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Purpose: The goal of current study was to introduce noninvasive and reproducible MRI
methods for in vivo functional assessment of lung adenocarcinoma (LUAD).

Methods: Forty-four patients with pathologically confirmed LUAD were included in this
study. All the lesions were classified as adenocarcinoma in situ (AIS), minimally invasive
adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The IA lesions were further
divided into five subtype patterns, including acinar, lepidic, papillary, micropapillary and
solid. Tumors were grouped depending on predominant subtype: low grade (AIS, MIA or
lepidic predominant), intermediate grade (papillary or acinar predominant) and high grade
(micropapillary, or solid predominant). Spirometry was performed according to American
Thoracic Society guidelines. For each patient, Intravoxel incoherent motion diffusion
weighted imaging (IVIM-DWI) analysis and oxygen-enhanced MRI (OE-MRI) analysis
were performed. Spearman’s test was used to assess the relationship between a)
whole lung mean percent signal enhancement (PSE) and pulmonary function tests
(PFTs) parameters; b) IVIM-derived parameters and PFTs parameters; c) tumor mean
PSE and IVIM-derived parameters. Kruskal -Wallis tests were applied to test the difference
of tumor mean PSE and IVIM-derived parameters between different histological tumor
grades. Receiver operating characteristics (ROC) analysis was used to evaluate the
diagnostic performance.

Results: Whole lung mean PSE was significantly positively correlated with PFTs
parameters (r = 0.40 ~ 0.44, P < 0.05). f value derived from IVIM-DWI was significantly
negatively correlated with PFTs parameters (r = -0.38 ~ -0.47, P < 0.05). Both tumor mean
PSE (P = 0.030 < 0.05) and f (P = 0.022 < 0.05) could differentiate different histological
grades. f was negatively correlated with tumor mean PSE (r = -0.61, P < 0.001). For the
diagnostic performance, the combination of tumor mean PSE and f outperformed than
using tumor mean PSE or f alone in both sensitivity and area under the ROC curve.
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Conclusions: The combined measurement of OE-MRI and IVIM-DWI may serve as a
promising method for the noninvasive and non-radiation evaluation of pulmonary function.
Quantitative analyses achieved by OE-MRI and IVIM-DWI offer an approach of the
classification of LUAD subtypes.
Keywords: UTE, IVIM, OE-MRI, NSCLC, lung adenocarcinoma
INTRODUCTION

Lung adenocarcinoma (LUAD) is considered to be the most
common subtype of non-small cell lung cancer (NSCLC) (1),
which is heterogeneous in clinical, radiologic, pathologic and
molecular features. As such, in 2011, a proposal for a
multidisciplinary LUAD classification was established to
subclassify these tumors (2). The International Association for
the Study of Lung Cancer/American Thoracic Society/European
Respiratory Society (IASLC/ATS/ERS) classification was adopted
by the World Health Organization (WHO) in 2015 and previous
researches stated that this classification of LUAD was able to
predict patient survivals (3, 4). Despite the introduction of new
classification biomarkers and treatment options in recent years,
70% lung cancer patients were only diagnosed in advanced stage
and the survival rates with LUAD remain unsatisfactory (5).

LUAD can disrupt the delicate tissue architecture and
compromise gas exchange across alveoli, which severely impact
the quality of life and long-term survival of the patients.
Ventilation, blood flow and their inter-relationship are the
major determinants of gas exchange in the lungs (6). Thus, in
order to care for patients effectively, clear insight into the lung
function, especially the processes of ventilation and perfusion of
LUAD is required.

The clinical assessments using conventional whole-lung
spirometry, plethysmography, or multiple-breath washout tests
yield a global measure of pulmonary function (7). Though these
pulmonary function tests (PFTs) have the advantage of low costs
and standardization of normative results, conventional PFTs
cannot present detailed information about regional lung
function, which provide powerful insights into pathophysiologic
mechanisms or improve treatment response and outcome by
tailoring to specific lung regions and disease subtypes (8, 9).

