that might serve as adaptors and RNA

is not required for the interactions. In vitro experiments will

nevertheless be required to determine this more precisely.

A role for the Ccr4-Not complex in functional connection
the nuclear exosome and TRAMP

This study has demonstrated an RNA-independent interaction

between Not5 and the exosome, and between Mtr4 and the Ccr4-

Not complex. It has also revealed the importance of certain Ccr4-

Not complex subunits for co-purification of the nuclear exosome

with its co-factor Mtr4. In parallel, non-coding nuclear RNAs

whose turnover and/or processing needs the nuclear degradation

machinery are also affected by the Ccr4-Not complex. An exciting

implication of these findings is that the Ccr4-Not complex might

be important to connect Mtr4 with the nuclear exosome for

processing and/or degradation of their target RNAs.

Two subunits of the Ccr4-Not complex come out as particularly

interesting in this functional association of the Ccr4-Not complex

with the nuclear RNA degradation machinery. Not5, on one

hand, co-purifies with the exosome, and its deletion is nearly lethal

in cells lacking Rrp6. It might play a key role to bring the exosome

to the Ccr4-Not complex. Caf40, on the other hand, is important

for the integrity of the largest exosome-containing soluble

structures and for the interaction between Rrp6 and Mtr4, but it

competes for the interaction between Mtr4 and the other subunits

of the Ccr4-Not complex. An exciting model (Fig. 9) is that the

Caf40-Mtr4 interaction might be key to establish interactions

between RNA-bound TRAMP, the Ccr4-Not complex and the

nuclear exosome, but then also to transfer Mtr4 (and TRAMP) to

the nuclear exosome, and to release it from the Ccr4-Not complex.

In other words it might ensure dynamic interactions between all of

these components. Our observation that the not5D rrp6D double

mutant on one hand, and not5D caf40D double mutant on the

other hand (unpublished data) have severe growth defects is

compatible with the idea that Not5 and Caf40 might participate at

different steps in the functional connection of TRAMP and the

nuclear exosome.

Obviously, at present the mechanism by which the Ccr4-Not

complex may be contributing to nuclear RNA expression with the

nuclear exosome remains to be determined. Whether it may serve

Figure 8. Co-purification of Mtr4 with Rrp6 depends upon the Ccr4-Not complex. A. Total protein extracts were prepared from wild-type
and mutant strains expressing Tap-tagged Rrp6. The same amount of each extract (60 mg) was incubated with IgG beads. After washing, bound
proteins were eluted by TEV cleavage and analysed by western blot with anti-CBP antibodies (upper panel) or with polyclonal anti-Mtr4 antibodies
(bottom panel). B. Equivalent amounts of total protein extracts from the indicated strains expressing Tap-tagged Mtr4 were analyzed by western blot
for the presence of Tap-tagged Mtr4 with antibodies against Mtr4. C. 2 g of total proteins extracted from wild-type or not4D cells expressing Tap-
tagged Rrp6 were incubated with IgG beads, and bound proteins were eluted with TEV protease. Co-purified proteins were analyzed by western
blotting for the presence of Rrp43, Rrp4, or Rrp6 with antibodies against CBP. D. Total protein extracts were prepared from wild-type and caf40D cells
expressing myc-tagged Rrp6. The same amount of extract was incubated with antibodies against Mtr4 and immunoprecipitates were analyzed by
western blotting with antibodies against myc. The same blot was then analyzed with antibodies against Mtr4.
doi:10.1371/journal.pone.0006760.g008
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strictly as a platform allowing the appropriate assembly of the

different partners, namely precursor RNA, nuclear exosome and

TRAMP, or plays roles after processing, or even plays more direct

roles for instance through the Ccr4 deadenylase, or by connecting

nuclear events to the cytoplasm, really needs to be addressed. It

will be interesting in a next step to confirm the roles attributed to

Not5, Rrp41, Caf40 and Mtr4 in our model, and determine

whether disruption of the proposed interactions will have an

impact on nuclear exosome function. Finally, because it is

becoming increasingly clear that unstable transcripts degraded

by the nuclear exosome machinery contribute to regulate

transcription, it will also be interesting to determine how much

of the transcriptional phenotypes attributed to the Ccr4-Not

complex might be indirectly due to inappropriate nuclear exosome

function.

