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Background and Objective: Cluster-based analysis, or community typing, has been
attempted as a method for studying the human microbiome in various body niches
with the aim of reducing variations in the bacterial composition and linking the defined
communities to host health and disease. In this study, we have presented the bacterial
subcommunities in the healthy and the diseased population cohorts and have assessed
whether these subcommunities can distinguish different host health conditions.

Methods: We performed community typing analysis on the sputum microbiome dataset
obtained from a healthy Korean twin-family cohort (n = 202) and an external chronic
obstructive pulmonary disease (COPD) cohort (n = 324) and implemented a networks
analysis to investigate the associations of bacterial metacommunities with host health
parameters and microbial interactions in disease.

Results: The analysis of the sputum microbiome of a healthy Korean cohort revealed
high levels of interindividual variation, which was driven by two dominant bacteria:
Neisseria and Prevotella. Community typing of the cohort samples identified three
metacommunities, namely, Neisseria 1 (N1), Neisseria 2 (N2), and Prevotella (P), each
of which showed different functional potential and links to host traits (e.g., triglyceride
levels, waist circumference, and levels of high-sensitivity C-reactive protein). In
particular, the Prevotella-dominant metacommunity showed a low-community diversity,
which implies an adverse health association. Network analysis of the healthy twin
cohort illustrated co-occurrence of Prevotella with pathogenic anaerobic bacteria; this
bacterial cluster was negatively associated with high-density lipoproteins but positively
correlated with waist circumference, blood pressure, and pack-years. Community
typing of the external COPD cohort identified three sub-metacommunities: one
exclusively comprising healthy subjects (HSs) and the other two (CS1 and CS2)
comprising patients. The two COPD metacommunities, CS1 and CS2, showed different
abundances of specific pathogens, such as Serratia and Moraxella, as well as differing
functional potential and community diversity. Network analysis of the COPD cohort
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showed enhanced bacterial coexclusions in the CS metacommunities when compared
with HS metacommunity.

Conclusion: Overall, our findings point to a potential association between pulmonary
Prevotella and host health and disease, making it possible to implement community
typing for the diagnosis of heterogenic respiratory disease.

Keywords: sputum microbiome, community typing, Prevotella, metacommunity, inflammation, network, COPD
metacommunity in sputum microbiome

INTRODUCTION

Advances in high-throughput sequencing in the field of human
microbiome research have expanded our knowledge of host–
microbe interactions and their effects on human health and
disease. The respiratory tract, which has one of the largest
surface areas in the human body (70 m2) (Huffnagle et al.,
2017), provides a distinct ecological habitat for microbes. In
particular, the upper respiratory tract (nasal and oral passages),
which connects the external environment to the deeper lower
airways, undergoes constant interaction with inhaled microbes
and resident bacteria. Furthermore, because sputum samples
can be collected in a non-invasive way, researchers have shown
interest in investigating the microbiome of the upper respiratory
tract to assess its value as a biomarker for lung cancer,
tuberculosis, asthma, cystic fibrosis, and chronic obstructive
pulmonary disease (COPD) (Krishna et al., 2016; Cameron
et al., 2017; Leitao Filho et al., 2019; Pang et al., 2019; Quinn
et al., 2019). Of the pulmonary diseases, COPD has had the
fourth highest global mortality rate since 2015 (Sidhaye et al.,
2018). The unique characteristics of this disease stem from its
clinical heterogeneity with respect to symptoms, progression, and
survival; indeed, there are up to seven different phenotypes of the
disease (Han et al., 2010; Mirza and Benzo, 2017). Because of this
complexity, medical treatment is still at an early stage, making
prevention or rapid diagnosis prior to disease exacerbation the
best treatment strategy.