The implementation of magnetic resonance imaging (MRI) to
the analysis of pulmonary diseases is a relatively recent
development yet is a rapidly growing field. Though computed
tomography (CT) remains the clinical gold standard of
pulmonary imaging, MRI is non-ionizing and able to afford
unique functional imaging capabilities that can be used in the
clinical interpretation of lung disease.
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Oxygen-enhanced MRI (OE-MRI) has demonstrated the
ability to measure pulmonary ventilation. OE-MRI with
ultrashort echo time (UTE) potentially supported the
simultaneous imaging of lung function and structure, and
fulfilled a need for regional functional ventilation assessment
that is inaccessible via conventional global PFTs (10). Besides,
intravoxel incoherent motion diffusion-weighted imaging
(IVIM-DWI) is increasingly used clinically to evaluate both
true molecular diffusion in biological tissues and tissue
perfusion without the use of contrast agents (11). Prior study
suggested that IVIM-DWI demonstrated the ability to separate
reflection of tissue diffusivity and microcapillary perfusion in
lung cancer (11).

In this work, we introduced a noninvasive and reproducible
MRI method for in vivo functional assessment of the whole lung
and specific lesions. The goals of our study were: 1) to investigate
the feasibility of using the OE-MRI and IVIM-DWI for imaging
the pulmonary function of LUAD patients; 2) to compare
regional OE-MRI and IVIM-DWI results in different
histological tumor grade; 3) to explore the relationship
between regional OE-MRI and IVIM-DWI.
MATERIALS AND METHODS

Study Population
This single-institutional prospective study was approved by the
institutional review board and the written informed consents
from all patients were obtained. Patients were included if the
following criteria were met: (a) age ≥18 years, (b) clinically and
radiologically suspected lung adenocarcinoma, (c) clinically
diagnosed stage I or II disease, and (d) no prior history of any
medical treatment. Exclusion criteria included: (a) non-
adenocarcinoma lung disease, (b) active interstitial lung
disease, active autoimmune diseases, uncontrolled brain
metastasis, and other uncontrolled complications, (c) the
images with severe artifacts or poor quality, and (d) inability to
undergo and finish OE-MRI examination.

Pathologic Classification
According to IASLC/ATS/ERS classification (2), two experienced
pathologists measured longest overall diameter as well as the
invasive component diameter and classified the lesions as
adenocarcinoma in s i tu (AIS) , minimal ly invasive
adenocarcinoma (MIA), or invasive adenocarcinoma (IA). The
IA lesions were further divided into five major growth patterns,
including acinar, lepidic, papillary, micropapillary, and solid
predominant adenocarcinoma. Tumors were grouped
July 2021 | Volume 11 | Article 677942
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according to the histological tumor grade based on predominant
subtype: low grade (AIS, MIA or lepidic predominant
adenocarcinoma), intermediate grade (papillary or acinar
predominant adenocarcinoma) and high grade (micropapillary,
or solid predominant adenocarcinoma) (12, 13).

Spirometry
Spirometry was performed in all LUAD subjects according to
American Thoracic Society (ATS) guidelines (14). Forced
expiratory lung volume in 1 second (FEV1), forced vital
capacity (FVC), peak expiratory flow (PEF), and maximum
mid-expiratory flow (MMEF) were included in PFTs. Predicted
values of these spirometric measurements were calculated
according to the global lung function initiative (GLI) 2012
equations (15).

MRI Acquisition
MR examination was performed on a 3.0 Tesla system (uMR 780,
United Imaging Healthcare, Shanghai, China) with a commercial
12-channel torso coil. The conventional protocols include: a)
transverse T2-weighted fast spin echo sequence (FSE)
(Repetition time (TR)/Echo time (TE) = 4160.0/90.3 ms, slice
thickness (ST) = 5.0 mm, Flip angle (FA) = 120°, Field of view
(FOV) = 380×380 mm2, Matrix = 456×456); b) coronal T2-
weighted single shot fast spin echo sequence (SS-FSE) (TR/TE =
1000.0/85.3 ms, ST = 6.0 mm, FA = 120°, FOV = 380×380 mm2,
matrix = 408×408);

