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Abstract

Consensus partitioning is an unsupervised method widely used in high-throughput data analysis for revealing subgroups and
assigning stability for the classification. However, standard consensus partitioning procedures are weak for identifying large numbers
of stable subgroups. There are two major issues. First, subgroups with small differences are difficult to be separated if they are
simultaneously detected with subgroups with large differences. Second, stability of classification generally decreases as the number
of subgroups increases. In this work, we proposed a new strategy to solve these two issues by applying consensus partitioning in a
hierarchical procedure. We demonstrated hierarchical consensus partitioning can be efficient to reveal more meaningful subgroups.
We also tested the performance of hierarchical consensus partitioning on revealing a great number of subgroups with a large
deoxyribonucleic acid methylation dataset. The hierarchical consensus partitioning is implemented in the R package cola with
comprehensive functionalities for analysis and visualization. It can also automate the analysis only with a minimum of two lines of
code, which generates a detailed HTML report containing the complete analysis. The cola package is available at https://bioconductor.
org/packages/cola/.
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Introduction
Consensus partitioning or consensus clustering is an
unsupervised learning method that classifies samples
into subgroups and evaluates the stability of the classifi-
cation by resampling from original data [1]. It has become
an important tool applied in high-throughput data anal-
ysis e.g. to reveal cancer subtypes [2] or to validate the
agreement of the classification on known clinical factors.
In our previous work [3], we developed an R/Bioconductor
package named cola that provides a general framework
for consensus partitioning. It allows simultaneously run-
ning multiple feature selection methods and partitioning
methods and it provides comprehensive visualization
and reporting utilities for automatic and deep interpre-
tation on the results. Cola provides a new and efficient
method named ATC (ability to correlate to other rows)
for extracting top features and it recommends spher-
ical k-means clustering [4] for subgroup classification.
Through comprehensive benchmarks on public datasets,
we demonstrated cola was able to generate new, stable
and biologically meaningful classifications.

Cola provides a convenient toolkit for performing
consensus partitioning analysis. It performs well when
the expected number of subgroups is relatively small e.g.
no larger than six as demonstrated in our previous study
[3]. However, when the number of expected subgroups
increases, issues for general consensus partitioning
procedures [5, 6] rise and they would significantly affect
the classification. In consensus partitioning procedures,
first the top n features scored by a certain method
e.g. standard deviation (SD), are selected. Later, sample
classification is only applied to the top features. A
good classification is expected to select those features
which have the ability to separate all subgroups,
in other words, consensus partitioning procedures
take into account all samples equally. However, in
real-world datasets, this condition cannot always be
met. It is possible that features good at separating
major subgroups (i.e. subgroups with large difference)
are weak for secondary subgroups (i.e. subgroups
with small difference) if the secondary subgroups
have different sets of features that are efficient for
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classification. When the real number of subgroups
becomes larger, it is highly possible that subgroups
have different sets of efficient features for classification,
and this leads to the effect that it may be difficult to
reach stable separation for secondary subgroups when
classifying them with major subgroups at the same
time. The second issue is that, when the number of
subgroups gets larger, the probability of two samples
to be in different subgroups tends to increase, which
results in the loss of stability of the classification. Both
issues hinder the classification to reach a large number
of stable subgroups.

In this work, to solve the previously raised issues,
we propose a strategy named hierarchical consensus
partitioning (HCP) that applies standard cola consensus
partitioning (CP) in a hierarchical procedure. Simply
speaking, one could first classify samples into k groups
where k is a small number which corresponds to
major subgroups. Then for each subgroup of samples,
one could repeatedly apply CP with a new set of top
features extracted only to that subset of samples. The
hierarchical procedure stops until certain criteria are
reached. By these means, theoretically, small subgroups
or secondary subgroups could be detected in later steps
of the hierarchical procedure. This process can generate
a hierarchy of subgroups where subsets of samples
are represented as nodes. The idea of executing CP
hierarchically has also been applied when identifying
consensus network modules to reveal multiresolution
modularity of the network [7]. Hierarchical classification
has been widely used in various fields, especially for
large-scale classifications [8, 9] e.g. for prediction of gene
functions [10]. Here we implement it in the framework
of CP.

For large datasets with huge numbers of samples, in
early steps of the hierarchical procedure, numbers of
samples in the subsets could still be large. Due to that, CP
by-nature is a time-consuming analysis. To improve the
efficiency of partitioning on large datasets, we propose
a strategy which randomly picks samples to a small
subset, on which CP is applied, later the class labels of the
deselected samples are predicted based on the classifica-
tion of the selected samples. This downsampling strategy
ensures analysis of thousands of samples can be done in
an acceptable time.

HCP extends the cola framework and it has been
implemented in the cola package from version 2.0.0
on. For submatrices represented as nodes in the sub-
group hierarchy, standard CP by cola is applied where
specific combinations of feature selection methods
and partitioning methods can be either user-defined
or selected from the built-in methods. HCP provides
rich visualizations for interpretation of the results, as
well as comprehensive tools for downstream analysis,
such as dimension reduction, signatures analysis and
functional enrichment analysis if signatures can be
mapped to genes. For the ease of use, HCP automates
the analysis with a minimum of only two lines of code,

which generates a detailed HTML report containing the
complete analysis.

