
Citation: Fahmy, K. Simple

Growth–Metabolism Relations Are

Revealed by Conserved Patterns of

Heat Flow from Cultured

Microorganisms. Microorganisms

2022, 10, 1397. https://doi.org/

10.3390/microorganisms10071397

Academic Editor: Seraphim

Papanikolaou

Received: 5 June 2022

Accepted: 4 July 2022

Published: 11 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Article

Simple Growth–Metabolism Relations Are Revealed by
Conserved Patterns of Heat Flow from
Cultured Microorganisms
Karim Fahmy 1,2

1 Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400,
01328 Dresden, Germany; k.fahmy@hzdr.de

2 Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany

Abstract: Quantitative analyses of cell replication address the connection between metabolism and
growth. Various growth models approximate time-dependent cell numbers in culture media, but
physiological implications of the parametrizations are vague. In contrast, isothermal microcalorimetry
(IMC) measures with unprecedented sensitivity the heat (enthalpy) release via chemical turnover in
metabolizing cells. Hence, the metabolic activity can be studied independently of modeling the time-
dependence of cell numbers. Unexpectedly, IMC traces of various origins exhibit conserved patterns
when expressed in the enthalpy domain rather than the time domain, as exemplified by cultures
of Lactococcus lactis (prokaryote), Trypanosoma congolese (protozoan) and non-growing Brassica napus
(plant) cells. The data comply extraordinarily well with a dynamic Langmuir adsorption reaction
model of nutrient uptake and catalytic turnover generalized here to the non-constancy of catalytic
capacity. Formal relations to Michaelis–Menten kinetics and common analytical growth models are
briefly discussed. The proposed formalism reproduces the “life span” of cultured microorganisms
from exponential growth to metabolic decline by a succession of distinct metabolic phases following
remarkably simple nutrient–metabolism relations. The analysis enables the development of advanced
enzyme network models of unbalanced growth and has fundamental consequences for the derivation
of toxicity measures and the transferability of metabolic activity data between laboratories.

Keywords: bacteria; enzyme kinetics; heavy metals; isothermal microcalorimetry; Michaelis–Menten;
toxicity

1. Introduction

Monitoring cellular replication allows researchers to better understand the link be-
tween microbe metabolism and growth. In its simplest form, this relation has found its
analytical expression in the Monod equation, which describes the nutrient dependence of
the initial exponential growth rate of a bacterial culture (balanced growth), marking the
beginning of quantitative growth analyses in microbiology [1]. Since then, the development
of instrumentation for the real-time monitoring of cell numbers has not ceased [2–4], nor
has the analysis and formulation of mathematical growth models [5,6], the proteome-based
modeling of balanced growth [7,8], as reviewed in refs. [9–11], or the physical interpretation
and modification of the Monod equation [12,13]. In contrast to the indirect assessment of
metabolism by cell number measurements, isothermal microcalorimetry (IMC) records
metabolic activity directly as the thermal metabolic power generated by microorganisms as
a consequence of their overall exothermic biochemical reactions [14–18]. Therefore, IMC
raw data scale directly with the absolute growth rate r = dN/dt at a signal to noise ratio
currently unachievable by turbidity assays [19], from which R needs to be determined
from the first derivative of the raw data and, thus, to severe noise enhancement. IMC is
increasingly used in environmental [20–23], pharmacological [24,25] and medical [26–29]
research and mostly addresses the potency of inhibitors of bacterial growth.
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Importantly, IMC provides unprecedented opportunities for the study of complex
growth–metabolism relations, as exemplified by the analysis of the physiological causes
of Kleiber’s law in Plathelminthes [30] or the metabolic arrest of Nematodes [31]. As already
seen with microorganisms, an unexpected richness in the detail of the time-dependent
heat flow curves is commonly encountered but poorly understood. Such sub-structures
typically appear close to the maximal absolute growth of a culture, indicative of metabolic
adaptation during unbalanced growth [9–11] and are not resolved by current assays re-
porting cell numbers. In the context of quantitative growth–metabolism models, it is thus
appealing to use IMC’s high sensitivity (10 nW) and high sampling rate (usually one data
point per second) to investigate metabolic heat flow patterns of cultured microorganisms.
For example, the original restriction of the Monod equation to the exponential culture
growth has little physiological foundation. Rather, it has been motivated by its simplicity
in describing this particular phase of constant culture conditions, i.e., “balanced growth”.
There is no biological reason why the nutrient dependence of metabolism should abruptly
change after exponential growth. This suspicion has motivated the (re-)evaluation of the
metabolic thermal power curves over the full “life span” of cultured cells focusing on
the applicability of the Monod-like nutrient dependence of growth beyond the exponen-
tial phase. For this purpose, a “dynamic adsorption reaction-thermogram simulation”
(dAR-TS) is developed here to decompose metabolic heat curves from cultured cells into
successive “canonical thermograms”. The introduced formalism is not restricted to IMC
data analyses but is described here for heat flow measurements because they provide
the required data quality and time resolution to express metabolism in dependence of
the total biomass. The approach was further stimulated by the similarity of heat flow
patterns from various microorganisms in line with conserved fundamental physiological
traits [32–34]. In fact, the analyses of previously published and novel IMC data reveal
that “canonical thermograms” describe metabolic heat production of cultured cells with
high accuracy, enabling novel experimental approaches to evaluate complex biological
growth models [35]. The quantitative description of growth inhibition is further elaborated
here to improve transferability of toxicity data between labs. The analysis uses biological
parameters which describe a hyperbolic nutrient dependence of growth with correlates in
the original descriptive Monod approach, but also in line with more advanced mechanistic
models, which result in hyperbolic dependencies as well. However, in contrast to the
latter models, growth described by dAR-TS holds for unbalanced conditions as well. The
prevalence of the underlying simple nutrient dependence of metabolic activity beyond
exponential growth is revealed when the increase in catalytic capacity with culture growth
is explicitly considered. This has been done here by exploring the relationship between
metabolic thermal power and its integral, the total heat release from replicating prokaryotic
(Lactococcus lactis) and eukaryotic (Trypanosoma congolese), as well as non-dividing cells
(Brassica napus, plant callus culture). The hyperbolic dependence of metabolic activity on
nutrient concentration, formally introduced by Monod to describe the balanced growth
of bacterial cultures appears to be the rule, rather than an exception restricted to balanced
growth only.