Before the scanning of IVIM-DWI and OE-MRI, all the
patients were instructed to breathe evenly and shallowly during
the examinations. The parameters for DWI were TR/TE = 4000/
1.4 ms, ST = 5 mm, FOV = 380×380 mm2, Matrix = 256×256,
FA = 90°, and b-values = 0, 10, 20, 30, 50, 80, 100, 200, 400, and
800 s/mm2. The parameters for respiratory-gated 3D radial UTE
sequence were TR/TE = 2.2/0.08 ms, ST = 2 mm, FOV =
350×350 mm2, and matrix = 480×480. In order to maximize
the absolute signal difference and contrast after OE-MRI, the FA
for the 3D-UTE pulse sequence was set to 8° (16). The
acquisition time varied from four to five minutes according to
the respiration pattern of individual patients. Other details about
this 3D-UTE sequence were: The whole lung was excited with a
non-selective hard pulse, followed by the acquisition of a free
induction decay (FID) signal, and a center-out radial encoding
trajectory was generated. Signal acquisition was initiated during
the ramp-up stage of encoding gradient to further reduce
effective echo time and potential susceptibility artifact as a
result of air tissue boundaries in pulmonary. Direction of
encoding gradient was incremented from one acquisition to
another to cover the whole k-space in “Koosh ball” pattern
(17). In total 40000 encoding directions was prescribed. For
the purpose of alleviating respiratory motion, the UTE sequence
was interleaved with navigator sequence to track the diaphragm
displacement in the superior-inferior direction. The acquisition
module was enabled only within certain pre-determined
displacement range, during which two thousand FIDs were
collected each time. During reconstruction, the radial k-space
data were first re-gridded onto Cartesian coordinate using
Frontiers in Oncology | www.frontiersin.org 3
Kaiser-Bessel convolution kernel (18). After that, a 3D fast
Fourier transform was applied to produce the final image.

OE-MRI Analysis
For each subject, 3D-UTE was performed twice. The first 3D-
UTE was acquired during free-breathing with 21% oxygen
(normoxic). Two minutes of 100% oxygen inhalation was
subsequently performed to avoid the transit effect. After that,
the second 3D-UTE was acquired with 100% oxygen (hyperoxic).

Percent signal enhancement (PSE) was utilized to quantify the
pulmonary ventilation. To avoid the negative impact from noise
of the high-resolution hyperoxic and normoxic images on the
quality of PSE maps, the images were reconstructed at 1 cm
resolution to improve signal-to-noise (SNR) (16). Then, the
high-resolution hyperoxic and normoxic images were co-
registered by rigid transform and B-spline symmetric
normalization (SyN) transform (19) with a mutual information
metric using Advanced Normalization Tools (http://stnava.
github.io/ANTs). The high-resolution hyperoxic images were
segmented automatically to generate a binary lung mask using
ITK-SNAP (www.itksnap.org) (20). After apply deformation
field from registration and mask to low-resolution data, the
PSE map was calculated as

PSE = (S100% − S21%)=S21% (1)

Where S100% and S21% are the signal intensity of the hyperoxic
and normoxic UTE images, separately. Mean PSE for whole lung
was calculated and recorded.

For lesion based analysis, two experienced radiologists with
12 and 18 years’ experience in pulmonary imaging drew the
Volumes of Interest (VOIs) along the tumor border based on
transverse high-resolution hyperoxic image using 3D slicer (21).
The VOIs were then transferred to the PSE map. The mean PSE
of each tumor was measured.

IVIM-DWI Analysis
IVIM-DWI analysis was performed by an in-house prototype
software developed by Matlab R2018b. In the bi-exponential
IVIM model, signal behavior follows:

Sb=S0 = (1 − f )� exp( − b� D) + f � exp ( − b� D∗) (2)

where f represent the fractional perfusion related to
microcirculation, D represent the true diffusion as reflected by
pure molecular diffusion, and D* represent the pseudo-diffusion
coefficient related to perfusion.

Statistical Analysis
All statistical analyses were performed using SPSS (version 21.0,
SPSS Inc., Chicago, IL, USA). Spearman’s test was used to assess
the relationship between a) whole lung mean PSE and PFTs
parameters; b) IVIM-derived parameters and PFTs parameters;
c) tumor mean PSE and IVIM-derived parameters. Kruskal
-Wallis tests were applied to test the difference of tumor mean
PSE and IVIM-derived parameters between different histological
tumor grades. Bonferroni corrections were applied to reduce
problems associated with multiple comparisons. Receiver
July 2021 | Volume 11 | Article 677942
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operating characteristic (ROC) analysis was performed to
evaluate the diagnostic performance of OE-MRI and IVIM-
DWI in differentiation of low histological tumor grade from
intermediate to high histological tumor grade. Combination of
the tumor mean PSE and IVIM-DWI derived parameters was
also investigated using multivariate logistic regression method.
The sensitivity, specificity, and area under curve (AUC) for the
ROC analysis were calculated. P < 0.05 was considered to
indicate a significant result.
RESULTS

A cohort of 44 patients was finally included in this research.
Three patients were excluded due to severe motion artifacts.
Another two patients were excluded because they were unable to
undergo the OE-MRI examination. The demographic
characteristics and clinical features of patients are summarized
in Table 1. The most frequent subtype was acinar predominant
(54.55%) followed by lepidic predominant (15.91%), papillary
predominant (9.09%), solid predominant (9.09%), MIA (9.09%)
and AIS (2.27%). There was no micropapillary predominant
adenocarcinoma was found in this study.

