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Abstract: Monoclonal antibodies (mAbs) are part of the standard of care for the treatment 
of many adult solid tumors. Until recently none have been approved for use in children with 
solid tumors. Neuroblastoma (NB) is the most common extracranial solid tumor in children. 
Those with high-risk disease, despite treatment with very intensive multimodal therapy, still 
have poor overall survival. Results of treatment with an immunotherapy regimen using 
a chimeric (human/mouse) mAb against a cell surface disialoganglioside (GD2) have 
changed the standard of care for these children and resulted in the first approval of a mAb 
for use in children with solid tumors. This article will review the use of the various anti-GD2 
mAbs in children with NB, methods that have been or are being evaluated for enhancing 
their efficacy, as well as review other promising antigenic targets for the therapeutic use of 
mAbs in children with NB. 
Keywords: immunotherapy, neuroblastoma, anti-disialoganglioside, anti-GD2, chimeric, 
effector cells

Introduction
Monoclonal antibodies (mAbs) have developed into effective therapies for many 
adult malignancies. The global market for mAbs to treat cancer was estimated to be 
at more than 40 billion dollars in 2019 and likely to grow to more than 70 billion by 
2024 (https://www.marketdataforecast.com/market-reports/global-cancer- 
monoclonal-antibodies-market). Monoclonal antibodies kill cancer cells in several 
different ways: inhibiting cancer cell signaling,1–3 stimulating immune effector cells 
to destroy tumor cells (antibody-dependent cell-mediated cytotoxicity; ADCC),4 by 
fixing complement (complement-dependent cytotoxicity; CDC), resulting in assem-
bly of a membrane attack complex and cell lysis (Figure 1),4 and by stimulating 
adaptive immunity.5 Other antibodies can cause changes in the tumor vasculature, 
resulting in improved treatment response.6 They have also been used as targeting 
agents by being coupled to toxic payloads such as drugs,7,8 toxins9 or radioisotopes 
(Figure 1).10,11 More recently mAbs have also been used to target cells in the tumor 
microenvironment resulting in enhanced anti-tumor immune responses.4,12

Neuroblastoma (NB) is the most common extracranial solid tumor in children 
and is thought to be derived from primitive neural crest cells.13 It can manifest 
anywhere along the sympathetic nervous system, with an adrenal mass being the 
most common primary site.14,15 “High-risk” NB is largely defined by patients older 
than 18 months of age at presentation with widely metastatic disease.16 Despite 
intensive multimodal treatment, more than half of these patients still die of their 
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disease.17 In the 1980s it was discovered that neuroblasts 
almost uniformly express disialoganglioside (GD2) on 
their surfaces and this was used as a target to make several 
monoclonal antibodies, two of which have now been 
approved for use by the FDA18–25 (https://www.fda.gov/ 
drugs/drug-approvals-and-databases/fda-grants-accelerated 
-approval-naxitamab-high-risk-neuroblastoma-bone-or- 
bone-marrow) and another approved by the European 
Medicines Agency (https://www.ema.europa.eu/en/medi 
cines/human/EPAR/qarziba#:~:text=The%20European% 
20Commission%20granted%20a,Qarziba%20on%2027% 
20November%202017). The major anti-tumor mechanism 
of the anti-GD2 mAbs is likely ADCC mediated by NK 
cells26 and to a lesser extent neutrophils and 
macrophages.27,28 This article will review the use of the 
anti-GD2 mAbs in children with NB, methods that have 
been or are being evaluated for enhancing their efficacy, as 

well as review other promising antigenic targets for the 
therapeutic use of mAbs in children with NB.

Immunotherapeutic Targets of 
Neuroblastoma
Disialoganglioside (GD2)
Characteristics of antigens that make them attractive for mAb 
based therapy include consistent expression on the target 
cancer cells and limited expression on normal cells. One 
such antigen on neuroblasts is the disialoganglioside, 
GD2.19 While it is uniformly expressed on 
neuroblasts,19,20,29,30 in normal tissues it is expressed only 
on peripheral and central nerve fibers,31 mesenchymal stem 
cells,32,33 melanocytes34 and lymphocytes.31,35,36 It appears 
to have a role in attachment of tumor cells to the extracellular 
matrix,37 as well as effects on cell invasion and 
proliferation.29 Anti-GD2 mAbs that have been used 