Materials and Methods

Strains, plasmids and media
The strains used in this study are listed in Table 1. All media

were standard, either YPD for glucose rich medium, or synthetic

complete media when the presence of a plasmid was selected for.

Single-step deletions or tagging were performed by PCR as

described by Longtine [49]. All of the strains were checked with a

PCR reaction performed on genomic DNA extracts using a primer

localized in the marker gene and a primer localized at the 59 non-

coding sequence of the target gene. All primers used are available

upon request. Many new strains were created by crosses followed

by sporulation and tetrad dissection. Plasmids expressing N-

terminally tagged Not4 from the NOT4 promoter (pMAC684) and

Caf40 from the SPT3 promoter (pMAC728) were made by PCR

and homologous recombination, using the Drag and Drop system

[50], and verified by sequencing.

Northern blot analyses
For analysis of snoRNA steady-state levels, total cellular RNA

was separated on an 8% polyacrylamide denaturing gel and

electro-transferred to a nylon membrane in 0.5X TBE buffer.

After cross-linking of the RNAs to the membrane by UV

radiation, the membrane was hybridized with radio-labelled

probes specific for the different mature or 39extended snoRNAs

or rRNA transcripts (sequences available upon request).

Tandem affinity purification
Large-scale tandem affinity purifications from wild-type or

mutant cells were performed as previously described with 2 g of

total protein extract [51] except that the NaCl concentration was

150 mM. Small-scale purifications with Tap-tagged proteins were

essentially done the same way except that only 2 l of cells were

grown, and 60 mg of protein extracts processed with the volumes

scaled down. Elution with TEV protease was performed with

1 ml, of which 200 ml were directly analyzed after TCA

precipitation on SDS-PAGE followed by coomassie staining and

50 ml were analyzed for western blotting.

Mass spectrometry
For mass spectrometry analysis the sample preparation, gel

separation and gel staining were performed according to the

SWISS-2D-PAGE protocols. Briefly, the samples were separat-

ed on 4–12% SDS-PAGE gradient gels and stained using

coomassie in keratin free conditions. The visualized bands were

excised from the gel and treated for mass spectrometry

fingerprint analysis as following: they were washed 15 min at

RT with acetonitril 30%, incubated 35 min at 56uC in 1,4,-

dithioerythritol 10 mM, followed by 30 min incubation in

iodoacetamid 55 mM at room temperature in the dark. After

one wash for 10 min with ammonium biocarbonate 50 mM

pH 8.0 and two other washes of 10 min with acetonitril 30%,

samples were then completely dried down in a vacuum

centrifuge for 1 h. After sample rehydration in 20 ml of freshly

prepared digestion buffer containing 6.25 ng/ml trypsin for

45 min on ice, digestion was allowed to proceed over night at

37uC. To extract the peptides from the gel digestion superna-

tant was recovered and pooled with two successive washes of

20 min using 40 ml trifluoroacetic acid (TFA) 1% and one wash

using TFA 0.1%. The collected supernatants were lyophilized

to remove salts and washed again with 35 ml TFA 0.1% before

sample concentration to 2–5 ml. 1 ml was loaded on a MALDI

plate and after matrix addition, sample acquisition was

performed using the MALDI-Tof MS (VOYAGEUR CON-

TROL PANEL program) and peptides were submitted to

fingerprinting analysis. The obtained spectra were finally

analyzed using the DATA EXPLORER program and proteins

were identified using the MASCOT SEARCH website. When

not provided as supplementary data, all identified peptides and

scores are available upon request.