As shown in Figure 1, whole lung mean PSE was significantly
positively correlated with FVC (r = 0.4237, P = 0.0184), FEV1
(r = 0.4044, P = 0.0260), and PEF (r = 0.4368, P = 0.0120). There
was no significant correlation between D, D* and PFTs
parameters. f was negatively correlated with FVC (r = -0.4620,
P = 0.0064), FEV1 (r = -0.4602, P = 0.0068), PEF (r = -0.4716, P =
0.0048) and MMEF (r = -0.3791, P = 0.0448).

Representative low, intermediate and high-grade lung
adenocarcinoma images are shown in Figure 2. For the lesion-
based analysis, both tumor mean PSE (P = 0.030 < 0.05) and f
Frontiers in Oncology | www.frontiersin.org 4
(P = 0.022 < 0.05) could differentiate different histological grades
(Figures 3 and 4). As shown in Figure 5, f was negatively
correlated with tumor mean PSE (r = -0.6114, P = 1.59 × 10–5).

Table 2 show the results from the ROC analysis that was
performed for differentiation of low histological tumor grade
from intermediate to high histological tumor grade by using the
mean values of tumor PSE, f and both. Among these parameters,
the combination of tumor mean PSE and f produced better
performance than using tumor mean PSE or f alone in both
sensitivity (0.800 vs. 0.714 for tumor mean PSE and 0.667 for f)
and AUC (0.810 vs. 0.776 for tumor mean PSE and 0.781 for f).
DISCUSSION

Present techniques of chest imaging are mostly static and
structural, such as chest radiography and high-resolution
computed tomography (22, 23). However, the measurement of
pulmonary function is essential for the diagnosis and the
monitoring of lung diseases. Several imaging techniques
provide a minimally invasive way to quantify functional
variations in the tumor microenvironment. They can be useful
to understand various mechanical aspects of the respiratory
system in physiologic but also pathologic mechanisms (24, 25).
For example, different PET and SPECT tracers can visualize a
range of biological processes, including metabolic activity,
proliferation and hypoxia (26, 27), and dynamic contrast-
enhanced CT- or MRI-scans depict vasculature of the tumor
(28, 29). Among all these imaging techniques, MRI possesses
advantage of no radiation and detailed soft tissue contrast (30).
Here, a functional imaging method based on OE-MRI and
IVIM-DWI has been recommended for the evaluation of lung
perfusion and ventilation, as well as the differentiation of LUAD
histological subtypes.

A clear understanding of the gas-exchange properties of the
lung is vital for researches about respiratory physiologies and
lung diseases. Pulmonary gas exchange occurs by passive
diffusion of gas molecules between the alveolar gas and the
pulmonary capillary blood across the thin alveolar blood–gas
barrier (alveolar epithelium, interstitial space, and capillary
endothelium). The disruptions to the distribution of
ventilation, or to the distribution of perfusion, or to both, have
the potential to disrupt gas exchange. Consequently, the fully
understand of ventilation and perfusion are of vital importance
for the assessment of gas exchange.

In pulmonary imaging, conventional MRI is challenging in
that the extremely short T2* of the lung parenchyma. The low
hydrogen proton density in lung tissue leads to very low signal
intensity. For the UTE-MRI, projection acquisition of the FID in
conjunction with radial readout technically allows it to acquire
sufficient SNR with short TE and to reduce the sensitivity to
motion (31). Further, the complementarity of structure and
function afforded by OE-UTE-MRI present a framework for
interpreting the functional severity of structural abnormalities in
lung diseases. With the 3D radial UTE-MRI sequence, Kruger
et al. demonstrated the feasibility of OE-MRI for imaging the
pulmonary ventilation with full chest coverage (16). Zha et al.
TABLE 1 | Summary of the demographic and clinical features of the patients.