The human microbiome harbors high levels of interindividual
variation, which complicates linkage with host features.
To separate disease-relevant/-specific signals linked to
the microbiome from the background noise caused by
interindividual variations, attempts have been made to
stratify host populations in the gut, vagina, lung, and saliva
microbiomes according to community composition (Arumugam
et al., 2011; Ravel et al., 2011; Segal et al., 2013; Xun et al.,
2018). In particular, a unique microbial cluster in the gut
has biological linkages with intestinal activity, host health,
and disease (Vandeputte et al., 2017; Valles-Colomer et al.,
2019; Vieira-Silva et al., 2019). Therefore, to find out whether
the highly variable sputum microbiota can be grouped and
connected to host health status, we first implemented community
typing of 202 sputum microbiome sequencing data from the
Healthy Twin Study (Sung et al., 2006) and identified three
distinct metacommunities. Interestingly, a Prevotella-dominant
metacommunity with the lowest community diversity showed
potential associations with smoking, hsCRP, triglyceride (TG)

levels, and waist circumference. Next, we hypothesized that
patients with COPD would harbor multiple metacommunities,
in line with the heterogenous disease traits of COPD. The
same community typing approach applied to an independent
COPD cohort identified two sub-metacommunities showing
distinct functional differences. Taken together, this study
provides evidence of a potential link between Prevotella and host
(pulmonary) health and raise the possibility that community
typing can help in distinguishing between heterogeneous host
respiratory health disorders, making it useful for prognostic or
diagnostic purposes.

MATERIALS AND METHODS

Study Cohorts
Sputum sequencing data generated from the Healthy Twin
Study in Korea were used for this study (European Nucleotide
Archive; ERP010734) (Sung et al., 2006; Lim et al., 2016).
Subjects were excluded from this study if they had received
antibiotic treatment or cold medication within the past
3 months. Also, subjects with symptoms of airway diseases
such as asthma or COPD were excluded. The sequencing
data were further filtered to ensure that only subjects aged
30–60 years old were included. A gender ratio was balanced
using the optmatch R package (Hansen and Klopfer, 2006).
Consequently, sequencing data from 202 participants (including
53 monozygotic and 12 dizygotic twin pairs and their
family members) and their associated metadata were analyzed.
Additional sputum sequencing data from an external COPD
cohort (n = 324) (Haldar et al., 2020) were obtained from the
Sequence Read Archive [under accession numbers PRJNA491861
(healthy samples, n = 121) and SRP102480 (COPD samples,
n = 203)].

16S rRNA Sequence Data Analysis
Raw sequence data were processed further using QIIME (version
1.8.0) (Kuczynski et al., 2011). Operational taxonomic unit
(OTU) picking was performed by clustering sequences at
97% similarity. Taxonomic classification of each OTU was
performed using the Ribosomal Database Project classifier
(Wang et al., 2007) and the Greengenes database (version
13_5) (DeSantis et al., 2006). An OTU count table was
then agglomerated at the genus level before downstream
analysis. Sequence files from the COPD cohort were analyzed
following DADA2 pipelines (1.12.1) using default settings
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FIGURE 1 | Variations in the microbiota in sputum samples collected from a healthy Korean cohort. (A) Heatmap showing the top 10 most abundant bacteria in the
sputum microbiota. (B) A non-metric multidimensional scaling (NMDS) plot in which metacommunities are assigned a color. Arrows indicate the top 10 bacteria
contributing to community variation. (C) Metacommunity diversity at the genus level. (D) Different inferred functional characteristics of the sputum microbiome
among metacommunities. A principal coordinates analysis (PCoA) plot showing the distribution of functional features of metacommunity. *q < 0.001.
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TABLE 1 | Demographic and clinical metadata in a metacommunity.

Metacommunity (mean ± s.d.)