Figure 9. Model for the connections between the Ccr4-Not,
TRAMP and exosome complexes. A large(s) structure(s) containing
Ccr4-Not, TRAMP, the nuclear exosome and RNA, that may function to
coordinate activity of TRAMP and the nuclear exosome, is suggested by
our work. Not1, the scaffold of the Ccr4-Not complex is associated with
Not5, Not2, Not4 and Caf40 (shown), as well as Caf1, Ccr4, Caf130, and
Not3 (not shown). Mtr4 is a subunit of TRAMP that co-immunoprecip-
itates with Caf40 and Not4, and is co-purified with Tap-tagged Caf40
together with the Ccr4-Not complex. Its association with Not4 (and
other subunits of the Ccr4-Not complex) increases in the absence of
Caf40. In contrast, Caf40 is required for the interaction between Mtr4
and Rrp6, suggesting that maybe Caf40 contributes to release Mtr4
(and TRAMP) from the Ccr4-Not complex to the nuclear exosome. Rrp41
co-purifies with Tap-tagged Not5, and Rrp41, Rrp42 and Mtr4 co-purify
with Not2-Taptag or Not4-Taptag when Caf40 is deleted, probably
because the tagged proteins in association with the exosome and
TRAMP become accessible to purification in this mutant. Finally, the
nuclear exosome becomes more accessible to purification via Rrp41-
Taptag when the integrity of the Ccr4-Not complex is compromised by
deleting Caf40 or Not4, or when RNA is destroyed. Not5 co-purifies with
Tap-tagged Csl4, and with Tap-tagged Rrp41 when it is more accessible
to purification by RNA degradation or deletion of Caf40 or Not4.
doi:10.1371/journal.pone.0006760.g009
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Table 1. Strain list.

MY1 MATa gcn4D ura3-52 trp1D1 leu2::PET56 gal2 [52]

MY2182 Isogenic to MY1 except not2::KanMX4 MATa [38]

MY4184 Isogenic to MY1 except not3::KanMX4 MATa This work

MY3595 Isogenic to MY1 except not4::KanMX4 MATa [51]

MY1719 Isogenic to MY1 except not5::LEU2 MATa [38]

MY5129 Isogenic to MY1 except caf1::TRP1 MATa [38]

MY4747 Isogenic to MY1 except ccr4::TRP1 MATa [38]

MY5097 Isogenic to MY1 except caf40::TRP1 MATa [38]

MY5091 Isogenic to MY1 except caf130::TRP1 MATa [38]

MY3893 Isogenic to MY1 except rrp6::TRP1 This work

MY4849 Isogenic to MY1 except rrp6::TRP1 not2::KanMX4 This work

MY4820 Isogenic to MY1 except rrp6::TRP1 not3::KanMX4 This work

MY3980 Isogenic to MY1 except rrp6::TRP1 not4::KanMX4 This work

MY4063 Isogenic to MY1 except rrp6::TRP1 not5::LEU2 This work

MY5644 Isogenic to MY1 except rrp6::TRP1 caf40::TRP1 This work

MY5294 Isogenic to MY1 except rrp6::TRP1 caf130::TRP1 MATa This work

MY4773 Isogenic to MY1 except rrp6::TRP1 ccr4::TRP1 This work

BY4741 MATa leu2D20 ura3D met15D his3D1 [53]

MY5906 Isogenic to BY4741 except not2::NATMX4 [38]

MY5241 Isogenic to BY4741 except not3::HIS3MX4 [38]

MY4910 Isogenic to BY4741 except not4::HIS3MX4 [38]

MY5673 Isogenic to BY4741 except not5::NATMX4 [38]

MY5267 Isogenic to BY4741 except caf1::HIS3MX4 [38]

MY5906 Isogenic to BY4741 except caf40::HIS3MX4 This work

MY5242 Isogenic to BY4741 except caf130::HIS3MX4 [38]