Figure 1 Antitumor mechanisms of GD2 antibodies and antibody conjugates. Solid triangle represents disialoganglioside (GD2) on cell surface.
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clinically are summarized in Table 1. The first to be evaluated 
in the clinic were the murine antibodies 3F8 and 14G2a. 
Common acute toxicities to anti-GD2 mAbs include fever, 
hypotension, neuropathic pain and capillary leak syndrome 
(see Table 1). The fever and hypotension are likely related to 
allergic reactions to murine protein and pain due to mAb 
binding to GD2 positive peripheral nerves and subsequent 
complement activation.38,39 Capillary leak was more com-
mon during courses administered with interleukin-2 (IL-2) in 
the large randomized trial of dinutuximab25 and may be 
mostly related to systemically administered IL-2 or endogen-
ous IL-2 produced in response to anti-GD2 mAb 
administration.40,41

Murine Anti-GD2 Antibodies
3F8
This murine IgG3 mAb specific for GD2,30 kills tumor 
cells by ADCC42 and by activating complement.30 It has 
been studied extensively in patients as a single agent21,43 

and in combination with other agents used to enhance 
ADCC, such as GM-CSF42,44,45 and β-glucan 
(NCT00492167).46 There were some responses in patients 
with small amounts of bone and/or marrow disease but no 
responses in those with bulky disease.44,47–49 Human anti- 
mouse antibodies (HAMA) developed in a majority of 
patients treated with 3F8.49–52

14G2a
This murine antibody is an isotype switch variant of the 
murine IgG3 14.18 anti-GD2 mAb. Because it had 
improved ADCC compared to 14.18, 14G2a was chosen 
for clinical evaluation.22 Two trials treated 27 patients at 
dosages from 50 to 400mg/m2.23,53 It was tolerated but 
with significant side effects (summarized in Table 1) and 
some modest anti-tumor activity. Human anti-mouse anti-
bodies (HAMA) developed in 25/27 patients.23,53 In an 
attempt to enhance ADCC it was combined with interleu-
kin-2 in another Phase I study. Thirty-three patients were 
enrolled, 31 with NB. Pain and allergic reactions were 
common. Nine of 21 evaluable children developed 
HAMA.54

Because murine antibodies result in allergic reactions 
and the development of HAMA, accelerating the clearance 
of the antibodies and reducing their antitumor effects,55 

techniques to make antibodies “more human” have been 
developed.56 Figure 2 depicts the general structure of 

antibodies and their engineering modifications which 
have been utilized to make them more tolerable.

Chimeric Anti-GD2 Antibodies
Dinutuximab (Ch14.18)
To begin to address the immunogenic properties of murine 
anti-GD2 antibodies, the human Fc constant regions of an 
IgG1 immunoglobulin was fused with the Fab portion of 
the murine 14G2a antibody to produce this chimeric 
mouse/human antibody against GD2 (Figure 2). In vitro, 
ch14.18 mediated ADCC 50–100 fold more efficiently 
than 14.G2A,57 and was tested extensively in the clinic 
as a single agent and with cytokines GM-CSF and IL- 
2.58–67 In 2010, Yu et al of the Children’s Oncology 
Group (COG) reported on a randomized Phase 3 trial of 
ch14.18, in newly diagnosed children with high-risk NB 
who had achieved at least a partial response to induction 
chemotherapy. Following myeloablative chemotherapy, in 
a state of minimal residual disease, patients then received 
dinutuximab qd x 4 every 28 days given with either GM- 
CSF (course 1, 3 and 5) or interleukin-2 (IL-2; course 2 
and 4) as well as monthly isotretinoin.25 This immunother-
apeutic combination resulted in a dramatic improvement in 
2-year event-free survival, compared to the group who 
received isotretinoin alone (66% vs 46% at 2-yrs, respec-
tively; P = 0.01). These data led to NB becoming the first 
pediatric solid tumor with an approved immunotherapy, 
using this mAb, now called dinutuximab (Unituxin®), in 
combination with cytokines and isotretinoin (https://www. 
cancer.gov/news-events/cancer-currents-blog/2015/dinutux 
imab-neuroblastoma). These excellent results with dinu-
tuximab provide promise that further improvements in 
immunotherapy will enhance outcome in children with 
NB. For example, the use of dinutuximab in combination 
with irinotecan and temozolomide has shown significant 
activity in patients with relapsed/refractory disease with 
objective responses in 22/53 patients (41.5%; 95% CI 
28.2–54.8%).68,69 Ongoing studies extending the evalua-
tion of dinutuximab in neuroblastoma include COG stu-
dies ANBL1821, a randomized Phase II study of 
irinotecan, temozolomide and dinutuximab with/without 
eflornithine (NCT03794349), ANBL07P1, a pilot study 
in newly diagnosed children adding dinutuximab to induc-
tion chemotherapy (NCT03786783) and ANBL19P1, 
a Pilot study of dinutuximab, GM-CSF and isotretinoin 
with irinotecan and temozolomide in the post- 
consolidation setting (NCT04385277). The NANT 
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Table 1 Clinical Trials of Anti-GD2 Monoclonal Antibodies