Variables Total (n = 44)

Age, y (mean±SD) 57.34 ± 8.32
Sex male, n (%) 25 (56.8%)
FVC, L (mean±SD) 3.19 ± 0.68
FEV1, L (mean±SD) 2.59 ± 0.52
PEF, L/s (mean±SD) 6.93 ± 1.12
MMEF, L/s (mean±SD) 3.20 ± 0.40
Histological Subtypes, n (%)
AIS 1 (2.27%)
MIA 4 (9.09%)
Lepidic predominant 7 (15.91%)
Acinar predominant 24 (54.55%)
Papillary predominant 4 (9.09%)
Solid predominant 4 (9.09%)

Whole lung mean PSE (%) 6.28 ± 3.22
Tumor mean PSE (%) 4.12 ± 2.15
D (10-3 mm2/s) 0.935 ± 0.32
D* (10-3 mm2/s) 7.452 ± 5.041
f (100%) 24.76 ± 7.62
SD, standard deviation; FEV1, forced expiratory lung volume in 1 second; FVC, forced vital
capacity; PEF, peak expiratory flow; MMEF, maximum mid-expiratory flow; AIS,
adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; PSE, percent
signal enhancement.
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FIGURE 2 | Representative lesion-based analysis of LUAD patients. (A) Transverse T2 image for patient with low histological tumor grade (lepidic predominant
adenocarcinoma); (B, C) are corresponding f map and PSE map for (A); (D) Transverse T2 image for patient with intermediate histological tumor grade (acinar
predominant adenocarcinoma); (E, F) are corresponding f map and PSE map for (D); (G) Transverse T2 image for patient with high histological tumor grade (solid
predominant adenocarcinoma); (H, I) are corresponding f map and PSE map for (G);.
FIGURE 1 | Heat map depicting Spearman’s correlations between the PFTs (FVC, FEV1, PEF, MMEF) and imaging parameters (D, D*, f from IVIM-DWI and whole
lung mean PSE). (*p < 0.05, **p < 0.01).
Frontiers in Oncology | www.frontiersin.org July 2021 | Volume 11 | Article 6779425
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further indicated that 3D radial OE-UTE-MRI supported
quantitative differentiation of asthma and cystic fibrosis vs.
healthy lungs using PSE map (10). In this work, the global
lung mean PSE measured with OE-UTE-MRI showed significant
correlation with FEV1 (r = 0.4044, p = 0.026), FVC (r = 0.4237,
p = 0.0184) and PEF (r = 0.4368, p = 0.0120), which supports the
hypothesis that the ventilation function of LUAD patients can be
visualized in MRI by using OE-UTE-MRI.

Aside from ventilation, imaging of pulmonary perfusion was
the heat topic of MRI for a long time. The knowledge of
pulmonary perfusion is of particularly interest for the
prediction of postoperative lung function in lung cancer
patients (32). In past decade, dynamic contrast enhanced
(DCE) imaging with gadolinium-based contrast agents have
Frontiers in Oncology | www.frontiersin.org 6
shown great potential for the investigation of lung diseases. For
instance, Chang et al. proved that DCE-MRI enabled a functional
analysis of the treatment response of NSCLC (29). Nevertheless,
the utilization of gadolinium-based contrast agents will increase
the risk of kidney systemic fibrosis (33). IVIM-DWI is a typical
model of a non-contrast perfusion technique which utilizes
differences in diffusion signal between intravascular and
extravascular water to calculate blood volume (34). Yuan et al.
supported that IVIM-DWI showed comparable ability in
distinguishing lung cancer from benign solitary pulmonary
lesions in comparison with DCE-MRI (35). Our results further
proved that IVIM-DWI could be used to imaging the pulmonary
perfusion of LUAD patients.