W303-1a MATa ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 [54]

MY5109 Isogenic to W303-1a, except rrp6::RRP6-Tap-tag-TRP1 [55]

MY5752 rrp6::RRP6-Tap-tag-TRP1 not2::KanMX4 From MY5109 x MY2182

MY5588 rrp6::RRP6-Tap-tag-TRP1 not3::KanMX4 From MY5109 x MY4184

MY5731 rrp6::RRP6-Tap-tag-TRP1 not4::KanMX4 From MY5109 x MY3595

MY5597 rrp6::RRP6-Tap-tag-TRP1 not5::LEU2 From MY5109 x MY1719

MY5628 rrp6::RRP6-Tap-tag-TRP1 caf1::TRP1 From MY5109 x MY5129

MY5636 rrp6::RRP6-Tap-tag-TRP1 caf40::TRP1 From MY5109 x MY5097

MY5647 rrp6::RRP6-Tap-tag-TRP1 caf130::TRP1 From MY5109 x MY5091

MY4858 Isogenic to BY4741 except caf40::CAF40-Tap-tag-URA3 [51]

MY5026 Isogenic to BY4741 except not2::NOT2-Tap-tag-KanMX4 MATa This work

MY4857 Isogenic to BY4741 except not4::NOT4-Tap-tag-URA3 MATa [51]

MY5711 Isogenic to MY5026 except caf40::HIS3MX4 MY5026 x MY5906

MY6017 Isogenic to MY4857 except caf40::HIS3MX4 MY4857 x MY5906

MY5218 Isogenic to BY4741 except caf130::CAF130-Tap-tag-HIS3MX4 This work

MY6016 Isogenic to MY 5218 except caf40::HIS3MX4 This work

MY5320 Isogenic to BY4741 except not5::NOT5-Tap-tag-KanMX4 This work

MY6426 MATa ade2 arg4 leu2-3,112 trp1-289 ura3-52 rrp41::RRP41-Tap-tag-URA3 Euroscarf

MY6561 MATa rrp41::RRP41-Tap-tag-URA3 not4::KanMX4 From MY6426 x MY3595

MY6630 MATa rrp41::RRP41-Tap-tag-URA3 caf40::TRP1 From MY6426 x MY5097

MY6732 MATa rrp41::RRP41-Tap-tag-URA3 not2::NatMX4 This work

MY6508 MATa rrp41::RRP41-Tap-tag-URA3 not3::HIS3MX4 This work

MY5562 MATa ade2 arg4 leu2-3,112 trp1-289 ura3-52 mtr4::MTR4-Tap-tag-URA3 Euroscarf

MY5873 MATa mtr4::MTR4-Tap-tag-URA3 not3::KanMX4 From MY5562 x MY4184

MY5741 MATa mtr4::MTR4-Tap-tag-URA3 not4::KanMX4 From MY5562 x MY3595

MY5742 MATa mtr4::MTR4-Tap-tag-URA3 not5::NATMX4 From MY5562 x MY5673
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Co-immunoprecipitation experiments
100 ml of cells expressing myc6-tagged Not4 or HA7-tagged

Caf40 from plasmids were collected at an OD600 of 1.0 and

broken with glass beads in 0.5 ml of buffer A (150 mM

potassium acetate pH 7.5, 20 mM TrisHCl pH 8.0, 5 mM

MgCl2, 0.1% Triton X-100, 1 mM DTT, 0.5 mM PMSF,

Roche Anti Protease tablets) and spun at 16’000 g for 30 min at

4uC. Lysates were brought to equivalent protein concentration

and 30 ml of lysates were boiled with 30 ml of 2 times

concentrated SDS-sample buffer and used as total extracts

(TE). 0.4 ml of the lysates containing 5 mg of total protein were

treated or not with RNAse A (final concentration 1 mg/ml) for

5 min at room temperature and then were incubated with 20 ml

of Protein-G-magnetic beads overnight at 4uC with (IP) or

without (IP0) antibodies against Mtr4. Beads were washed three

times with 1 ml buffer A and boiled with 40 ml of 2 times

concentrated SDS-sample buffer. To analyze the proteins co-

immunoprecipitated with Mtr4, 20 ml of total extracts (TE) and

20 ml of immunoprecipitates (IP) were loaded on an SDS-PAGE

gel followed by western blotting with antibodies against the tag.