In this paper, we first illustrate issues of CP with a sim-
ulated dataset and a real-world dataset. Then we demon-
strate the use of HCP with an RNA-sequencing (RNAseq)
dataset with an intermediate number of samples. The
results show that HCP was able to reveal more subgroups
than standard CP analysis. Next, we applied HCP on a
single-cell RNA-sequencing (scRNAseq) dataset with a
large number of cells, where the downsampling function-
ality was used for the analysis. The results show that HCP
classification was similar to the one from the original
study but cell clusters had larger separation under HCP
classification. Last, we tested the performance of HCP on
a large deoxyribonucleic acid (DNA) methylation dataset
to demonstrate its ability to reveal a great number of
subgroups in a completely unsupervised way.

Methods
A brief introduction to CP and the cola package
The HCP method proposed in this work is an extension of
the CP implemented in the R package cola. To make the
paper easy to read and self-explanatory, here we briefly
describe the methods and terms used in cola. We further-
more kindly refer readers to the original publication for
more details [3].

CP is applied on columns of matrix-like data to dis-
cover subgroups of samples e.g. a gene expression matrix
where rows are genes and columns are patients. Matrix
rows are firstly assigned with scores by a certain method
such as the widely used SD, then only the top n features
with the highest scores are used for CP. This selection is
called the top-value method in cola. We proposed a new top-
value method ATC (ability to correlate to other rows) in
cola which aims to capture top features that are poten-
tially highly correlated to other features and to provide
more consistent patterns for subgroup classification. For
row i in a matrix, denote the variable X as a vector of
absolute values of the correlation coefficients to all other
rows, the ATC score for row i is defined as:

ATCi = 1 −
∫ 1

0
FX(x)dx

where FX(x) is the cumulative distribution function (CDF)
of X. The aim of using the top n features for partitioning
is to keep the informative features that help partitioning
while removing other features with irrelevant noise. We
demonstrated that ATC can capture better and distinct
features for partitioning that cannot be captured by other
top-value methods [3].

After top n features are selected, a certain partition-
ing method is repeatedly applied on randomly sampled
subsets (e.g. 80%, either by rows or by columns) of fea-
tures and stability of the partitioning is evaluated from
the list of individual partitioning results i.e. how often
two samples stay in the same subgroup. According to
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the extensive benchmarks performed in our previous
study [3], we demonstrated that the spherical k-means
clustering (skmeans) could classify samples with higher
stability.

To obtain the optimal number of subgroups in CP, a list
of numbers of subgroups denoted as k is iterated. The
best k is evaluated by several metrics. Cola mainly uses
three metrics to determine the best k: mean silhouette
score, proportion of ambiguous clustering (PAC) score
and concordance scores, which measure the stabilities
of the CP from different aspects. The silhouette score
measures how close one sample is to its own subgroup
compared with the closest neighboring subgroup and the
mean of silhouette scores over all samples is used to
measure the overall stability of the classification; PAC
scores measure the proportion of ambiguous clustering’s
[11] where ambiguity is defined as two samples in the
same group with probability between 0.1 and 0.9 in the
repeated clusterings (the form 1-PAC is actually used
in cola to let the direction of changes be the same as
the other two metrics); and concordance scores measure
the agreement of individual partitions to the consensus
partition.

The cola package implements a comprehensive frame-
work and also an easy interface for CP analysis. It allows
various user-defined methods to be easily integrated into
different steps of the analysis e.g. for feature selection,
sample classification or definition of signatures. Cola pro-
vides a complete set of tools for comprehensive subgroup
analysis, including partitioning, signature analysis, func-
tional enrichment, as well as rich visualizations for inter-
pretation of the results. Moreover, to find the method that
best explains a user’s dataset, cola allows running multi-
ple methods simultaneously and provides functionalities
for straightforward comparisons of results.

CP methods perform weakly at simultaneously
distinguishing major and secondary subgroups
We demonstrated this issue with a simulated dataset.
Two random matrices denoted as M1 and M2 were gen-
erated with 100 columns and 20 columns, respectively.
Both matrices had 100 rows. M1 was simulated as a
set of samples from a two-condition comparison where
the first 50 columns were labeled as group ‘A1’ and the
second 50 columns were labeled as group ‘A2’. Rows
in the two groups were assigned with different levels
of difference. For row i in M1, values in group A1 were
generated from a normal distribution N(μ1,i, 1) and values
in group A2 were generated from N(−μ1,i, 1). To simulate
that rows in M1 had varying differences between the
two groups, the vector of mean values μ1 was generated
from the standard normal distribution N(0, 1), thus SD
of row i in M1 increased when μ1,i had a higher absolute
value. Similarly, M2 was also simulated as a set of sam-
ples from a two-condition comparison where the first 10
columns were labeled as ‘B1’ and the second 10 columns
were labeled as ‘B2’. To simulate M2 as a matrix with
smaller row differences, rows in M2 were generated from

N(0.5μ2,i, 1) and N(−0.5μ2,i, 1) where the vector of mean
values μ2 was also generated from N(0, 1). The order of
values in μ2 was set in a way that rank of the absolute
values of μ2 is identical to the reverse rank of the absolute
values of μ1 i.e. rank(|μ2|) ≡ rank(−|μ1|)). In this setting, if
row i showed the highest difference between group A1
and A2, it showed the smallest difference between group
B1 and B2.