2. Materials and Methods
2.1. Heat Flow Curves from L. lactis at Different Temperatures

The strain Lactococcus lactis subsp. cremoris NZ9000/pNZ8148 (Nizo Food Research
BV, Ede, The Netherlands) was grown at pH 7.2 in M17 medium containing (per liter) 5 g
Neopeptone, 5 g Bacto Soyton, 5 g beef extract, 2.5 g yeast extract, 0.5 g ascorbic acid and
1 g Na2-β-glycerophosphate · 5 H2O. After autoclavation, 1 mL of 1 M MgSO4 and 20 mL of
50% glucose were added from sterile-filtered solutions. IMC was performed with a TAMIII
instrument (Waters GmbH, Eschborn, Germany). Calorimetric ampoules were filled with
4 mL medium and inoculated with 20 µL of a main bacterial culture, which was pre-diluted
with medium to OD600 = 0.1. Thermal power was monitored continuously over 50 h at
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20 ◦C or 25 ◦C. Cultivation and IMC data acquisition for all other experiments have been
published for L. lactis [36], B. napus [37] and T. congolese [38].

2.2. Thermogram Simulations

Experimental IMC traces were fitted to “canonical thermograms” according to the
sequence of data treatments explained below. The fits are based exclusively on the experi-
mentally determined values of the peak metabolic activity and the released heat at which
this maximum is reached. If sufficient substructure is resolved in an IMC trace, multiple
of such data pairs can be obtained and, if improperly resolved, optimized by dAR-TS to
minimize the standard deviation of the “canonical thermogram” from the measured IMC
trace in a selected data range. The following abbreviations are used:

E := ∆N
∆H , growth efficiency (increase of metabolizing units per Joule of released heat)

H: released metabolic heat
H0: heat equivalent of total amount of nutrients turned over in a specific metabolic state
Hf: heat equivalent of the amount of nutrients supporting half-maximal growth
Hm: released metabolic heat by the time Pm is reached
H∅(t) := 1

t
∫ t

0 Hdt, time-averaged metabolic heat released
N0: initial number of metabolizing units
P: thermal power
Pm: maximal thermal power of a thermogram
p0: substrate-saturated thermal power per metabolizing unit
Θ: metabolic load (0 ≤ Θ ≤ 1)
r0 := p0·E, substrate-saturated maximal growth rate
ri := initial growth rate

2.3. Relationship between Experimental Observables and Thermogram Parameters for Simulations

The fundamental equation of IMC is:

P(H) = p0·(N0 + E·H)·Θ(H) (1a)

with
θ(H) =

H0 − H
H0 − H + H f

(1b)

and the initial growth rate

ri =
dP
dH

(0) = r0·
H0

∑
= r0·θ(0). (1c)

From the maximum condition dP
dH = 0 and with the definition ∑ := H0 + H f , the

thermogram peak Pm and the total released heat Hm at the peak are given by

Pm = r0

[
∑+H f +

N0

E
− 2·

√
H f ·(∑+

N0

E
)

]
(2a)

Hm = ∑−
√

H f ·(∑+
N0

E
) (2b)

From Equations (2a) and (2b), follow the three relations:

Pm

r0
= 2Hm − H0 (3a)

Pm

r0
=

H2
m

∑
(3b)
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For N0
E � ∑ , i.e., for small inoculates assumed in all of the following equations, the

thermogram “shape parameter” sp is defined as:

sp :=
Pm

ri·Hm
=

Hm

H0
= 1 +

H f

H0
−

H f

H0
·
√

1 +
H0

H f
(3c)

from which follows the property 1 > sp > 0.5 for all positive values of Hf.

2.4. Determination of “Canonical Thermogram” Parameters from IMC Traces

The Equations (3a)–(3c) enable the derivation of “canonical thermograms” from IMC
traces. Simulation starts with the selection of a data pair Pm and Hm based on well-
resolved thermogram peaks or “shoulders”. With the definition α := Pm

Hm
and the use of the

thermogram “shape parameter” in Equations (3a) and (3b), the “canonical thermogram”
parameters are obtained as:

H0 =
Hm

sp
(4a)

r0 =
sp

2·sp − 1
·α (4b)

H f =

(
sp − 1

)2

sp·
(
2·sp − 1

) ·Hm (4c)

θ(0) =
2·sp − 1

s2
p

(4d)

Here, Equation (4b) was used in Equation (3b) to derive Equation (4c). Equation
(4d) follows from Equations (4a) and (4c). The “canonical thermogram” is obtained by
substituting the above parameters in Equation (1a) (with N0 = 0). During curve fitting,
the thermogram “shape parameter” is varied between 0.5 and 1 to minimize the standard
deviation between the “canonical thermogram” and the original IMC trace. The procedure
is repeated for neighboring Pm, Hm data pairs until the best fit to a selected data range
is achieved.

2.5. Constructing a “Rate Plot” from “Canonical Thermogram” Parameters

The “rate plot” displays the initial exponential growth rate ri as a function of the
initial “metabolic load” Θ(0). The latter is expressed by the thermogram “shape parameter”
(Equation (4d)) and equals the fraction of the initial growth rate ri relative to the maximal
(nutrient-saturated) growth rate r0 in any metabolic phase (Equation (1c)) analogous to a
Langmuir adsorption isotherm.

The “rate plot” visualizes growth-inhibiting and -promoting effects as displacements
of data pairs [Θ(0); ri] relative to a reference point defined by an initial “metabolic load” of
0.5 and an initial growth rate of 0.5 (corresponding to r0 = 1, Equation (1c)). The following
steps produce the data pair

[
Θ+

(0); r+i
]
. It is obtained from dAR-TS for the thermogram

recorded with a growth-affecting additive (labeled with “+”) and extrapolated to an initial
“metabolic load” of 0.5 (labeled with “¯”).