Differentiating histological tumor grade using noninvasive
methods is essential since the therapeutic strategies and clinical
prognoses are significantly different. Previous studies revealed
that PET/CT was able to grade the LUAD in high, intermediate
and low-grade glucose consumers with prognostic implications
(36). Kim et al. demonstrated that apparent diffusion coefficient
(ADC) values calculated from conventional DWI imaging also
correlated with pathologic grade (37). To our knowledge, this
study is the first study to differentiate histological tumor grade of
LUAD using OE-MRI and IVIM-DWI. It was found that high f
value was clearly associated with the high-grade histological
group (P = 0.022 < 0.05). f was perfusion-related parameter
that represents the growth of blood vessels (38). Our finding was
in line with the result of previous studies. For instance, Liu et al.
concluded that f is helpful for differentiation between benign and
malignant breast lesions and the blood volume of
microcirculation perfusion of the malignant tumor was higher
(39). Furthermore, Togao et al. found significantly higher f in
high grade glioma than in low grade glioma (40). Conversely, the
high tumor mean PSE was associated with the low-grade
histological group (P = 0.030 < 0.05). This result is reasonable
because the histological tumor grade used in this study was
mainly defined by survival rates and better lung ventilation may
improve hypoxemia and decrease complications after therapies.

Our result revealed significant negative relationship between
lesionmean PSE and f (P < 0.0001). This was probably attributed to
the increase of vascularity may involve the higher consumption of
oxygen and thus resulted in a lower ventilation. Angiogenesis, the
process of newblood vessel formation, is essential to the growth and
spreading of solid tumors, which require the supply of oxygen and
nutrient (41). Based on this theory, the therapeutic value of vascular
targeted photodynamic therapy (VTP) for cancer has already been
recognized in the clinic: When light is applied shortly after
intravenous administration of the photosensitizer, the damage is
primarily done to the vasculature. This damage leads to vessel
constriction, blood flow stasis, and thrombus formation.
Consequently, the tumor is killed because of oxygen and nutrient
deprivation (42). Another important clinical aspect to consider is
the relationship between ventilation and perfusion. What is the
‘appropriate’ ventilation–perfusion ratio; for a given amount of
ventilation, how much blood flow is required for efficient gas
exchange, or vice versa? Further studies were required to
determine the optimal ventilation-perfusion ratioswithin the lungs.
FIGURE 3 | Comparison of the tumor mean PSE between different
histological tumor grades using the Kruskal-Wallis test.
FIGURE 4 | Comparison of the f between different histological tumor grades
using the Kruskal-Wallis test.
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There were several limitations in this study. First, the small
sample size and single-site design of this study may affect the
generalizability of results. Further investigations on different
LUAD subtypes, especially the micropapillary predominant
adenocarcinoma, in a multicenter trial with larger sample size
are warranted. Second, all the VOIs were drawn manually which
might limit the reproducibility of the measured values. Third, it
is possible that there was some influence of respiratory motion
on chest MRI. To minimize the effect of respiratory motion, OE-
MRI imaging was performed with navigator sequence to track
the diaphragm displacement in the superior-inferior direction
while IVIM-DWI imaging was performed with the patient
breathing shallowly and quietly.
CONCLUSION

In Summary, this study suggested that the combined
measurement of OE-MRI and IVIM-DWI may serve as a
promising method for the noninvasive and non-radiation
evaluation of pulmonary function. Quantitative analyses
achieved by OE-MRI and IVIM-DWI offer an approach of the
classification of LUAD subtypes, providing information with
prognostic value that improves the treatment planning and
outcome assessment in each particular LUAD case.
Frontiers in Oncology | www.frontiersin.org 7
DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by The Fourth Hospital of Hebei Medical University.
The patients/participants provided their written informed
consent to participate in this study.
AUTHOR CONTRIBUTIONS

HL: Writing – original draft; Investigation. LZ: Writing –
original draft; Formal analysis. GS: Writing – review & editing;
Supervision; Project administration. QX: Visualization. QW:
Resources. HZ: Data curation. HF: Data curation. LW:
Software. NZ: Validation. MX: Validation.YD: Methodology.
All authors contributed to the article and approved the
submitted version.
FIGURE 5 | Scatter plot depicting Spearman’s correlation between the tumor mean PSE and f. These dots (*) are the values for each patient.
TABLE 2 | The ROC analysis results of using OE-MRI and IVIM-DWI to differentiate low histological tumor grade from intermediate to high histological tumor grade.

Tumor mean PSE f Tumor mean PSE + f

Sensitivity 0.714 0.667 0.800
Specificity 0.700 0.900 0.667
AUC 0.776 0.781 0.810
July 2021 | Volum
ROC, receiver operating characteristics; OE-MRI, oxygen-enhanced magnetic resonance imaging; IVIM-DWI, intravoxel incoherent motion diffusion-weighted imaging; PSE, percent
signal enhancement.
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