M1 and M2 were merged into a single matrix denoted
as M where A1/A2 were groups with major differences
in M and B1/B2 showed relatively smaller differences.
Figure 1A illustrates the heatmap for the random
dataset. According to the column dendrogram on the
heatmap, the four groups are located in four separated
branches. The separation of four groups was also
confirmed by the principal component analysis (PCA) in
Figure 1B. The columns were separated into three groups
in the first principal component which explained 46%
of the total variance of M, whereas B1 and B2 were only
separated in the second principal component which only
explained 3% of the total variance. CP performed with
cola was applied to M where the top 50 rows with the
highest SD were selected as features. k-means clustering
was applied to classify samples and resampling was
applied 50 times. The CP result showed that the best
number of subgroups was three according to the
empirical cumulative density function (eCDF) curve of
the consensus values (the probability of two samples
in a same subgroup) where a horizontal line extended
almost from 0 to 1 for k = 3 (Figure 1C). This means
that in the three-group classification, in the repetitive
classifications by resampling from the complete feature
set, any sample pair was either always in the same group
(consensus value close to 1) or belonged to different
groups (consensus value close to 0). This could also
be confirmed by the membership heatmap with three
subgroups which visualized every single partitioning
result where the samples in all 50 partitionings almost
had the same classifications (Figure 1D). As a compar-
ison, when the number of subgroups was set to four,
the membership heatmap showed that in ∼90% of the
individual partitionings, either group1 or group2 was
further split into two smaller subgroups, whereas only
in 10% of all partitionings, B1 and B2 were correctly
separated. This misclassification resulted in CP failing to
assign B1 and B2 as stable classifications (Figure 1E), and
thus it rejected four as the optimal number of subgroups.
This problem was mainly due to the fact that almost all
the top 50 rows with the highest SD from M also had the
highest SD in M1, thus efficient to separate A1 and A2
as well; while these 50 rows had very small SD if only
counting M2, which in turn implied that these features
were not good at separating B1 and B2 (Figure 1F).

Of note, here we constructed a simulated dataset
with only four subgroups. In real-world datasets, if
the expected number of subgroups is large, it is highly
possible that hierarchical structures exist and secondary
subgroups would be hidden if applying standard CP to



4 | Gu and Hübschmann

Figure 1. CP methods perform weakly at simultaneously distinguishing major and secondary subgroups. (A) Heatmap of the simulated dataset. (B) PCA
of the simulated dataset. (C) Empirical CDF curves of the CP for each k. (D) Membership heatmap of the CP with k = 3. Columns are samples and rows
are individual partitions. (E) Membership heatmap of the CP with k = 4. In D and E, top annotations with names p1–p4 correspond to the probability of
samples belonging to each subgroup. Both membership heatmaps contain 50 individual partitionings on rows. (F) Comparison of the top 50 features in
different groups. These 50 features are selected by highest SD calculated from the complete simulated matrix. The three axes correspond to SD values
calculated in matrices of group A, group B and the complete matrix. The top 50 features are highlighted in red dots in the three axes. The same features
are connected between axes and the lines are colored by the rank difference of the SD values in the two corresponding matrices. The numbers on the
three axes represent ranges of SD values.

all samples. Thus, a method to capture the hierarchical
structure of data is needed. In Supplementary File 1, we
demonstrate that HCP is able to detect all four groups of
this random dataset.

CPs are less stable for larger k
The second issue for standard CP procedures is that
when the expected number of subgroups increases, the
probability of two samples being in different subgroups
tends to increase as well, which results in the decrease
of the classification stability for larger k. Here, we
demonstrate this issue with the human skeletal muscle
myoblasts (HSMMs) scRNAseq dataset [12], on which we
applied CP with ATC as top-value method and skmeans
as partitioning method. The number of subgroups was
iterated from 2 to 8. The heatmap of the top 1000 genes
with the highest ATC scores suggested there should
be a large number of subgroups (e.g. > 10) with clear

patterns (Figure 2A). However, the optimal number of
subgroups selected by CP only reached a small value.
Figure 2B–E illustrates the selection of the best k by
the eCDF curves and three metrics 1-PAC scores, mean
silhouette scores and concordance scores. CPs showed
high stability with k between 2 and 6 where 1-PAC scores,
mean silhouette scores and concordance scores were
very close to 1, although mean silhouette scores and
concordance scores decreased slightly when k increased.
When k exceeded 6, scores of 1-PAC, mean silhouette
and concordance dropped dramatically compared with
previous k. If the selection of the best k was based on
the maximal votes from the three metrics according to
their highest values, k = 2 was taken as the best result,
and if robustness was taken into consideration, k = 6
might be the best result. Nevertheless, the two k (2
and 6) were still far away from the expected optimal
k, which could not be identified with high stability in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac048#supplementary-data
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Figure 2. Illustration of the issue of large k in CP with the HSMM scRNAseq dataset. (A) Heatmap of the top 1000 genes with the highest ATC scores. (B)
eCDF curves. (C) 1-PAC scores versus k. (D) Mean silhouette scores versus k. (E) Concordance scores versus k. (F) Integrated visualization of the clustering
results. Each column corresponds to the results for a specific k. For each k, from the top to bottom, there are the following plots: (i) an annotation
showing the probability of samples in each subgroup; (ii) a one-row annotation showing the consensus classification; (iii) a membership heatmap that
visualizes all 50 individual partitionings; (iv) the consensus heatmap that visualizes the probability of every pair of samples to be in the same subgroup.
For each k, columns have the same orders for all plots.

the framework of CP. The decrease in stability could also
be observed in Figure 2F which directly visualizes the
membership of every individual partition (membership
heatmap) and the probability of every two samples in
the same subgroup (consensus heatmap). It shows that
when k becomes larger (e.g. k = 7 and 8), samples tend
to show more ambiguous classifications in individual
partitionings.