2.6. Normalization of Metabolic Load

The normalization of the initial “metabolic load” of the reference thermogram is
equivalent to choosing standard conditions (nutrient concentration and culture volume)
such that the complete consumption of the initial nutrient in the reference measurement
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would release the total heat Hf (Equation (1b)). Therefore, the normalized condition for the

thermogram with additive requires H+
o = H f and the normalized initial metabolic load is

θ
+
(0) =

H f

H f + H+
f

. (5)

The values of Hf and H+
f are taken from fits to the experimental data according to

Equation (4d).

2.7. Normalization of the Initial Growth Rate

Normalization of the initial growth rate of the culture with additive relative to the
reference culture makes use of the maximal growth rates obtained from both cultures by
dAR-TS (Equation (1c)):

r+i =
r+0
r0
·θ+(0) =

r+i
θ+(0)

θ(0)
ri

θ
+
(0) (6)

The “metabolic load” under standard conditions for the measurement with additive is
obtained by substituting in Equation (5) the sample and reference parameters defined in
Equation (4c):

θ
+
(0) =

1

1 +
H+

m ·(1−s+p )
2·(2·sp−1)·sp

Hm ·(1−sp)
2·(2·s+p −1)·s+p

(7)

2.8. The Closed Form of Heat Evolution in dAR-TS

With the definitions G = H0 − H, r0 = p0·E and pN0 = p0·N0, Equation (1a) can be
written as

− G′ = (pN0 + r0H)
G

G + H f
(8)

from which follows

ln G = − pN0

H f
t− r0

H f

t∫
0

Hdt− G
H f

+ c (9)

The integration constant c = H0·e
H0
H f ascertains the condition G(0) = H0 and one obtains

G = H0·e
H0
H f ·e

−pN0 · t−r0
∫ t

0 Hdt−G
H f (10)

from which the closed form follows as:

H0 − H
H f

= W

(
H0

H f
·e

H0−r 0 ·H∅(t)·t
H f

)
(11)

Here, the definition H∅(t) := 1
t
∫ t

0 Hdt has been used for the time-averaged total
heat release.

3. Results

The similar shape of IMC traces recorded from different cultured microorganisms
motivated the attempt to describe heat (enthalpy) release patterns analytically. Revisiting
IMC data from this and other labs reveals that maximal growth rate ri, maximal thermal
power Pm and the amount of released heat Hm at maximal growth of cultured cells deter-
mine a thermogram “shape parameter” sp from which growth–metabolism relations can be
derived (Methods). The analysis developed in this text relies on the trivial recognition of
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the inherent nutrient-dependence, rather than the time-dependence of metabolism. When
expressed in the enthalpy domain, nutrient–metabolism relations can be formulated, solved
analytically and transformed back into the time domain. This is shown here for a Langmuir
adsorption reaction model. It describes metabolism as nutrient adsorption, followed by
exothermic chemical turnover and growth according to the increase in adsorption capac-
ity. The interdependence of both reproduces thermograms from diverse cultured cells.
Sections 1 and 2 introduce the enthalpy-based parametrization of IMC data. Section 3
exemplifies comprehensive analyses of thermograms from bacteria, protozoans and plant
cells. Section 4 uses dAR-TS to standardize IMC evaluations on growth inhibition and stim-
ulation. The reproduction of calorimetric results within the signal to the noise ratio of the
raw data lends strong support to a general trait of growth–metabolism relations of cultured
cells covering balanced conditions as well as maximal growth and metabolic decline.

3.1. Transformation of Metabolic Thermal Power from Time- to Enthalpy-Domain

The concept developed here for the analysis of metabolic heat flow data is rooted in
evaluating the heat-dependence, rather than the time-dependence of metabolic activity.
As total heat release (enthalpy) scales with biomass, growth–metabolism relations are
more directly reflected in this representation than in the time domain. However, thermal
metabolic power P is typically displayed as a function of time t as shown in Figure 1a for a
culture of Lactococcus lactis grown in the presence of different concentrations of copper [36].
The metal delays growth and reduces the maximal power Pm in a concentration-dependent
manner. The heat flow generated by cultured microorganisms can be expressed by the
product of the cell number (N) and the thermal power per cell (p). The latter is expressed
here as the product of p0, the maximally achieved thermal power per cell and Θ, the
“metabolic load”, which represents the relative activity of metabolism (between zero and
unity), dependent on the culture conditions (Equation (12)). For a given composition of
nutrients turned over in a specific biochemical pathway, p0 is constant, whereas all other
quantities change over time:

P(t) = p0· N(t)·Θ(t) (12)

H(t) =
∫ t

0
P(t)dt (13)

By definition, the released heat H (enthalpy) is the time integral over P (Equation (13)).
Figure 1b displays P as a function of H, the designated “enthalpy plot”. Exponential growth
corresponds to a linear dependence on H (mathematically equivalent to a logarithmic plot
in the time domain). The transformation reveals more similarity between the original
thermograms because the transition from an initial to a second metabolic state, visible from
the thermogram peak and shoulder, occurred at different times but at almost the same
amount of released heat (ca.3 J). The apparent physiological relevance of H rather than t is
plausible because H scales with the amount of consumed nutrients (and the corresponding
amount of biomass).