Antibody Characteristics Other Key Features Dosage Common Toxicities References

Approved

ch14.18 

(Dinutuximab, 
Unituxan®)

Approved 

by FDA*

Murine-human 

IgG1 mAb 
produced in 

murine myeloma 

SP2/0 cells

Only difference between 

dinutuximab and dinutuximab 
beta is the glycosylation 

pattern which is a result of 

manufacture in different cell 
lines

17.5 mg/m2/ 

qd x 4

Neuropathic pain, capillary 

leak, hypotension, 
hypersensitivity reactions

[25]

ch14.18/CHO 
(dinutuximab 

beta; 

Qarziba®)

Approved 
by EMA**

Murine-human 
IgG1 mAb made 

in CHO cells

100 mg/m2/ 
course: 

either 

10 mg/m2/d 
x10 d or 

20 mg/m2/d 

x 5 d

Neuropathic pain, capillary 
leak, hypersensitivity 

reactions, “impaired general 

condition”

[73,74]

Hu3F8 

(Naxitumab)

Approved 

by FDA†

Humanized 3F8 

mAb

IgG1 humanized form of 

m3F8

0.9–9.6 mg/ 

kg/cycle [M, 
W,Fri q mo] 

(27–288 mg/ 

m2)

Pain, urticaria and cough [81,82]

Investigational

3F8 Murine IgG3 mAb HAMA interferes with activity 5–100 mg/ 

m2 iv over 

8hrs x 2–4 d

Pain, focal urticaria, 

hypertension

[21,55]

14.G2a Murine IgG2a 

mAb

HAMA interferes with 

activity157

50–400 mg/ 

m2 ci x 5–10 
d

Neuropathic pain, 

hypertension, fever, rash, 
urticaria, pruritus, 

paresthesia, weakness, 

chronic refractory postural 
hypotension

[23,53]

Hu14.18K322A Humanized IgG1 
mAb with point 

mutation 

designed to 
decrease 

complement 

activation

ADCC activity may be more 
robust than dinutuximab and 

may cause less pain

2–70 mg/m2 

qd x 4
Neuropathic pain, cough, 
asthenia, sensory 

neuropathy, anorexia, 

serum sickness, 
hypertensive 

encephalopathy

[39,77,78]

Antibody Conjugates

131I-3F8 Murine mAb 

attached to 131I

1 −20 mCi Headache, fever and 

vomiting

[11,158]

(Continued)
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consortium is also evaluating dinutuximab in combination 
with Vorinostat and 131I-MIBG (NCT03332667).

Dinutuximab-Beta
A biosimilar to dinutuximab, ch14.18/CHO, now called 
dinutuximab beta (Qarziba®), has been approved by the 

European Medicines Agency.70 Ch14.18 was recloned in 
Chinese hamster ovary (CHO) cells26 and shown to have 
comparable pharmacokinetics and safety profile to 
dinutuximab.71 The International Society of Pediatric 
Oncology Europe Neuroblastoma group (SIOPEN) was eval-
uating dinutuximab beta in a randomized trial (HR-NBL1), 

Figure 2 Schematic diagram of anti-GD2 monoclonal antibodies and naming schema based on structure. A-fully murine monoclonal antibody, B-chimeric monoclonal 
antibody, C-humanized monoclonal antibody, D-humanized monoclononal antibody with addition of interleukin-2, and E-fully human monoclonal antibody. Suffix of murine 
mAbs -momab, suffix of chimeric antibodies - ximab; suffix of humanized antibodies – zumab; suffix of human antibodies – umab.

Table 1 (Continued). 