This example implies CP has a preference to assign
high stability to small k, whereas it is difficult for large k
to reach stability. This issue can be solved by applying CP
with a hierarchical procedure where at each step of the
iteration, CP is only applied with small k that ensures the
gain of stability, and more subgroups are found in later
steps.

Workflow for HCP
We propose a method named HCP to perform CP via a
hierarchical procedure. The HCP procedure is illustrated
in Figure 3. The complete matrix is taken as the input
of the whole analysis and the full set of samples is
taken as the root node labeled as ‘0’ in the hierarchy.
CP with a single combination of a top-value method
and a partitioning method or multiple combinations of
both methods are applied to the matrix with a list of k
(Figure 3, step 1) and the best k from the best method is
selected (Figure 3, step 2). If there are multiple methods

showing stable partitionings, the one with the highest
number of signatures is selected. Note k should be set up
to a small value. After the best partitioning is selected,
next there are two filters to decide whether the samples
should be split according to the classification. First the
stability measured by mean silhouette score is tested
against a cutoff (Figure 3, step 3). If the best partitioning is
not stable, the whole set of samples are treated as unclas-
sifiable and the node is treated as a leaf in the hierarchy.
If it is stable, next the biological meaningfulness of the
classification is tested by the number of signatures in the
classification where signatures are the features showing
significant differences between subgroups (Figure 3, step
4). If the number of signatures is sufficient, the partition-
ing result is accepted and subgroups are taken as its child
nodes (Figure 3, step 5). For each child node, the number
of samples of the corresponding submatrix is then tested.
HCP is iteratively applied to each child node only if
there are enough samples (Figure 3, step 6). In HCP, these
filters can also be applied when the subgroup hierarchy is
completely generated and users can manually fine-tune
the hierarchy by merging or further splitting the nodes.

In HCP, node labels are encoded as a list of digits. The
number of digits corresponds to the depth of the node in
the hierarchy and the value of the digits corresponds to
the subgroup index on the node e.g. a label of ‘012’ means
the node is the second subgroup of the partitioning that
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Figure 3. Workflow for HCP. The steps are as follows: (a) Apply CP to the
data matrix with one combination of top-value method and partitioning
method or multiple combinations of methods. (b) Pick the partitioning
that shows the best result. (c) Test whether the best partitioning is stable.
(d) Test whether the best partitioning generates a sufficient number of
signatures. (e) If criteria in steps 3 and 4 are passed, each subgroup in the
partitioning is taken as a child node in HCP. (f) For each submatrix, test
whether the number of columns is sufficient. If yes, HCP is applied to the
child nodes recursively.

comes from the first subgroup of the partitioning on the
complete dataset.

Automatically selecting the number of top
features
In the iterative execution of CP on every submatrix,
top features are firstly selected. Generally, secondary
subgroups have less efficient features for classification,
thus setting the same number of top features for all
submatrices would bring additional noise and destabilize
the classification for secondary subgroups. Therefore,
a method is needed for automatic selection of proper
numbers of top features on each node in HCP. This cor-
responds to the task of selecting a cutoff for filtering
top-values. A reasonable way is to select the ‘elbow’ of
the top-value curve if top-values are sorted increasingly.
Here we use the method proposed in Satopaa et al. [13]. It
selects the point that has the largest vertical offset to the
straight line that connects the points with the minimal
and the maximal top-values. More details can be found
in Supplementary File 2.

CP with downsampling for large datasets
CP is by-nature a time-consuming analysis. For large
datasets with huge numbers of samples, in early steps
of the hierarchical procedure, numbers of samples in the
subsets could still be large. To improve the efficiency of
partitioning on large datasets, we propose a strategy that
only applies CP to a small subset of samples that are uni-
formly picked from the complete set. Later class labels
of deselected samples are predicted by the classification
from selected samples. The prediction is based on the
signature centroid matrix. For a selected k, signatures that
significantly discriminate k subgroups are first extracted.
The signature centroid matrix is defined as a k-column
matrix where each column is the centroid of the confi-
dent samples i.e. those with silhouette score > 0.5, in the
corresponding subgroup (here, the centroid is the mean
across samples). The class prediction is performed as
follows: For each deselected sample, we test which signa-
ture centroid the current sample is the closest to. For the
vector denoted as x which corresponds to a deselected
sample, to predict the class label, the distance calculated
by e.g. Euclidean, cosine or correlation methods to all k
signature centroids is calculated and denoted as d1, d2,
. . . , dk. The class with the smallest distance is assigned
to the sample:

arg min
i∈{1,...,k}

di

Only using a small subset of samples for classification
might completely miss samples in small subgroups, but
they can be first attributed to the main subgroup that
they are closest to and then they can be more precisely
attributed in later steps of HCP.

Of note, in the vignette of the cola package, we addi-
tionally proposed a method that calculates P-values for
the class label assignment by permuting rows of the
signature centroid matrix. It provides confidence for the
class label assignment; however, the P-value calculation
is ignored in the process of HCP because all deselected
samples are assigned to the corresponding subgroups
regardless of their confidence.