Figure 1c shows thermograms from the same bacterial strain in the presence of the
toxic salt uranyl nitrate. The initial, almost metal-insensitive, exponential growth was
followed by a uranyl-sensitive metabolic state. This is seen clearer in the “enthalpy plot” in
Figure 1d, where the initial linear rise is barely affected, whereas the peak activity in the
second metabolic state is attenuated and shifts to smaller enthalpies with increasing uranyl
concentration. These different mechanisms of copper and uranyl toxicity [36] exemplify a
toxic effect predominantly on p0 for copper or on “metabolic load” Θ(H) for uranyl. The
qualitative complementarity of metal toxicities in the same bacterial strain demonstrates
that at least two measures are required to describe toxicity. In particular, the data reveal the
weakness of deriving toxicity measures exclusively from exponential growth rates.
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Figure 1. Transformation of thermograms from the time to enthalpy domain. (a), Time-dependent
thermograms of a glutathione-expressing L. lactis culture grown in the presence of the indicated
copper sulfate concentrations. The exponential growth is highlighted by exponential functions
(dotted lines). (b), “Enthalpy plot“, the same traces plotted dependent on the totally released heat,
where exponential growth corresponds to a linear dependence (dotted lines) of thermal metabolic
power on total released heat which scales linearly with total biomass. (c,d), the equivalent data
recorded from the same strain in the presence of uranyl nitrate [36].

3.2. Simulation of “Canonical Thermograms”

Metabolism in its simplest representation removes chemical compounds from solu-
tion, followed by enzymatic turnover. Formally, the process resembles the adsorption of
solutes to a catalytic surface. According to the scheme in Figure 2, the metabolic load Θ
would express the surface coverage of such an apparent reactive surface, described here
by a Langmuir isotherm as shown in Figure 2 (Equation (1b)), where the concentration of
“solute”, in fact a complex mixture of nutrients, scales with the expression H0 − H(t). The
heat equivalent of the initial amount of nutrients is given by H0, whereas Hf determines
the condition for the half-maximal metabolic activity, similar to a Langmuir adsorption
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coefficient. In this model, cell division entails an incremental growth of the total adsorptive
surface A in proportion to the amount of heat released between divisions. In contrast to
the classical Langmuir adsorption with a static surface area, the proposed model features a
growing adsorptive surface, enabling a “dynamic adsorption reaction thermogram simula-
tion” (dAR-TS). Substituting the term r0·H for p0·N leads to the analytical expression of the
enthalpy plot (Figure 3c, Equation (1a)).
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Figure 2. Representation of metabolism and growth in metabolic heat equivalents. H0: heat equivalent
produced by the initial amount of nutrients if metabolized in a single biochemical pathway by
cultured cells. Hf: heat equivalent of the amount of nutrients that generates half-maximal metabolic
thermal power (analogous to a Langmuir adsorption constant describing half-maximal binding site
occupation on a catalytic surface A). ∆H: heat released by a cell during the time ∆t between cell
divisions (symbolized by arrows). ∆A: increment in apparently catalytic surface A due to formation
of a new cell. H(t): accumulated released heat up to time t in proportion to the amount of biomass;
the latter provides an apparent nutrient-adsorbing total catalytic surface A. Θ: “metabolic load”
describing the fraction of occupied nutrient-binding sites on A (H0 − H(t) scales with the amount
of nutrients at time t). P: thermal power of a culture of microorganisms expressed as the product
of released heat H, maximal growth rate r0 (Methods, Equations (1a) and (1b) and condition for
Equation (3c)) and ”metabolic load” Θ.
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Figure 3. Generation of “canonical thermograms”. (a), “Metabolic load“ Θ expressed in the form of
a Langmuir adsorption isotherm as a function of the total enthaply H released from cultured cells.
H is obtained in the experiment from the integration of the thermal power over time. (b), Linear
relation between the apparent nutrient-adsorbing catalytic surface (in proportion to H) and the
metabolic thermal power P of the culture (two examples shown in red and blue). (c), “enthalpy
plot“ generated by multiplication of the traces in (a,b). (d), “canonical thermograms“ obtained by
numerical integration of the inverse of the traces in (c). (e–h), same operations as in (a–d) with two
Langmuir adsorption isotherms differing in Hf, which leads to a shift in the peak of the “enthalpy
plot” (dotted lines).

Equation (1a) is used to analyze IMC enthalpy plots of cultures grown from small
inoculates which generate “zero” thermal power initially (see Methods for the general
IMC equation). Figure 3a–d show the generation of “canonical thermograms” according to
Equation (1a) and compare the results for two different maximal growth rates r0 with the
same Langmuir isotherm (“metabolic load” Θ). The “enthalpy plots” differ by a constant
factor (Figure 3c) and can be transformed back to the time domain by numeric integration
(Figure 3d). The obtained “canonical thermograms” show qualitatively that copper toxicity
complies with a reduced maximal growth rate r0, leading to prolonged heat release at
reduced power. Figure 3e–h show the complementary situation, i.e., a reduction of the
“metabolic load” by an increase of Hf. The obtained “enthalpy plots” show again a reduced
peak metabolic activity but, importantly, also a shift of the peak to lower heat values similar
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to the effect of uranyl on the second metabolic phase of the L. lactis culture. Thus, dAR-TS
reproduces key features of different metal toxicities and relates these to physiologically
meaningful quantities; for example, the maximal growth rate and an apparent nutrient
affinity expressed by the ”metabolic load” Θ.

3.3. Modeling Thermograms from Cultured Cells of Different Origin

In order to validate dAR-TS, thermograms of different origin have been analyzed to
identify the largest possible data ranges for which the dependence of the per cell metabolic
thermal power on nutrient concentration exhibited the hyperbolic shape predicted by
Equation (1b). The results for different cell types and culture conditions are presented.
Metal toxicity is considered more specifically because it reveals the physiologic relevance
of distinguishing between growth rate and “metabolic load”, which are distinctly affected
by different metal ions.

3.3.1. Bacterial Growth Curves

Figure 4 shows the result for uranyl toxicity in L. lactis by the independent approx-
imation of the first and second metabolic phases with a pair of parameters r0 and Hf for
either phase. The dotted lines exhibit the “canonical thermogram” shape according to
Figure 3c,g. The color-coded areas mark the fitted data ranges, where the contour lines
overlap with the raw data within the signal to noise ratio of the IMC measurement. Outside
these ranges, the curves are shown only for completeness. Importantly, the IMC data
are not modeled by superimposed traces but by consecutive “canonical thermograms”
with altered nutrient-dependency of growth, thereby accounting for metabolic adaptation
to altered medium conditions (switch to a different carbon source, decrease in the pH
during fermentation etc.). In the given example, the two descriptive dAR-TS parameters
adopt the values displayed above the thermograms. Uranyl exerted its toxic effect in the
second metabolic state predominantly on Hf, which increased about ten-fold (leading to
lower metabolic load). The corresponding decrease in apparent nutrient affinity was partly
compensated by a ca. three-fold increase of the maximal growth rate r0, most likely via the
up-regulation of enzymes specific to this phase.