Antibody Characteristics Other Key Features Dosage Common Toxicities References

Hu14.8-IL-2 Humanized 14.18 

attached to 

Interleukin-2

Patients with disease 

evaluable only by MIBG and/ 

or BM histology had better 
responses than those with 

bulky disease

2–14.4 mg/ 

m2/d

Hypotension, capillary leak, 

fever, hypoxia, rigors, 

blurred vision, allergic 
reaction, elevated 

transaminases and bilirubin, 

neutropenia, 
thrombocytopenia

[101,102]

Notes: *https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/125516Orig1s000TOC.cfm; indicated, in combination with granulocyte-macrophage colony-stimulating 
factor (GM-CSF), interleukin-2 (IL-2), and 13-cis-retinoic acid (RA), for the treatment of pediatric patients with high-risk neuroblastoma who achieve at least a partial 
response to prior first-line multiagent, multimodality therapy.25 **https://www.ema.europa.eu/en/medicines/human/EPAR/qarziba; indicated for the treatment of high-risk 
neuroblastoma in patients aged 12 months and above, who have previously received induction chemotherapy and achieved at least a partial response, followed by 
myeloablative therapy and stem cell transplantation, as well as patients with history of relapsed or refractory neuroblastoma, with or without residual disease. †https://www. 
fda.gov/drugs/drug-approvals-and-databases/fda-grants-accelerated-approval-naxitamab-high-risk-neuroblastoma-bone-or-bone-marrow. 
Abbreviations: qd, daily; d, day; ADCC, antibody-dependent cell-mediated cytotoxicity; HAMA, human anti-mouse antibodies.
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comparing it to isotretinoin alone, until results of COG’s trial 
with dinutuximab25 became available, after which accrual 
was halted and the design was modified to investigate the role 
of dinutuximab beta with/without IL-2.72,73 This randomized 
study concluded that there were higher rates of fever, pain, 
allergic reactions and other toxicities when dinutuximab beta 
was combined with IL-2. Additionally there was no evidence 
that IL-2 improved outcomes.73 Based on these data, IL-2 is 
no longer used with dinutuximab in the ongoing COG trial 
for children with newly diagnosed high-risk NB 
(ANBL1531; NCT03126916).

To improve the tolerability of dinutuximab beta, a 10- 
day continuous infusion schedule was developed. Fifty- 
three patients received 10 mg/m2/day of dinutuximab beta 
by 24-hr continuous infusion daily x 10 with 6×106 IU/m2 

IL-2 (d1–5; 8–12) with oral isotretinoin. They found low 
pain scores and reduced IV morphine usage with subse-
quent cycles, allowing mAb infusions as outpatients in 
more than 90% of cycles after the first course.74 This long- 
term infusion schedule of dinutuximab beta is being eval-
uated further in newly diagnosed children by the SIOPEN 
group, in combination with/without 3×106 IU/m2 IL-2 
(d1–5; 8–12), which is 50% of the IL-2 dose used in 
previous randomization (NCT01704716).73 Dinutuximab 
beta is also being further evaluated by the Innovative 
Therapies for Children with Cancer in Europe consortium 
in a randomized trial in children with relapsed/refractory 
neuroblastoma in combination with chemotherapy 
(BEACON-Immuno) and in another consortium, in com-
bination with nivolumab and 131I-MIBG (NCT02914405).

Humanized Anti-GD2 Antibodies
Hu14.18K322A
Humanization of murine mAbs makes them less immuno-
genic and more tolerable.75 This mAb contains fully 
human amino acid sequences for the IgG1 kappa light 
and heavy chains, combined with the complementarity- 
determining regions of antigen binding of the murine 
14.18. The result is an approximately 98% human mAb. 
Additionally, a single point mutation was introduced to 
decrease complement activation (K322A)76 in an attempt 
to ameliorate the severe neuropathic pain39 seen with all 
anti-GD2 mAbs (see Table 1). As a single agent 
hu14.18K322A was given in doses of 2–70 mg/m2/d x 4, 
q 28 days. Toxicities were similar to other anti-GD2 
mAbs, including significant pain, especially with the first 
course.77 However, in a retrospective review comparing 