Besides the centroid-based method for predicting class
labels of deselected samples, cola additionally supports
utilizing machine learning methods such as support-
ing vector machine (SVM) and random forest. Taking
the selected samples as the training set, the class label
prediction for the deselected samples is based on the
signature matrix where features show significant differ-
ences between subgroups in the training set. Thus, for
the machine learning methods, as for the training set,
it is very easy to find hyperplanes that well separate
classes. On the other hand, the classification is based
on a randomly sampled subset of the original data, if
the features can well separate subgroups in the training
set, it is very likely that features would have very simi-
lar patterns in the deselected samples. Therefore, using
the centroid-based method or SVM/random forest would

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac048#supplementary-data
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give very similar classifications. More explanations and
comparisons can be found in Supplementary File 9.

Comparison of different classifications
In the Results section below, we will compare HCP classi-
fications to the ones from the respective original studies.
To this end, here we define a similarity measure for
pairwise comparisons of classifications. For two classifi-
cations denoted as C1 and C2 with number of subgroups
n1 and n2, respectively, let gi and hj be the ith group in
C1 and the jth group in C2. Since different classification
methods can hardly generate consistent classifications
for all subgroups, especially when n1 and n2 are large, we
define gi to completely agree with hj if gi is included in hj

i.e. gi ∈ hj, thus the overlap coefficient is used to mea-
sure the similarity of subgroups of two classifications.
Assume A is the set of samples in gi and B is the set of
samples in hj, the overlap coefficient denoted as ai,j is
defined as:

ai,j = |A ∩ B|
min (|A| , |B|)

where |A| and |B| are the numbers of samples in the two
sets. The agreement of gi with C2 is calculated as the
maximal overlap coefficient across all subgroups in C2:

si,C2
= maxn2

j ai,j.

Then the overall similarity of C1 to C2 is calculated
as the mean of the agreement of each subgroup to C2

weighted by the subgroup size:

sC1,C2 =
∑n1

i kisi,C2∑n1
i ki

where ki is the size of gi. We name it the overall clas-
sification agreement in the paper. The definition of the
overall classification agreement is not exactly symmetric
i.e. sC1,C2 �= sC2,C1 , but the two values are very similar.
A detailed explanation of the similarity measure can be
found in Supplementary File 7.

Implementation of HCP in cola
HCP has been integrated in cola from version 2.0.0 with
an object-oriented implementation. The main function
hierarchical_partition() performs the analysis and returns
a HierarchicalPartition object. Cola provides rich visual-
ization utilities on the object and we aimed at imple-
menting the application programming interface for the
functions compatible with those in standard cola analysis
so that it is seamless to switch analysis methods. To
name a few: collect_classes() draws the hierarchy of the
classification; get_signatures() calculates and visualizes
the rows that are significantly different between sub-
groups; dimension_reduction() performs dimension reduc-
tion analysis to visualize how well the subgroups are
separated; top_rows_overlap() compares the top features

on nodes since submatrices on different nodes may have
different sets of top features and functional_enrichment()
automatically applies function enrichment on the signa-
tures if they can be mapped to genes. Example figures
can be found in Figure 4.

Similar to standard CP analysis in cola, there is also a
cola_report() function that is applied on the Hierarchical-
Partition object. It automatically performs the complete
analysis and generates all the tables and plots in an
HTML report. Thus, to perform a HCP analysis, users
only need a minimal set of code of using two functions,
such as:

rh = hierarchical_partition (matrix, . . . )
cola_report(rh, . . . )
In Figure 3, steps 3, 4 and 6 validate whether HCP

should continue on the current node. The validation
can also be applied after the classification hierarchy is
completely generated. In most functions, users can con-
trol what level in the hierarchy they want by adjusting
the number of samples or the number of signatures.
Also the subgroup hierarchy can be manually merged
by merge_node() and extended by split_node() functions on
specific nodes.

Results
Comparison to standard CP – a case study
In Figure 2, we demonstrated that CP was difficult to
simultaneously identify a large number of subgroups
with the HSMM dataset [12]. Here we applied HCP to the
same dataset. For partitioning at the level of every node
in the subgroup hierarchy, ATC was chosen as the top-
value method and skmeans was chosen as the partition-
ing method.

HCP identified 12 subgroups which were well sepa-
rated in the t-distributed stochastic neighbor embedding
(t-SNE) plot (Figure 4A); for a comparison, CP only sug-
gested 6 as the optimal number of subgroups (Figure 2).
An overlap of the top features extracted on non-leaf
nodes in the subgroup hierarchy showed each subset
of samples had its own specific features (Figure 4B).
For example, on node ‘02’, 50.1% out of the 1139 top
features were unique and not present in any of the other
nodes (Figure 4B). The signature heatmap (Figure 4C)
which included genes with significant differences in
at least two subgroups showed that the 12 subgroups
were well separated and had distinct patterns. The
functional enrichment on the signature genes also
showed they were biologically meaningful e.g. genes in
row group ‘km1’ were enriched with functions related
to muscle cell development and genes in row group
‘km2’ were enriched with functions of cell cycle and
metabolic process (Figure 4D). HCP involves multiple
executions of CP on nodes with random resampling.
Figure 4E demonstrates that random sampling had
almost no influence on the classification of the HSMM
dataset, where HCP was repeatedly executed 20 times
and the classification showed high stability with 97.9%