The two descriptors of bacterial metabolism, r0 and Θ, are appropriate to reproduce
the inherent complexity of growth-inhibition, suggesting that dAR-TS may also be a
predictive tool. The high data quality allows for the validation of dAR-TS with IMC traces
for which the outcome of the two parameters may be anticipated. For this purpose, a
gentle temperature change was chosen to affect bacterial growth rates (r0) but not metabolic
pathways (Θ). The enthalpy plots of thermograms recorded with L. lactis at 20 ◦C and
25 ◦C are compared in Figure 4c,d. Although similar in shape, the plots are not related by
simple scaling factors. The initial growth phase appears less enhanced by the temperature
rise and the released heat at which the growth phase transitions occurred differ non-
intuitively between the two experiments (arrows). More remarkable is the result of dAR-
TS, which verifies the expected increase of maximal growth rates for all three phases
despite the complex thermogram shapes. Importantly, the three phases exhibited negligible
temperature-induced variation of their parameter Hf. Thus, the results lend strong support
to the physiological significance of the two descriptors in accordance with a thermally
increased metabolic rate of an otherwise unaffected microbial physiology.
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Figure 4. dAR-TS analysis of growth-attenuating and -stimulating effects on L. lactis cultures. (a),
Initial growth rate ri and initial metabolic load Θ(0) for the first two consecutive metabolic phases
(grey and pink shaded areas). (b), Culture grown from the same inoculate but in the presence of
50 µM uranyl. The latter affects the second metabolic phase by an increase of Hf (thus reducing
the initial “metabolic load” Θ(0)) at a constant initial growth rate. The obtained initial rate ri and
“metabolic load” Θ(0) vary by less than ±5% for the varying of Pm by ±1 SD. For only the fit of the
second metabolic phase with 50 µM uranyl, Θ(0) varies by 20%. (c), L. lactis culture grown at 20 ◦C,
showing the capability of dAR-TS to reproduce and also the decline of metabolic activity in the third
metabolic phase (light blue dotted line, blue-shaded area). (d), Thermogram of the same strain grown
at 25 ◦C. Straight lines (red) mark the exponential growth phase of the initial metabolic state. Units of
ri is 10−3 h−1. The standard deviation of the fitted curves (dotted lines) from the raw data is smaller
than 1.5% of Pm for all traces. The obtained initial rate ri and “metabolic load” Θ(0) vary by less than
±3.5% for a variation of Pm by ±1 SD. Only for the fit of the second metabolic phase at 25 ◦C (pink
dotted line in (d)), ri and Θ(0) vary by ±9% and ±20%, respectively.

3.3.2. Protozoan Growth Curves

dAR-TS was further performed with the protozoan Trypanosoma congolese using previ-
ously published thermograms [38]. In this case, growth was analyzed for different initial
inoculates under otherwise identical conditions. The data provide a test for the analysis
of thermograms under conditions that would affect neither r0 nor Hf, but yet resulted in
differently shaped thermograms. Figure 5 shows the dissection of the heat flow curves into
two “canonical thermograms” for which Hf and the maximal growth rate r0 were derived
from measurements with inoculates of either 2000 or 20 cells in a 2 mL culture medium. For
the two metabolic phases, only the altered initial cell number was entered into Equation (1a)
and the value H0 was adjusted as the only varied parameter. The differences between the
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thermograms are almost exclusively the consequence of the slightly different amounts of
total nutrients (different values for H0) transferred with the increasing inoculate numbers.
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Figure 5. Thermograms of Trypanosoma congolese. (a), Inoculate of 20 cells (red) and 2000 cells
(blue) per mL. For the culture grown from the smaller inoculate, the “canonical thermograms“ are
displayed as colored areas corresponding to the first (ocre) and second metabolic state (green). Dotted
lines show the two “canonical thermograms“ obtained with the larger inoculate. (b), Numerical
transformation of the “canonical thermograms” from (a) the time domain (dotted and dashed curves
color-coded as in (a)) superimposed with the original IMC raw data (solid lines). Original traces have
been published [38]. The listed thermogram parameters were kept constant, except for H0 and N0,
which were changed between the two data sets and substituted in Equation (1a) with p0 = 3.2 µJ/h
and E = 16.667/J. Growth rates r0 and ri in 10−3h−1, H0 and Hf in Joules. Standard deviation of fitted
data range (overlap region of blue and red trace) from raw data is less than 1% of peak power.

The metabolism of T. congolese is instructive for another reason. It exhibited only two
growth phases without the “asymptotic tailing” of metabolic heat flow seen in the “enthalpy
plot” of many bacterial cultures at a late stage of growth (Figures 1 and 4). The rather abrupt
decline of metabolic thermal power in the “enthalpy plot” with these protozoans is actually
predicted by the Langmuir adsorption reaction model (Figure 3c,g). It is represented in
an almost ideal form by the T. congolese culture and indicates that the metabolic pathway
was strictly conserved during the entire growth, lacking adaptive processes in response
to nutrient depletion seen with many prokaryotic cultures. Except for a 12 h gap during
which metabolism reoriented, 300 h of culture growth have been simulated. Predicting
the decline of metabolism correctly with the same two parameters that also describe the
balanced initial growth is a salient strength of dAR-TS.

3.3.3. Metabolism in Cultured Plant Cells

For the purpose of testing more general applicability, dAR-TS was also performed
with thermograms from plant cell cultures, where metabolism declined monotonously
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without growth [37]. Equation (1a) was used with the condition of zero change in cell
number per Joule of released heat (E = 0). In this case, the “enthalpy plot” is predicted to
follow the Langmuir isotherm defined by Equation (1b) (Figure 3a), which is confirmed by
dAR-TS (Figure 6).