pain outcomes of nine newly diagnosed children treated 
with dinutuximab (25 mg/m2/d x 4, given over 10 hours 
daily x 4) to nineteen patients with recurrent NB being 
treated on the Phase 1 trial of hu14.18K322A (dosages of 
40, 50, 60 or 70 mg/m2/d x 4, given over 4-hrs daily 
x 4),77 those receiving hu14.18K322A had lower opioid 
requirements than the nine who were receiving 
dinutuximab.78 Furthermore, the differences in median 
opioid requirements for the overall course were signifi-
cantly lower (1.57 vs 2.41 mg/kg; p = 0.019).78 This 
reduction in opioid support for those children receiving 
hu14.18K322A was despite receiving mAb doses more 
than 1.5 times the dose of dinutuximab, strongly suggest-
ing that the K322A mutation was effective in reducing, but 
not eliminating the pain experienced by all anti-GD2 
mAbs. Hu14.18K322A was combined with each of six 
courses of induction chemotherapy in a Phase II study 
involving 64 patients 19 years or younger with newly 
diagnosed high-risk NB. Each course of “chemoimmu-
notherapy” was followed by daily sq GM-CSF and 1 x 10-
6IU/m2 of IL-2 every other day for six doses. Some 
patients received an additional course of hu14.18K322A 
along with infusion of parental natural killer (NK) cells 
during the consolidation phase of treatment. Following 
recovery from consolidation, minimal residual disease 
was treated with GM-CSF, IL-2 and isotretinoin, identical 
to Yu et al,25 with the substitution of hu14.18K322A for 
dinutuximab.79 In this single center Phase II trial, adding 
hu14.18K322A to induction chemotherapy produced early 
partial response (PR) or better in most patients, resulted in 
no progressions during induction, improved Curie Scores80 

at the end of induction, and yielded an encouraging 2-year 
event-free survival (EFS) of 82.6% (95% CI, 
70.1–90.3%).79 These data supported the development of 
a multi-institutional pilot study of dinutuximab given with 
induction chemotherapy by the COG (ANBL07P1; 
NCT03786783) which has just completed accrual.

Hu3F8
To circumvent the problem of HAMA development which 
accelerates antibody clearance, compromises efficacy and 
in some patients prevents retreatment, a humanized IgG1 
form of the murine anti-GD2 mAb 3F8 (Hu3F8) was 
created.81 Now called naxitamab (DANYELZA®), in 
a Phase I trial, 57 patients were treated in the outpatient 
setting. Cohorts of 3 to 6 patients per dose level were 
enrolled. Naxitamab was given in doses from 0.9 to 
9.6 mg/kg/cycle by 30-minute IV infusion on Monday, 
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Wednesday, and Friday as well as GM-CSF, sq from day 
−5 through the last naxitamab infusion. As with other anti- 
GD2 mAbs, manageable neuropathic pain was seen in 
most patients.82 Humanized 3F8, (naxitamab), was granted 
Breakthrough Therapy designation in August of 2018 for 
use with GM-CSF in patients refractory to initial therapy 
or with incomplete response to salvage therapy in patients 
older than 12 months with persistent, refractory disease 
limited to bone marrow with or without evidence of con-
current bone involvement (http://www.onclive.com/view/ 
fda-approval-sought-for-naxitamab-in-neuroblastoma). 
This was followed on November 25, 2020 with accelerated 
approval, again in combination with GM-CSF for patients 
older than 1 year with refractory or relapsed high-risk 
neuroblastoma limited to bone or bone marrow who had 
achieved at least stable disease to prior therapy. This 
approval was based on the results of two single-arm trials 
NCT03363373 and NCT01757626 in which patients 
received 3 mg/kg naxitamab IV on days 1,3 and 5 every 
4-weeks in combination with SQ GM-CSF from day −4 to 
+ 5 (250 µg/m2/d, d – 4 to 0 and then 500 µg/m2/d, d+1 to 
+5). Of 22 patients treated on NCT03363373 the objective 
response rate (ORR) was 45% (95% CI: 24–68%). 
Responses lasted 6 months or longer in 23%. Of 38 
patients treated on NCT01757626, 34% had a response 
(95% CI: 20–50%) and 23% had responses lasting 6 
months or more (https://www.fda.gov/drugs/drug- 
approvals-and-databases/fda-grants-accelerated-approval- 
naxitamab-high-risk-neuroblastoma-bone-or-bone- 
marrow). There is an international Phase 3 randomized 
trial (NCT04560166) in children with primary refractory 
disease or in first relapse with irinotecan/temozolomide ± 
naxitamab that is soon to open.

Pharmacokinetics and Pharmacodynamics 
of Anti-GD2 Monoclonal Antibodies
As previously noted, these mAbs exert their effects by 
both ADCC and CDC to varying degrees, depending on 
the specific antibody. The determinants of mAb pharma-
cokinetics and pharmacodynamics are dependent on multi-
ple factors including: distribution and density of the target 
antigen, binding affinity to the antigen, glycosylation pat-
tern of the antibody, immunogenicity of the mAb, rate of 
antibody penetration into a tumor, and effector cell number 
and function, among others.83–87 Although the most effec-
tive dose is unknown, dinutuximab beta has been shown to 
be active at concentrations > 1 µg/mL.26,88 Also, as 

previously noted, the major problem with administration 
of these antibodies is the induction of severe neuropathic 
pain, which has limited the dosage that can be given.