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac048#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac048#supplementary-data
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Figure 4. Application of HCP to the HSMM dataset. (A) t-SNE plot of the top 1000 genes with the highest ATC scores. The plot was made by the function
dimension_reduction(). (B) UpSet plot showing the overlap of top features selected on non-leaf nodes by HCP. Only combinations with sizes larger than
20 are included in the plot. The plot was made by the function top_rows_overlap(). (C) Heatmap of the signature genes according to HCP classification.
The dendrogram on top of heatmap corresponds to the hierarchy of the HCP classification. The bottom annotation contains CP classifications with two
and six subgroups. Rows were partitioned by k-means clustering into five clusters. The plot was made by the function get_signatures(). (D) Gene ontology
(GO) enrichment of the signature genes. The left heatmap visualizes the FDRs from the enrichment analysis on genes from each ‘km’ group. The right
heatmap visualizes the similarity of GO terms where the GO terms are clustered by their similarities. The word clouds contain overrepresented keywords
from the significant GO terms. The analysis was performed by the function functional_enrichment() and visualized with the simplifyEnrichment package
[14]. (E) Stability of the HCP classification from 20 repetitive runs.

concordance (measured as the average percent of
samples having the same classifications).

Application to a large scRNAseq dataset
We applied HCP on the peripheral blood mononuclear
cells (PBMCs) scRNASeq dataset with 2638 cells [15].
Whenever the subset corresponding to a node had
more than 500 cells, downsampling was turned on
to only randomly pick 500 cells. ATC was used as
the top-value method and skmeans was used as the
partitioning method. We compared HCP classification
to CP classification as well as the original classification
analyzed with the Seurat package [15, 16]. A table of class
labels is provided in Supplementary File 8.

HCP identified seven subgroups (Figure 5A), whereas
CP only identified four subgroups (Figure 5C) as the opti-
mal result, where group ‘2’ in CP was additionally classi-
fied into three subgroups in HCP labeled ‘0211’, ‘0212’ and
‘022’, and group ‘3’ in CP was additionally classified into

two subgroups in HCP labeled ‘041’ and ‘042’. According
to the point distribution in Figure 5C, there were indeed
four well separated major subgroups, but HCP revealed
more secondary subgroups.

When comparing the HCP classification to a classi-
fication obtained with Seurat [16], most samples had
similar classifications, except that group ‘01’ in HCP
was split into two groups under Seurat (‘0’/‘2’) and some
disagreement existed between HCP ‘0212’/‘022’ and Seu-
rat ‘1’/‘7’ (Figure 5A, B and D). The overall classifica-
tion agreement between HCP classifications and Seu-
rat is 0.947. In Supplementary File 4, we demonstrate
that HCP node ‘01’ could be further split into two sub-
nodes (‘011’/‘012’) but with less stability. Classification of
‘011’/‘012’ was similar to Seurat ‘0’/‘2’ (80.1% of samples
had the same classifications), but samples were more
separated under ‘011’/‘012’ classification than by Seurat.
We also compared the HCP group ‘0212’/‘022’ and Seurat
group ‘1’/‘7’ in Supplementary File 4. We found the two

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac048#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac048#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac048#supplementary-data
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Figure 5. Application of HCP to a PBMC scRNAseq dataset. (A–C) t-SNE plot of the top 1000 genes with the highest ATC scores. The colorings are based
on HCP classification, Seurat classification and CP classification. (D) Correspondence between HCP and Seurat classifications. (E) Signature genes under
HCP classification. Rows were partitioned by k-means clustering into seven clusters. (F) Stability of the HCP classifications from 20 repetitive runs.

classifications on this subset of samples generated differ-
ent sets of signature genes and signature genes from the
HCP classification were enriched with more significant
biological functions.

Next, we annotated each cell to a cell type with the
SingleR package [17] and cell type annotation was added
to the bottom of the heatmap in Figure 5E. We found that
the classification from HCP had a better agreement to
cell types. Seurat additionally split the ‘T cell’ group into
two subgroups labeled as ‘0’ and ‘2’. However, according
to the heatmap in Figure 5E, cells in Seurat group ‘0’ and
‘2’ showed overall consistent patterns. Also, according
to the heatmap of cell markers from the original Seurat
analysis (the second last figure in [15]), cell markers had
very similar expression patterns for group ‘0’ and ‘2’.
Thus, we would conclude that HCP generated a better
classification based on previously known cell types.

For this dataset, random sampling was additionally
applied when the number of cells on a node was larger
than 500, which brought a second layer of randomness.
Nevertheless, Figure 5F illustrates that the classification
was stable among 20 repetitive HCP runs, which implies
that if there exists a clear classification, downsam-
pling won’t bring significant noise from randomization

(concordance of the classifications from 20 repetitive
runs was 99.1%).