Microorganisms 2022, 10, x FOR PEER REVIEW 13 of 21 
 

 

deviation of fitted data range (overlap region of blue and red trace) from raw data is less than 1% of 
peak power. 

The metabolism of T. congolese is instructive for another reason. It exhibited only two 
growth phases without the “asymptotic tailing” of metabolic heat flow seen in the 
“enthalpy plot” of many bacterial cultures at a late stage of growth (Figures 1 and 4). The 
rather abrupt decline of metabolic thermal power in the “enthalpy plot” with these 
protozoans is actually predicted by the Langmuir adsorption reaction model (Figure 3c,g). 
It is represented in an almost ideal form by the T. congolese culture and indicates that the 
metabolic pathway was strictly conserved during the entire growth, lacking adaptive 
processes in response to nutrient depletion seen with many prokaryotic cultures. Except 
for a 12 h gap during which metabolism reoriented, 300 h of culture growth have been 
simulated. Predicting the decline of metabolism correctly with the same two parameters 
that also describe the balanced initial growth is a salient strength of dAR-TS. 

3.3.3. Metabolism in Cultured Plant Cells 
For the purpose of testing more general applicability, dAR-TS was also performed 

with thermograms from plant cell cultures, where metabolism declined monotonously 
without growth [37]. Equation (1a) was used with the condition of zero change in cell 
number per Joule of released heat (E = 0). In this case, the “enthalpy plot” is predicted to 
follow the Langmuir isotherm defined by Equation (1b) (Figure 3a), which is confirmed 
by dAR-TS (Figure 6). 

 
Figure 6. Thermograms from plant callus cells (Brassica napus). The non-dividing plant cells were 
cultured in the absence and presence of 100 µM uranyl nitrate and the enthalpy plots ((a), solid 
lines) generated from the raw data ((b), solid lines). Thermogram analysis by dAR-TS reveals that 
after an adaptation phase of about 8 h, for about 12 h the cultures followed the assumed Langmuir–
isotherm relation in the enthalpy domain and the corresponding Lambert Ω functions in the time 
domain (dotted lines) described by the “metabolic load” Θ for non-growing cells (E = 0, see 
Equations (1a) and (1b) in the main text). The effect of uranyl is well reproduced mainly by reducing 
the maximally released heat H0 from 2.25 J in the reference thermogram to 1.49 J for the thermogram 
obtained in the presence of uranyl (x-axis intercepts). A possible explanation is the formation of 
insoluble or non-metabolizable sugar uranyl complexes which diminish the total amount of 
available nutrient. The raw data have been published previously [37]. 

Figure 6. Thermograms from plant callus cells (Brassica napus). The non-dividing plant cells were
cultured in the absence and presence of 100 µM uranyl nitrate and the enthalpy plots ((a), solid lines)
generated from the raw data ((b), solid lines). Thermogram analysis by dAR-TS reveals that after an
adaptation phase of about 8 h, for about 12 h the cultures followed the assumed Langmuir–isotherm
relation in the enthalpy domain and the corresponding Lambert Ω functions in the time domain
(dotted lines) described by the “metabolic load” Θ for non-growing cells (E = 0, see Equations (1a)
and (1b) in the main text). The effect of uranyl is well reproduced mainly by reducing the maximally
released heat H0 from 2.25 J in the reference thermogram to 1.49 J for the thermogram obtained in
the presence of uranyl (x-axis intercepts). A possible explanation is the formation of insoluble or
non-metabolizable sugar uranyl complexes which diminish the total amount of available nutrient.
The raw data have been published previously [37].

3.4. Deriving Toxicity Measures from Bacterial Heat Flow Curves

The majority of IMC experiments address the inhibition of bacterial growth by evalu-
ating the reduction of the initial exponential growth rate ri of a culture, given in dAR-TS by:

ri =
dP
dH

(0). (14)

The most common descriptor of toxicity is the concentration of a compound which
causes half-maximal inhibition (IC50). However, reporting an IC50 for IMC data is ambigu-
ous with respect to the choice of the observables ri, Pm, Hm or tm, which may be redundant
or report different aspects of toxicity. With the widespread and intuitive use of the initial
growth rate as a descriptor of toxicity, it is also reasonable to use ri for the evaluation of
toxicities in dAR-TS but complement it with Θ to express the complexity of toxic effects
revealed in IMC measurements on metal toxicity. Figure 7 shows a “rate plot”, which
displays the initial growth rate ri as a function of the initial metabolic load Θ(0). It is
convenient to choose a half-maximal initial growth, i.e., a metabolic load of Θ(0) = 0.5, as
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the standard growth condition to compare thermograms from a culture with a “stressor” to
a reference IMC trace without a “stressor”. Correspondingly, the “standard initial growth
rate” is ri = 0.5·r0. Defining the maximal growth rate r0 of a control experiment as unity,
the “standard initial growth rate” equals 0.5. This defines the reference point [0.5;0.5] in the
“rate plot” (Figure 7, black-filled circle). Transforming IMC data to the standard conditions
(see Methods) renders the “rate plot” invariant against medium concentration and ampoule
volume, such that it displays metabolic differences exclusively.
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Figure 7. Generation of a “rate plot” for L. lactis grown in the presence of uranyl or copper. (a,b),
“Enthalpy plots“ of a glutathione-synthesizing L. lactis strain grown in the presence of 50 µM or
100 µM uranyl, respectively. Shapes of shaded areas calculated by dAR-TS. (c), “rate plot“ showing
the metal-dependent change in initial rate ri = r0·Θ(0) and “metabolic load” Θ(0), normalized to
the condition of Θ(0) = 0.5 and r0 = 1 without metals (black-filled circle). Red symbols: “canonical
thermogram“ parameters used in (a,b) with symbols assigned to growth phases I, II, III as depicted,
green symbols: “canonical thermogram“ parameters of the first growth phase in the presence of
copper (thermograms in Figure 1a). Arrows indicate the direction of increasing metal concentration
(50 µM and 100 µM for uranyl and 200 µM and 400 µM for copper). Colored regions correspond
to an increased (light green) or decreased (light orange) initial growth rate relative to that of a
reference culture.
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Figure 7 visualizes the different effects on the growth of L. lactis exerted by copper,
uranyl and temperature shown in the previous sections. Toxicity scales with the displace-
ment of the [ri;Θ(0)] data pairs from the reference point [0.5;0.5]. The plot of the uranyl
data represents three fundamental forms of toxicity: (a) predominant attenuation of the
maximal growth rate causes the mostly vertical (negative) displacement of the data pairs
(third growth phase, open red triangles; (b) predominant attenuation of the metabolic load
causes a diagonal displacement (because ri scales with Θ(0), second growth phase, open
red circles); (c) compensation of increased maximal growth rate and decreased “metabolic
load” causes an adaptive response (initial growth rate almost unaffected, first growth phase,
filled red circles). For copper, the plot indicates that the bacteria made up for the reduction
of the maximal growth rate (vertical displacement) by an increase of their apparent nutrient
affinity (increased “metabolic load”). The metal-induced displacements of the data points
are systematic for each growth phase, supporting again the physiological relevance of
the dAR-TS parameters. The validity of this concept is convincingly confirmed by the
temperature experiment (Figure 4c,d). All metabolic phases experienced the expected
increase in maximal growth rates with negligible effect on the “metabolic load”, i.e., an
empirical correlate of the constancy of growth–metabolism relations. With respect to the
transferability of toxicity measures between labs, the “rate plot” can provide a convenient
IC50, for example, by the manifold of growth-inhibiting conditions given by all data pairs
that are displaced from the reference point by a distance of log2.