There are several different doses and schedules of the 
various anti-GD2 mAbs currently in use. Dinutuximab is 
given at a dose of 17.5 mg/m2/day as a 10 to 20 hour 
infusion, daily x 4.25 In an attempt to ameliorate pain, 
dinutuximab beta is proceeding with a 10 mg/m2/day 
dose by continuous infusion x 10 days.89 The humanized 
antibody naxitamab is given at 3 mg/kg day by 30-minute 
infusion on M-W-Fri, while hu14.18K322A is given at 
40 mg/m2/day by 4-hour infusion daily x 4. 
Humanization has improved the tolerance, but not elimi-
nated pain. The fact that pain resolves shortly after the 
mAb infusion is stopped, while the mAb still persists in 
the circulation suggests that pain may be related to dose- 
infusion rate rather that AUC.90 A detailed review of the 
pharmacokinetic/pharmacodynamic parameters of these 
antibodies is beyond the scope of this review. Optimizing 
the regimen and dose to maximize tolerability and 
response still needs some work.

Anti-GD2 Antibody Conjugates
131I-3F8
131I-3F8 has demonstrated specific and sensitive imaging 
of metastatic NB,91 as have three other anti-GD2 mAbs 
131I-14G2a,23 99mTc-ch14.1892 and Cu-p-NH2-Bn-DOTA 
-hu14.18K322A.93 However 131I-3F8 is the only one that 
has been used for radioimmunotherapy of patients.94,95 

The addition of 131I-3F8 to a multimodality treatment for 
newly diagnosed children with high-risk NB did not 
improve their progression free or overall survival, com-
pared to those who did not receive 131I-3F8.50,95

Hu14.18-IL-2
Interleukin-2 (IL-2) improves the ability of effector cells 
to kill neuroblasts96,97 but has significant systemic side 
effects.98 The immunocytokine hu14.18-IL-2 was created 
to augment the antitumor effect of hu14.18 with IL-299 and 
at the same time limit the toxicity of systemic administra-
tion of IL-2.100 In a Phase I trial hu14.18-IL-2 was given 
to 27 children with recurrent/refractory NB and one with 
melanoma, IV over 4 hours qd x 3 at various dose levels. 
Three patients had evidence of tumor responses.101 In 
a subsequent Phase II study, patients were stratified into 
those with measurable disease (stratum 1; n = 13) and 
those with evaluable disease by bone marrow histology 
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and/or 131I-metaiodobenzylguanidine (MIBG) scintigraphy 
(stratum 2; n = 23). Those with bulky disease (stratum 1) 
had no responses while 5/23 patients on stratum 2 had 
marrow CRs.102 On the whole, adverse events were similar 
to those reported for other anti-GD2 mAbs when given 
with IL-2. Three patients discontinued treatment because 
of toxicity, two with acute vascular leak ± hypotension and 
one with a grade 4 allergic reaction.102 Thus this hu14.18- 
IL-2 conjugate did not seem to significantly improve the 
adverse event profile of hu14.18.

Other Antibody Targets in 
Neuroblastoma
O-Acetyl-GD2
The O-acetyl derivative of the ganglioside GD2 is 
expressed on neuroblasts but not on peripheral nerves.103 

A chimeric O-acetyl anti-GD2 mAb, c.8B6, has been 
shown to kill neuroblastoma cells without inducing allo-
dynia in an animal model and offers promise that it may be 
better tolerated than dinutuximab.104,105 This antibody has 
not yet been clinically evaluated.

B7-H3 (CD276)
This is a membrane protein involved in the regulation of 
T and NK cells and is overexpressed on many solid 
tumors, including neuroblastoma.106–108 Expression on 
a neuroblast cell line protected neuroblasts from NK- 
cell killing106 and overexpression on tumors often cor-
relates with faster tumor progression and poor 
outcome.109 Omburtamab (8H9), a murine antibody 
that recognized B7-H3,110,111 has been linked to 
131I (Burtomab) and used to treat children with Central 
Nervous System NB. In a phase 1 study, 80 patients 
were treated with burtomab in combination with intra-
ventricular compartmental chemotherapy with irinote-
can, temozolomide and carboplatin. Improvement on 
imaging was seen in 36% of children with measurable 
disease with a median duration of response of 49 weeks 
(range, 2.6 to 586 weeks).10,112,113 Based on these data 
burtomab was granted Breakthrough Therapy designa-
tion for metastatic NB (https://www.cancertherapyadvi 
sor.com/home/cancer-topics/pediatric-cancer/burtomab- 
granted-breakthrough-therapy-designation-for-metastatic 
-neuroblastoma/). A humanized anti-B7-H3 mAb, eno-
blituzumab, has been evaluated in a Phase I trial in 
children with various solid tumors, including NB 
[NCT02982941]. Results are not yet available.114