Application to a methylation dataset with a large
number of subgroups
We applied HCP to a DNA methylation array dataset
of central nervous system tumors (CNSTs) with 2803
samples [18]. The dataset contains 14 different tumor
types (including controls) which were additionally clas-
sified into 91 subgroups based on methylation profiles
(all samples had tumor cell content ≥70%. The corre-
spondence between tumor types and methylation classes
is illustrated in Supplementary File 5). The classification
in the original study had been performed in a semi-
supervised way where tumor types were predefined and
unsupervised clustering was applied only within each
of the tumor types. The aim of this analysis here is
to see whether HCP can recover such a great number
of subgroups in a completely unsupervised way. In the
analysis, we only considered CpG probes located in CpG
islands. One reason was to reduce the dataset; another
reason was that we have demonstrated it might be more
proper to analyze CpGs for different CpG features (i.e.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac048#supplementary-data
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CpG islands, shores and seas) separately since they might
generate different classifications and correspond to dif-
ferent biological meanings [3]. The final matrix for HCP
analysis contained 117 976 CpG probes. In the analy-
sis, the configurations were as follows: for CP executed
on each node, two top-value methods (SD and ATC)
and two partitioning methods (kmeans and skmeans)
were tested because SD/kmeans are popular in current
studies of methylation data analysis and we demon-
strated ATC/skmeans performed better for identifying
subgroups [3], thus the four combinations of methods
for CP were used and HCP automatically picked the one
with the best result on each node. Matrix rows were not
scaled because methylation data were all in the same
scale i.e. [0, 1]. For every submatrix, a filtering step was
applied ahead of CP which only took the top 30 000 probes
with the highest SD values. Later, the top 1000 features
extracted by SD/ATC from those 30 000 probes were
used for partitioning. To prevent ATC from extracting
rows showing high correlation but with small absolute
differences which might come from systematic batches,
the difference of methylation between subgroups for
signature probes was required to be >0.25 for every
selected row. And finally, the minimal number of sig-
nature probes was set to >1000. When the number of
samples in a submatrix was larger than 500, downsam-
pling was applied. A table of class labels is provided in
Supplementary File 8.

HCP identified in total 92 subgroups. In the original
study, samples were classified into 14 different tumor
types. Figure 6A demonstrated the agreement between
tumor types and HCP classification. It shows that in
most cases, samples in the same HCP subgroup always
belonged to a single tumor type, with very few excep-
tions. The overall classification agreement for HCP clas-
sification to tumor types was 0.903. Only 15/92 (16.3%)
HCP subgroups (covering 15.2% of all samples) were less
compatible with tumor types as defined by an overlap
coefficient < 0.75 (Figure 6C) where overlap coefficient
measured similarities between tumor types and HCP
classification.

The 14 tumor types had additionally been classified
into 91 subgroups (methylation classes) based on
methylation profile in the original study (also see
Supplementary File 5). Figure 6B illustrates the corre-
spondence between HCP classification and methylation
classes. The overall classification agreement was 0.868
and only 17/92 (18.5%) HCP subgroups (covering 16.5%
of all samples) were less compatible with methyla-
tion classes as defined by overlap coefficient < 0.75
(Figure 6D) where overlap coefficient measured sim-
ilarities between methylation classes and HCP clas-
sification. Twenty-nine HCP subgroups had a one-to-
one mapping to methylation classes, 11 methylation
classes covered multiple HCP subgroups and 6 HCP
subgroups covered multiple methylation classes, with
overlap coefficient > 0.75 (Figure 6D).

Discussion
With cohort studies increasing rapidly in size, new
possibilities for detecting more subtle subgroups that
have specific patterns arise. In cancer studies, tumor
subtypes were frequently studied [19, 20]. However, due
to the complex mechanisms of tumor generation and
growth e.g. tumor microenvironment, inter/intracell
interactions, spatial as well as temporal patterns, tumors
have different molecular profiles in the respective
scenarios. It is thus important to identify these sub-
types with high specificity, which also contributes to
more precise diagnosis for tumors [21, 22]. Single cell
technologies now allow researchers to simultaneously
measure a great number of cells, which also makes it
possible to detect the hierarchy of various cell types
and organs [23]. CP methods, although they have been
successfully applied to reveal tumor subtypes and
cell types, are still weak at identifying more subtypes
which show more specific and subtle differences. A
classification with hierarchical methods can solve this
problem [8]. In this work, we proposed a new method
named HCP which applies CP in a hierarchical procedure.
It combines the advantages of evaluating the stability
of a classification as well as revealing subgroups with
multi-level differences. We applied HCP on real-world
datasets and it showed HCP efficiently revealed more
subgroups and had more meaningful classifications
compared with those described in the original studies. In
Supplementary File 3, we additionally demonstrated the
use of HCP on 66 real-world datasets including scRNAseq
data and methylation data.

HCP has the limitation that misclassifications in early
steps in the hierarchical process would accumulate and
affect the downstream classifications. In early steps of
HCP, when the real number of subgroups is higher than
the number of subgroups tried on the node, subgroups
with relatively similar patterns would be merged into
larger ones and they will be separated later. If a subgroup
locates between two major subgroups with a less consis-
tent pattern, it is possible that the subgroup would be
split into two parts and each part is partially assigned to
a major subgroup. Once they are separated, they cannot
be merged back in later steps of HCP. One solution is
to increase the maximal k tried on each node, and the
other solution is to try multiple partitioning methods
simultaneously on the node where the partitionings with
misclassification tend to have less stability and they can
be automatically filtered out.