4. Discussion

The simulation of metabolic heat flow data by dAR-TS assigns “canonical thermo-
grams” to distinct metabolic phases of cultured cells. It describes heat release during
growth and metabolic decline for dividing and non-dividing cells as well as for variable
inoculate sizes according to Equation (1a). The “metabolic load” (Equation (1b), Figure 3a)
expresses the nutrient dependence of metabolism by the concentration x of nutrients in pro-
portion to x/(x + c), as does the (empirical) Monod equation. In contrast to the latter, it also
applies to unbalanced growth. Remarkably, the investigated systems showed conserved
substructures in their time-dependent thermograms. These structures become analytically
accessible in the above hyperbolic form when expressed as a function of the total heat
release. Defining a metabolic phase as the constancy of a predominant biochemical pathway
of nutrient consumption during culture growth, then the total heat release is a measure of
total biomass and thus of the (increasing) catalytic capacity of the culture. The hyperbolic
substrate-dependence of exponential growth, which was formulated originally for expo-
nential bacterial growth by Monod [1], can, in fact, be extended far beyond the balanced
regime when the increase in catalytic capacity during growth is taken into account.

One reason for the reproduction of the rather complex metabolic activities of L. lactis
by dAR-TS lies in the metabolic switching processes which occur long before the quasi-
steady state condition of “nutrient adsorption” in the dAR-TS formalism would be violated
by substrate depletion. The observed physiologic switches between different enzymatic
machineries, (evidenced by the change in the metal sensitivity of the growth), occur
shortly after the maximal metabolic activity has been reached for a given metabolic phase.
In all traces, the physiological reorientation occurred at metabolic loads larger than 0.5,
i.e., the active pathway always stayed above half saturation with nutrients. Only in
the late metabolic phase(s) where stress-related metabolic pathways become activated,
the assumption of an apparent equilibrium of nutrient adsorption followed by catalytic
turnover does not hold for the L. lactis culture. However, the T. congolese data show
convincingly that the hyperbolic nutrient dependence assumed in dAR-TS does correctly
describe cell growth from exponential growth to complete nutrient consumption in the
absence of such physiologic adaptations upon nutrient depletion.

Analogous to extending the hyperbolic Monod equation to unbalanced growth by
accounting for biomass increase and nutrient depletion, a similar mathematical treatment of
the hyperbolic Michaelis–Menten (MM) equation should hold equally well. In this case, the
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constant enzyme concentration of the MM model must be allowed to grow in proportion to
catalytic turnover to describe culture growth. It is thus instructive to consider the closed
form of the integrated Equation (13), i.e., the “canonical thermogram” in the time domain,
which is obtained as:

H(t) = H0 − H f ·W
(

H0

H f
·e

H0−r 0 ·H∅(t)·t
H f

)
(15)

with H∅(t) being the time-averaged metabolic heat and W being the Lambert Ω-function
(Methods). It should not be surprising that the closed form of the classical integrated
(quasi-static) MM equation exhibits the same structure [39]. The quantities H0, Hf and
r0 are mathematical homomorphs of the initial substrate concentration S0, MM constant
KM and enzyme catalytic rate kcat, respectively. The term r0·H∅(t) replaces the expression
kcat·E0 for the maximal catalytic rate Vmax at enzyme concentration E0. This reveals the
formal correlation of the constant E0 in MM kinetics with the time-averaged biomass,
here in the form of its heat equivalent H∅(t). It is evident that dAR-TS is formally a
generalization of the MM equation, but it does not imply mechanistic assumptions other
than the proportionality between cell number and catalytic capacity of cultured cells, where
the metabolic activity of each cell follows a hyperbolic nutrient dependence. This agrees
with non-calorimetric analyses of limited bacterial growth, where growth rates have been
plotted as a function of biomass, rather than culture time, analogous to the “enthalpy plot”
introduced here [40].