ALK (Anaplastic Lymphoma 
Kinase)
Mutations of ALK are observed in about 8% of all 
neuroblastomas115 and small molecule tyrosine kinase 
inhibitors of ALK are being used clinically in these 
patients [NCT03126916]. The native ALK protein is 
expressed on the majority of NB cells and not on normal 
cells,116 making treatment with an antibody targeting this 
protein a possibility. In human derived NB cell lines an 
ALK antibody inhibits growth in the absence of immune 
effector cells and is also able to mediate ADCC.116 Anti- 
ALK antibodies are not yet available for clinical testing.

PD-1/PD-L1 (Programmed Cell 
Death-1; Programmed 
Death-Ligand 1)
PD-1 and its ligands, PD-L1 and PD-L2, are molecules 
involved in the regulation of the immune system and part 
of multiple pathways called immune checkpoint 
pathways.12 Several cancers, including NB,117 make use 
of these pathways to inhibit tumor cell killing by immune 
effector cells. In a preclinical model of NB, when treated 
with dinutuximab beta, PD-L1 expression on neuroblasts 
was upregulated. When a murine anti-PD-1 mAb was 
combined with dinutuximab beta a synergistic antitumor 
response was seen.118 These data prompted the use of 
nivolumab, an antibody specific for PD-1, in combination 
with dinutuximab beta for the treatment of two heavily 
pretreated refractory patients, leading to a CR in one and 
VGPR in another.119 This report suggests that immune 
checkpoint inhibitors combined with anti-GD2 mAbs 
may be a promising approach to treat NB.

GPC2 (Glycosylphosphatidylinositol 
Anchored Signaling Co-Receptor 
Glypican 2)
Glypicans are a group of cell-surface glycoproteins linked 
to heparan sulfate glycosaminoglycan chains and regulate 
a number of growth and survival functions during 
embryogenesis.120 GPC2 is expressed at high levels on 
most NB, but not on normal tissues and is required for 
neuroblast cell proliferation.121 An antibody against GPC2 
conjugated to pyrrolobenzodiazepine, a DNA crosslinking 
agent, induced cytotoxicity, in seven human NB cell 
lines.121 These data suggest that GPC2 may be 
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a promising new target for an anti-GPC2 mAb antibody 
drug conjugate.122

CD47
Integrin-associated protein (IAP) or CD47 is 
a transmembrane glycoprotein that is expressed on the 
surface of many types of cancer cells,123 including 
NB.124 It is an immune checkpoint on macrophages that 
functions as a “don’t eat me” signal and has been co-opted 
by many types of cancer to prevent tumor cell 
killing.123,125,126 Paraffin embedded tumor tissues of 66 
NB patients were tested for expression of CD47 and 28/ 
66 (42.4%) were positive, significantly more of these 
patients were high-risk, compared to low risk (P = 
0.049).124 Since macrophages frequently infiltrate meta-
static NB tumors127 and since CD47 is frequently 
expressed on high-risk tumors, the combination of dinu-
tuximab with an anti-CD47 antibody was evaluated in 
pediatric xenograft models of NB and the combination 
was found to be synergistic.128 This combination will 
soon be tested in children.128

Bispecific Monoclonal Antibodies 
(bsAbs)
Bispecific antibodies are constructed with two different 
antigen-binding sites129 and for NB have been used to 
redirect activated T-cells to GD2 expressing neuroblast 
cell lines.130 These data supported the development of 
a clinical trial using the humanized 3F8 anti-GD2 mAb 
combined with CD3 (Hu3F8-BsAb; Nivatrotamab) which 
is currently recruiting patients [NCT03860207]. Another 
bsAb, coupling an anti-GD2 antibody with a B7-H3 anti-
body has been developed with the goal of limiting off- 
target binding to GD2+/B7-H3 negative cells and reducing 
neuropathic pain.131 This bsAb, INV721, binds to tumors 
that express both GD2 and B7H3 but minimally to cells 
that do not express both antigens and is capable of 
ADCC.132