Total N1 N2 P q-value

Sex

Male 101 11 42 48

Female 101 23 49 29

Total 202 34 91 77

Age 45.56 ± 10.19 46.68 ± 10.44 44.23 ± 8.82 46.64 ± 11.45

BMI 23.68 ± 3.17 22.86 ± 2.15 23.38 ± 3.12 24.39 ± 3.47

FBS (mg/dL) 100.10 ± 33.88 95.97 ± 16.97 95.20 ± 20.62 107.71 ± 48.09

HDL (mg/dL) 49.89 ± 12.76 52.79 ± 13.11 50.68 ± 13.62 47.68 ± 11.26

TG (mg/dL) 135.20 ± 92.51 119.15 ± 53.03 121.75 ± 88.25 158.19 ± 106.40 *

Waist (cm) 81.34 ± 9.51 78.76 ± 6.47 80.01 ± 9.07 84.04 ± 10.55 *

hsCRP (mg/L) 1.56 ± 4.56 0.87 ± 1.31 0.94 ± 2.12 2.58 ± 6.87 *

SBP (mm Hg) 114.31 ± 15.02 114.06 ± 16.85 112.41 ± 13.54 116.68 ± 15.68

DBP(mm Hg) 71.54 ± 10.41 73.12 ± 8.79 70.00 ± 10.10 72.68 ± 11.27

s.d., standard deviation.
FBS, fasting blood sugar; HDL, High-density lipoprotein cholesterol; TG, triglyceride; Waist, waist circumference; hsCRP, high-sensitivity C-reactive protein; SBP, systolic
blood pressure; DBP, diastolic blood pressure.
*q < 0.1.

(Callahan et al., 2016). The trim parameters for the healthy
samples were as follows: sequence truncate 200 bp for both
the forward and reverse sequence reads; trim left 10. Trim
parameters for patients with COPD were as follows: sequence
truncate 150 bp for forward and 130 bp for reverse sequence
reads; trim left 10.

Functional Potential of the Sputum
Microbiota
The functional potential of the sputum microbiota was predicted
using Piphillin based on the 16s rRNA sequences (Iwai et al.,
2016). Piphillin infers metagenomic functions using OTU counts
and their representative sequences; it then matches the sequences
to the nearest neighbor in the genome database. Prior to
analysis, OTUs observed in less than 50% of samples were
excluded. A 95% identity cut-off was used to determine the
similarity between 16s rRNAs and the reference genome database.
Amplicon sequence variant sequences obtained for the COPD
cohort were implemented at a 97% identity cutoff. For functional
analysis, the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database was used at the pathway level.

Identification of Bacterial Clusters
The weighted correlation network analysis (WGCNA) was
performed to determine bacterial interactions with the host
(Langfelder and Horvath, 2008). This software implements a
signed weighted co-occurrence network in which the negatively
connected nodes are considered unconnected. Genera observed
in < 50% of samples were excluded to reduce false positives
due to low abundance taxa; data were then subjected to
Hellinger transformation and were log-scaled. Soft-thresholding
power (β = 3), which satisfies the scale-free topology of the
network, was determined using the pickSoftThreshold function.
A signed adjacency matrix was then converted to a Topological

Overlap Matrix and used to define bacterial clusters based
on hierarchical clustering (average linkage). Association of the
bacterial clusters with clinical variables was determined by
correlating the eigenvector of each cluster with host variables.

Network Analysis to Determine
Microbe–Microbe Interactions
To investigate microbe–microbe interactions, network analysis
was performed using SparCC, with 500 bootstraps used to
estimate p values (Friedman and Alm, 2012). A Q-value < 0.002
was considered significant. Taxa comprising < 20% of the
population were excluded. Final networks were plotted using
Cytoscape (version 3.7.2; perfused force directed layout)
(Shannon et al., 2003).

Statistical Analysis
After randomly rarefied to 9,000 reads, microbial diversity
was determined using the phyloseq and vegan R packages
(Dixon, 2003; McMurdie and Holmes, 2013). The COPD cohort
samples were rarefied to 10,000 reads. Community variation
was determined by nonmetric non-metric multidimensional
scaling and principal coordinates analysis using the metaMDS
and envfit functions in the vegan package. Identification of
metacommunities was performed by fitting the models of
Dirichlet multinomial mixtures to the community structure
(Holmes et al., 2012). The number of metacommunities was
determined as the number that provides the minimum Laplace
approximation to the model evidence. Associations between
metacommunities and clinical variables were analyzed using the
Wilcoxon rank sum test, the Kruskal–Wallis test followed by
the Dunn’s post hoc test (for more than the two groups), or the
chi-square test with post hoc tests. A pairwise Adonis test was
performed using the pairwiseAdonis package (Martinez Arbizu,
2020). When testing more than two parameters, all the statistical
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FIGURE 2 | Association between the host health status and metacommunity.
(A) Subdivision of a metacommunity and the association between each
subcommunity and host smoking experience. (B) A box plot and a whisker
plot showing the 25th percentile, the median, the 75th percentile, and
minimum and maximum data points. *q < 0.01.

tests were followed by multiple testing correction using the
Benjamini–Hochberg method (denoted as a q value). All the
analyses were conducted using R (version 3.4.1).