The dissection of complex thermograms into simpler “canonical thermograms” by
dAR-TS may appear artificial because it supposes a heterogeneity of metabolic states
without further justification. It is indeed the experimental evidence provided by the demon-
strated phase-specific metal toxicities, which lends physiological relevance to this dissection
and, at the same time, strongly supports the prevalence of simple growth–metabolism
relations in these phases. Thus, the dynamic Langmuir adsorption reaction model of
the growth–metabolism relationship is not only physiologically appropriate, but also
analytically tractable, because it reduces a complex growth behavior into sections of “two-
parameter-fits”, rather than resorting to a many parameter problem in a single equation
with little relation to physiology. Furthermore, the proposed standardized evaluation and
graphical representation of metal toxicity developed here for IMC data is applicable for any
other experimental method as long as an absolute growth rate (metabolic thermal power)
can be determined as a function of culture biomass (heat) at a sufficient signal to noise ratio.
Likewise, the two-dimensional representation of toxicity in a “rate plot” is not restricted
to IMC data and represents the minimum number of parameters (ri, Θ) that express the
experimentally evident diversity of growth-inhibitory effects.

The salient simplification of growth analysis by dAR-TS stems from the transformation
of thermograms (or absolute growth rates) from time to enthalpy (or biomass) domain.
Thereby, the complexity of the non-analytical expression of H(t) is removed, showing that
growth models can imply simple growth–metabolism relations despite a complex time-
dependence. This raises the question of to which extent common growth models can cover
the conserved “dynamic Langmuir-like” growth–metabolism relations demonstrated here.
Among rate equations derived for prominent growth models [41], the Richards function
can be parametrized to resemble a Monod or MM equation (in line with the statistical
superiority of the Richards function over Gompertz and logistic growth models) [6]. Ex-
pressing the Richards growth curve in heat equivalents is compatible with dAR-TS and
approximates the growth of T. congolese well by adjusting the Richards function exponent
m (Figure 8). For the T. congolese culture, a “shape parameter” of 0.67 is obtained from
dAR-TS, whereas it is predicted to be 0.61 by the Richards Function. The deviation is due to
an overestimation of the maximally released heat by the Richards function as compared to
a ”dynamic Langmuir-like” growth curve (Figure 8). Nevertheless, dAR-TS parameters for
the description of the growth of cultured cells can be obtained from the Richards function
by substituting spR for sp (Equations (4a)–(4d)).
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(a), “Enthalpy plots” of thermograms according to Equations (3) and (4) with (H0 = 1 and Hf = 2, 1,
0.55, 0.35, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005 from blue to red). The thermogram peak height increases
linearly with the “shape parameter”. At a very low nutrient affinity, the thermogram shape is a
symmetric parabola and corresponds to logistic growth in the time domain. At high nutrient affinity
(Hf « H0), sp approaches unity and the growth is purely exponential. The “enthalpy plot” of the first
growth phase of T. congolese (Figure 5a) is indicated. (b), The T. congolese time domain “canonical
thermogram” of the first growth phase (2000 cells/mL, sp = 0.67, turquoise) has been integrated to
obtain a corresponding growth curve (blue solid sigmoid ). To the latter, a Richards function (red
dotted line) was fitted (Richards1 in Origin (Origin(Pro), 2020. OriginLab Corporation, Northampton,
MA, USA) with H0 = 4.54 and m = −0.3957. The corresponding “Richards thermogram” (red dotted
bell-shaped curve) was obtained as the derivative of the Richards function. The respective formulas
are given in color code (dAR-TS: blue, Richards: red) with spR: the shape parameter obtained from
the Richards curve.

Interestingly, the Baranyi growth model uses an “adjustment function” α(t) similar to
the “metabolic load” Θ(H) [42]. However, the MM homomorphism is disfavored for the
sake of simplicity and strength in the lag time simulation of bacterial growth [43].

In the context of existing analytical growth models, the most biologically relevant
prediction of dAR-TS concerns the maximal absolute growth rate, which cannot be reached
before 50% of the final biomass of cultured cells have been produced. In enthalpies: the
heat Hm released at maximal metabolic activity is at least 50% of the heat H0 released upon
full nutrient consumption in the considered metabolic state. This follows from the relation:

1 > sp =
Hm

H0
> 0.5 (16)

as derived above (Equation (3c)). In contrast, Gompertz and logistic growth curves ex-
hibit their inflection points invariably at 37% and 50%, respectively [44]. Importantly, the
thermogram “shape parameter” for the initial culture growth phase is fully determined
by the experiment as a descriptive parameter without any mechanistic assumptions or
restrictions of its absolute value, which is key to thermogram interpretation and data trans-
ferability between labs (Equation (7)). Only in the context of dAR-TS, the absolute value of
sp becomes restricted by the underlying Langmuir adsorption catalytic turnover formalism.
More remarkable is the observation that the discussed thermograms and all others recorded
thus far in this lab complied with the prediction from Equation (16). Furthermore, the
dynamic adsorption reaction model is compatible with advanced thermodynamic [13],
kinetic (including flux balance analyses) [7,12,45,46] and proteome allocation-based growth
laws [8,47,48], which lead to hyperbolic nutrient dependencies of (balanced) growth as well.
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This enables analytical approaches to advanced growth–metabolism relations throughout
the entire lifespan of cultured microorganisms without the approximations required for an
analytical solution of the Monod Equation in the time domain [49]. Promising stochastic
descriptions of the fundamental biochemical processes underlying metabolism and growth
are currently emerging but, again, suffer from the restriction to balanced growth [50].

5. Conclusions

Metabolism and growth of cultured cells from diverse origins follow a succession
of relatively simple activity patterns that are not reproduced by prominent analytical
time-dependent growth models. On the other hand, it has been shown here that the
hyperbolic nutrient dependence of growth originally formulated by Monod can be easily
extended to the unbalanced regime when growth is expressed as a function of biomass
(here expressed as enthalpy), rather than time. The mathematical equivalence with an
extended MM formalism may or may not imply metabolic phases, where unbalanced
growth is also restricted by a single rate-limiting “master enzyme. The success of the
proposed “dynamic Langmuir adsorption reaction” approach rather raises the question of
whether more complex stochastic growth models will eventually explain why the kinetics
of a complex metabolic network may nevertheless follow a simple hyperbolic nutrient
dependence. The unprecedented accuracy and high information content of IMC data
will probably allow for the testing of advanced stochastic theories of growth–metabolism
relations by experimentation.
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