To analyze the efficiency of RNAse A treatment, RNA was

extracted from total extracts and loaded on a 1% agarose gel

stained by ethidium bromide.

For cells expressing Tap-tagged proteins, extracts were

prepared in 40 mM Hepes pH 7.5, 1 mM EDTA, 20% glycerol,

150 mM potassium acetate, 100 mM potassium chloride and

protease inhibitors. 2 mg of extracts in 210 ml buffer were

incubated overnight at 4uC with 40 ml of magnetic beads coupled

to protein G equilibrated in the same buffer with or without 1 ml

of antibody against CBP. After washing, the proteins were eluted

from the beads in 20 ml of 2 times concentrated SDS-sample

buffer.

Glycerol gradient analysis
Total protein extracts (5 mg) were submitted to size separation

on a 10 to 30% glycerol gradient in A200 buffer (200 mM

potassium acetate, 20 mM Tris/HCl pH 8.0, 5 mM Mg acetate,

1 mM DTT). The gradients were spun at 4uC for 10 h at

20000 rpm in Beckmann Sw41 Ti rotor. 500 ml fractions were

collected and proteins were extracted from 250 ml by 30 min

precipitation in 10% TCA followed by resuspension in 30 ml of

SDS loading buffer and 10 ml were analyzed by SDS-PAGE and

western blotting. RNA was extracted from the other 250 ml by

phenol chloroform extraction and ethanol precipitation and

analyzed by migration on a 1% agarose gel.

Supporting Information

Figure S1 Synthetic growth phenotypes when deletions of RRP6

and the Ccr4-Not complex are combined. The indicated strains

were grown at 30uC exponentially in high glucose for 24 hours,

then diluted to an OD600 of 0.2 and followed for growth during

the next 11 hours by measuring the OD600.

Found at: doi:10.1371/journal.pone.0006760.s001 (0.23 MB TIF)

Figure S2 Accumulation of heterogeneous U14 in mutants of

the Ccr4-Not complex. A. Total cellular RNAs isolated from the

indicated strains were analyzed by northern blot with a probe

against mature U14. The position of mature and extended and

polyadenylated U14 is indicated on the right of the blot. A low

exposure of the blot was added as a bottom panel to be able to

assess the relative levels of mature U14. B. Total cellular RNAs

isolated from the indicated strains were analyzed by northern blot

with probes against several 3prime-extended snoRNAs (U18,

snR71 and U3). The positions of mature and extended snoRNAs

are indicated on the right of the blot.

Found at: doi:10.1371/journal.pone.0006760.s002 (0.89 MB TIF)

Figure S3 Low unspecific background binding of proteins in the

tandem affinity purification. Total protein extracts prepared from

the indicated strains were subject to the tandem affinity purification

protocol. The proteins eluted from the second column were

separated by SDS-PAGE and the gel was stained with coomassie.

Mass spectrometry analysis of the visible proteins did not reveal any

Ccr4-Not complex or exosome subunit (data not shown).

Found at: doi:10.1371/journal.pone.0006760.s003 (0.36 MB TIF)

Figure S4 Analysis of RNA in glycerol gradient fractionation of

total cell extracts. RNA was extracted from 250 microlitre of the

glycerol gradient fractions obtained from wild-type cells expressing

Tap-tagged Rrp41 (see Fig. 4C, top panel), and these fractions

were then analyzed on a 1% agarose gel which was further stained

with ethidium bromide to reveal abundant RNAs. The visible

tRNAs, and the 18S and 25S rRNAs are indicated.