Discussion
Despite intensive multimodal therapy, many children with 
high-risk neuroblastoma still have poor outcomes. GD2, 
because of its consistent expression on neuroblasts, has 
been targeted by several different mAbs to improve the 
outcome of these patients (Table 1). As previously 
described, the use of dinutuximab with GM-CSF, IL-2 
and isotretinoin, has dramatically improved the outcome 

of these patients leading to the first approved immu-
notherapy for children with solid tumors.25 Although 
these results are very promising, significant challenges 
remain to optimize these results for more children with 
this aggressive and deadly cancer. Significant toxic 
effects of dinutuximab included pain, hypersensitivity 
reactions, capillary leak and hypotension.25 Next genera-
tion antibodies were humanized (hu14.18K322A), or 
fully human (naxitamab) to improve tolerability and 
reduce the development of neutralizing antibodies. 
Hu14.18K322A was further modified to reduce comple-
ment activation,76 to ameliorate pain, an on-target, off- 
tumor effect of antibody binding to peripheral nerves and 
activating complement.39 Although this modification 
appears to improve the tolerability of hu14.18K322A, 
when compared to dinutuximab,78 this is not the whole 
answer. Is it possible that targeting the O-acetyl deriva-
tive of GD2, which is expressed on neuroblasts but not on 
peripheral nerves will alleviate this problem? Antibodies 
to this target are not yet available for clinical use. The 
humanization of hu14.18K322A has allowed significant 
dose escalation (40 mg/m2/dose),79 when compared to 
dinutuximab (17.5 mg/m2/dose) and the fully human nax-
itamab is able to be administered in an outpatient 
setting.82 Another structural modification to enhance 
ADCC is incorporated in the production of 
hu14.18K322A, and that is it is produced in a cell line 
that results in decreased fucosylation. Absence of fucose 
can improve antibody affinity to effector cells by up to 
50-fold.133,134

Another augmentation to treatment with anti-GD2 
mAbs has been to add cytokines such as GM-CSF42 

and interleukin-2,135 because of their ability to enhance 
ADCC. Recent data have cast doubt on the added value 
of IL-2 because of significant added toxicities73 and its 
possible role in suppression of anti-tumor immune 
response136 through induction of regulatory T cells.137 

It is possible that other cytokines such as Interleukin- 
15138 or IL-21139 will further enhance the effectiveness 
of anti-GD2 mAbs, without the significant toxicities of 
IL-2.

The initial evaluation of dinutuximab focused on treat-
ment of patients after recovery from consolidation, in 
a state of minimal residual disease. This is because tradi-
tionally chemotherapy has been thought to be too immu-
nosuppressive to combine with monoclonal antibodies. 
However recent studies suggest, even in the setting of 
“bulky” solid tumors, the combination of chemotherapy 
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with monoclonal antibodies can be synergistic.140–143 In 
other preclinical studies chemotherapy can increase the 
efficacy of immunotherapy by depleting immunosuppres-
sor cells such as regulatory T-cells which are known to 
suppress NK cell-mediated immunotherapy,144–146 the pre-
sumed major effector cells of anti-GD2 mAb induced 
ADCC in neuroblastoma.24,147 Also chemotherapy- 
induced tumor cell death can trigger tumor antigen release, 
uptake by antigen processing cells and an enhanced anti-
tumor immune response.140,145,148 For these reasons we 
combined hu14.18K322A with induction chemotherapy 
in newly diagnosed children with high-risk NB in 
a single institution pilot Phase II study. All patients had 
clinical benefit with a near doubling of early responses, 
compared to a group of patients who received identical 
chemotherapy without hu14.18K322A, improvement in 
Curie Scores and no progressions during induction.79 

These results suggest that anti-GD2 mAbs can have sig-
nificant activity in bulky disease if utilized with the “right” 
combinations. More work needs to be done to determine 
how best to integrate these antibodies into standard treat-
ment. The impressive improvement in event free survival 
with the use of dinutuximab has provided a “proof of 
principle”149 for further refining therapy using antibodies 
to other targets such as those described above.

Conclusion
The use of the chimeric anti-GD2 mAb following conso-
lidation in newly diagnosed children with high-risk disease 
has revolutionized the treatment of these patients. The 
resulting improvements in EFS has led to enthusiasm 
that optimization of antibody design, addition of additional 
cytokines to further enhance ADCC and or mAbs to other 
targets will lead to more cures with less toxicity. Vaccines 
or cellular therapies such as chimeric antigen receptor 
(CAR) T cells150–152 or adoptive NK cells,153–156 although 
beyond the scope of this review, could further improve the 
treatment of these challenging patients.
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