RESULTS

Metacommunity of the Sputum
Microbiota in a Healthy Korean
Twin-Family Cohort
Despite the high degree of interindividual variation, we found
distinct patterns of dominant genera in the sputum microbiota
of the healthy Korean twin-family cohort (n = 202; Figure 1A).
To analyze whether these patterns allow stratification of the
cohort, we clustered the airway microbiota by fitting the
taxonomic abundances to a probabilistic model fitting a Dirichlet
multinomial mixture, which gives the optimal number of

clusters by modeling sparse microbiome data (Supplementary
Figure 1A). This process identified three metacommunities,
in which the dominant bacteria were Prevotella and Neisseria
(Supplementary Figures 1B, C). Because these two genera
were the major driving taxa for two of the three clusters
(the other cluster was driven by multiple taxa) on an NMDA
plot, we defined clusters according to predominance; however,
we subclassified the Neisseria-dominant clusters into N1 and
N2 based on Neisseria abundance (Figure 1B). Microbial
composition at the phylum level revealed more abundant
Proteobacteria in the N1 and N2 metacommunities than in
the Prevotella-dominant metacommunity, while Bacteroidetes
and Firmicutes showed the opposite pattern (Supplementary
Figure 1D). Community diversity analysis showed that the
Prevotella (P) metacommunity had significantly lower richness
and evenness than the other subtypes (the Kruskal–Wallis test,
q < 0.1; Figure 1C). Because the metacommunities in the
sputum microbiota showed compositional differences, we further
analyzed them to evaluate whether they also showed functional
differences. Functional potential was inferred based on 16S rRNA
sequence data, which showed distinct functional clustering of
the P metacommunity (Figure 1D and Supplementary Table 1).
More than 35% of the community variation could be explained
by the P metacommunity associating with the other N subtypes.
However, the N metacommunities together explained only 4%
of community variation, suggesting homogeneity Between N
metacommunities with regard to their functions.

Link Between Metacommunities, Host
Health, and Smoking Status
To better understand the link between metacommunities and
host health status, we analyzed the association between metabolic
parameters and the metacommunities (Table 1). We found
that TG levels and waist circumference were significantly
different among individuals with different metacommunities: the
P metacommunity was associated with significantly greater TG
levels and waist circumference than the N2 community (the
Kruskal–Wallis test, q < 0.1; Supplementary Figure 2A). Further
taxonomic association analyses revealed that, out of the top six
most prevalent genera in the metacommunities, Haemophilus
and Prevotella showed the most significant associations with
clinical characteristics (Supplementary Figure 2B). In addition,
we analyzed the association between the host smoking status and
different metacommunities. The number of current smokers was
not significantly different among metacommunities (chi-squared
test, p > 0.05; Supplementary Figure 3A). However, we observed
an increasing trend between smoking and the P metacommunity
after clustering of the N metacommunities (chi-squared test,
p = 0.052; Supplementary Figure 3B). Further clustering of
smokers by “ever-smoking experience” led to even more marked
distinction between the P metacommunity and the other two
(chi-squared test, p = 0.032; Figure 2A and Supplementary
Table 2). The significant increase in hsCRP levels in those with
the P metacommunity indicated a potential association between
this metacommunity and the host inflammatory status (the
Kruskal–Wallis test, q < 0.1; Figure 2B).
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FIGURE 3 | Bacterial cluster analysis in the sputum microbiota. (A) Microbial network at the genus level. Different colors represent different microbial clusters.
(B) The Pearson correlation analysis of eigenvectors between each cluster and host clinical variables. Cluster colors (red, blue, and green) correspond with those
shown in panels (A,B). FBS, fasting blood sugar; HDL, high-density lipoprotein cholesterol; TG, triglycerides; SBP, systolic blood pressure; DBP, diastolic blood
pressure; PY, pack-years. ∗p < 0.05, ∗∗q < 0.1.