Found at: doi:10.1371/journal.pone.0006760.s004 (0.37 MB TIF)

Figure S5 Not5 co-immunoprecipitates with subunits of the

exosome and TRAMP complexes. Total protein extracts were

prepared from wild-type cells expressing Tap-tagged Rrp45,

Rrp46, Mtr3, Rrp43, Rrp40, Rrp4 or Air2, namely from strains

MY6425, MY6430, MY6428, MY6429, MY6423, MY5567 or

MY7010. 2mg of total protein extracts was incubated with (IP) or

without (IP0) antibodies against CBP. 50 mg of total extract (TE),

equivalent volume of unbound extract (FT) and the immunopre-

cipitate were loaded on SDS-PAGE followed by western blotting

with antibodies against Not5, which revealed both Not5 and the

Tap-tagged proteins as indicated.

Found at: doi:10.1371/journal.pone.0006760.s005 (0.49 MB TIF)

Figure S6 RNA is required for the integrity of the largest Rrp41-

containing complexes. 5 mg of total protein extracts prepared

from wild-type cells expressing Tap-tagged Rrp41 and treated or

MY5871 MATa mtr4::MTR4-Tap-tag-URA3 caf40::TRP1 From MY5562 x MY5097

MY5937 MATa mtr4::MTR4-Tap-tag-URA3 caf130::TRP1 From MY5562 x MY5091

MY5926 MATa mtr4::MTR4-Tap-tag-URA3 ccr4::TRP1 From MY5562 x MY4747

MY6992 Isogenic to BY4741 except csl4::CSL4-Tap-tag-URA3 Euroscarf

MY7025 MATa csl4::CSL4-Tap-tag-URA3 caf40::TRP1 From MY6992 x MY5097

MY7029 MATa csl4::CSL4-Tap-tag-URA3 not4::KanMX4 From MY6992 x MY3596

MY7088 Isogenic to MY5097 except MATa not4::KanMX4 This work

doi:10.1371/journal.pone.0006760.t001
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not with RNAse A as indicated were loaded on a glycerol

gradient. Proteins in the different fractions of the gradient were

precipitated by TCA and analyzed by SDS-PAGE and western

blotting for the presence of Tap-tagged Rrp41 with antibodies

against CBP. This gradient was spun for 12 rather than 10 hours

leading to greater sedimentation. Hence the first peak of Rrp41

sediments in fractions 10–13 rather than fractions 3–8 as in

Fig. 4.

Found at: doi:10.1371/journal.pone.0006760.s006 (0.25 MB TIF)

Figure S7 Verification of RNA digestion for total cellular

extracts treated with RNAse A. The RNA present in the total

protein extracts prepared from not4delta or caf40delta cells

expressing tagged Not4 or tagged Caf40 respectively, that were

digested or not with RNAse A (see Fig. 7), was analyzed by

migration on a 1% agarose gel stained with ethidium bromide.

Found at: doi:10.1371/journal.pone.0006760.s007 (0.29 MB TIF)

Table S1 The results of the micro-array analyses for all of the

snRNAs and snoRNAs present on the ChIPs are indicated, as well

as a description of the types of snoRNAs as obtained from the

yeast snoRNA database at US Amherst (http://people.biochem.

umass.edu/fournierlab/snornadb/main.php).

Found at: doi:10.1371/journal.pone.0006760.s008 (0.03 MB

XLS)

Table S2 List of the peptides identified by mass spectrometry

with scores for identified proteins.

Found at: doi:10.1371/journal.pone.0006760.s009 (0.03 MB

XLS)

Table S3 List of the peptides identified by mass spectrometry

with scores for identified proteins.

Found at: doi:10.1371/journal.pone.0006760.s010 (0.03 MB

XLS)
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