CP is a multi-step analysis where selection of param-
eters on each step might affect the final partitioning
result. HCP involves a list of executions of CP on nodes
of the subgroup hierarchy, thus CP should be applied in
a way that parameters are optimally selected to ensure
that subgroups are successfully separated on each node
and that separation can be extended sufficiently well in
the downstream part of the hierarchy. In HCP, several

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac048#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac048#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac048#supplementary-data
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Figure 6. Comparison of classifications on the CNST dataset. (A) Comparison of classifications between tumor types and HCP classification. (B)
Comparison of classifications between methylation classes and HCP classification. (C) Overlap coefficient between tumor types and HCP classification.
Row and column orders in C are the same as in A. (D) Overlap coefficient between methylation class and HCP classifications. Row and column orders
in D are the same as in B.

strategies were implemented. The number of top fea-
tures for each submatrix was automatically selected, to
exclude those features that might bring additional noise
to classification for secondary subgroups. Also, instead
of using 1-PAC score as in standard CP analysis, the
mean silhouette score was used to validate the stability
of a classification because silhouette scores provide a
stricter measure for the stability. Furthermore, silhouette
scores lead to selection of smaller but more stable k, and
more subgroups can be found in the later steps of the
hierarchical procedure.

Highly heterogeneous data might result in many iter-
ations in the hierarchical process and generate large
numbers of subgroups. As demonstrated in the analysis
of the Glioblastoma (GBM) microarray dataset from the
Cancer Genome Atlas (TCGA) [24] (Supplementary Files 3
and 6), standard CP generated 4 subgroups as the best
result, whereas HCP generated 16 subgroups where the
mean subgroup size was only 11. Although on one hand
this could be an example of showing standard CP not
being able to detect a sufficiently large number of sub-
groups, on the other hand this could also be reflective
of HCP over classifying samples and losing generality
of the classification. In that example, the separation of
the 16 subgroups by HCP was biologically reasonable
and large numbers of signature genes (> 600 under false
discovery rate (FDR) < 0.05) supported the classification

on the corresponding nodes, whereas a too specific clas-
sification would have increased the difficulty to interpret
the results and to extend to different studies based on the
same biological entities. To balance the generality and
specificity of the classification which is a choice based on
the level of heterogeneity users expect, a simple solution
is to set a minimal number of samples on nodes; another
solution is to filter the generated hierarchy by the num-
ber of signatures on each node, which is an indication of
the biological importance of the classification; generally,
the number of signatures decreases when subgroups
have smaller separation. To help users to adjust the level
of heterogeneity of classifications, HCP in cola allows to
extract and analyze the classification at a self-specified
level of subgroup hierarchy.

For large numbers of samples, we proposed to apply
CP only to a subset of randomly sampled samples. Later
class labels of the deselected samples were predicted
based on the classification of selected samples. If major
subgroups are well separated, downsampling CP tends
to retain the classification of major groups, whereas if
classification is not stable for the complete set of sam-
ples, neither is classified on randomly selected subsets.
Thus, downsampling is a good strategy for data with
clear structures for reducing running time. For heteroge-
neous datasets with large numbers of subgroups, down-
sampling might completely deselect samples in small

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac048#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac048#supplementary-data
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subgroups; however, they can be attached to major sub-
groups in the class label prediction step and classified in
later steps of HCP. Therefore, downsampling CP is a good
companion of HCP.

Conclusion
In this work, we proposed a new method that extends
CP via a hierarchical procedure. It can reveal more sub-
groups with various levels of differences which are nor-
mally difficult to detect by standard CP methods. We
demonstrated the usage of HCP with real-world exam-
ples. We also demonstrated its ability to identify large
numbers of subgroups with high agreement to the orig-
inal studies. The method has been implemented as an
extension of the previously published cola package. The
functionality of HCP was designed to provide both ease
and comprehensiveness. We believe it will be a conve-
nient and powerful tool for users to dive deeper into their
data and to reveal more structures.

Key Points

• CP is widely used in high-throughput data analysis to
reveal subgroups, but it is weak at identifying large num-
bers of stable subgroups with various levels of differ-
ences.

• We proposed a new method named HCP that applies CP
in a hierarchical procedure. It can distinguish subgroups
with different levels of differences and reveal more sub-
groups with more specific patterns.

• We benchmarked HCP on real-world datasets and it
showed HCP efficiently revealed more subgroups and
generated more meaningful classifications compared
with current ones from original studies.

• The HCP method has been implemented as an extension
of the previously published R package cola; it provides
an easy-to-use user interface and it still keeps the com-
prehensiveness of the analysis. HCP can automate the
analysis only with a minimum of two lines of code,
which generates a detailed HTML report containing the
complete analysis.

Supplementary Data
Supplementary data are available online at https://
academic.oup.com/bib.

Funding
National Center for Tumor Disease (NCT) Molecular Pre-
cision Oncology Program)

Data Availability
The HSMM single-cell RNA-Seq dataset is available in the
HSMMSingleCell Bioconductor package [12]. Expression
values were normalized by log10(FPKM+1) and only

the protein-coding genes were used. The PBMC dataset
and the Seurat classification were obtained according
to the tutorial of the Seurat package (https://satijalab.
org/seurat/articles/pbmc3k_tutorial.html). The CNST
dataset [18] was downloaded from the GEO database with
accession ID GSE90496. The source and processing of the
66 test datasets can be found in Supplementary File 3
with runnable code.

HCP has been implemented in the cola package
from version 2.0.0 (https://bioconductor.org/packages/
cola/). The website of HCP is at https://github.com/
jokergoo/cola_hcp. The HTML reports for 66 test datasets
are publicly available at https://cola-rh.github.io/. The
scripts to perform the complete analysis are available
at https://www.github.com/cola-rh/manuscript. The
supplementary files are also available at https://cola-
rh.github.io/supplementary/.
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