Microbial Clusters in Networks
Microbe–microbe interactions were analyzed to determine which
bacterial clusters are correlated with which host traits (Figure 3).
Using the WGCNA approach, we identified three bacterial
clusters and defined them using different colors (Supplementary
Table 3). The green cluster, to which Prevotella belongs,
correlated significantly with high-density lipoprotein cholesterol
(HDL) levels (negative), waist circumference (positive), systolic
blood pressure (positive), diastolic blood pressure (positive),
and pack-years (PYs) (positive). The cluster containing Neisseria
showed a negative correlation with fasting blood sugar (FBS), TG,
waist circumference, body mass index (BMI), and PYs, whereas
the blue cluster (represented by TM5) showed an association
with HDL only. Bacterial network analysis also identified positive

interactions between Prevotella and anaerobic bacteria such
as Megasphaera, Atopobium, Oribacterium, Actinomyces, and
Veillonea (green cluster).

Metacommunities Within the Sputum
Microbiota of an External Chronic
Obstructive Pulmonary Disease Cohort
To determine whether community typing is capable of
distinguishing different COPD subtypes, we examined an
external COPD cohort dataset (n = 324; healthy controls,
n = 121; patients with COPD, n = 203) (Haldar et al., 2020).
Again, we identified three main communities in this independent
cohort; however, whereas all the healthy subjects (HSs) were
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FIGURE 4 | Metacommunities in the chronic obstructive pulmonary disease (COPD) cohort (Haldar et al.). (A) A stack bar graph showing the most abundant genera
in each metacommunity. (B) Metacommunity diversity at the genus level. *q < 0.1. (C) A principal coordinate analysis (PCoA) plot showing the distribution of
functional features between metacommunities. (D) The interaction of inflammatory bacteria with COPD-related taxa in CS metacommunities. Red and blue edges
indicate negative and positive correlations, respectively. Edge width reflects the strength of the correlation.

grouped into one metacommunity (HS), and patients with
COPD were subdivided into two (CS1 and CS2) (Figure 4A;
Supplementary Figure 4A). The HS metacommunity was
strongly driven by Streptococcus, as reported previously
(Supplementary Figure 4B) (Haldar et al., 2020). CS1 and CS2
shared common driving bacteria: Haemophilus, Veillonella,
Streptococcus, and Prevotella (Supplementary Table 4); however,

CS1 was more strongly driven by Serratia, while CS2 was more
strongly driven by Moraxella. Community diversity analysis
showed that the richness of the CS1 metacommunity was
significantly higher than that of the HS metacommunity, whereas
the CS2 metacommunity showed significantly lower richness
and evenness than the other two (the Kruskal–Wallis test,
q < 0.1; Figure 4B). An analysis of the functional potential also
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revealed distinct functional clusters between the two COPD
metacommunities (Pairwise Adonis test, q < 0.05; Figure 4C
and Supplementary Table 5). Network analysis, performed
to examine microbial interactions between metacommunities
(Supplementary Figure 4D; Supplementary Tables 6–8),
revealed that the number of interactions was higher in the COPD
metacommunities (CS1 n = 1,107 and CS2 n = 1,188) than
in the HS community (n = 269). Interestingly, the number of
negative interactions also increased: 37.17, 49.86, and 52.19% in
the HS, CS1, and CS2 metacommunities, respectively. Moreover,
the Prevotella cluster (e.g., Actinomyces, Atopobium, Veillonea,
and Megasphaera) identified in the Korean twin-family cohort
showed changes in their interactions with COPD-related bacteria
(e.g., Haemophilus, Serratia, and Moraxella) (Figure 4D). For
example, in the CS1 metacommunity, the cluster maintained
its positive correlation with the COPD taxa. However, in the
CS2 metacommunity, Prevotella, Megaspaera, and Atopobium
developed a negative correlation with Serratia and Moraxella.
Veillonella maintained its positive correlation with Moraxella
in both metacommunities. These differences in microbial
interactions throughout COPD metacommunities point to
the disease’s complexity, which may necessitate alternative
therapeutic approaches depending on the subtype.

DISCUSSION

In this study, we used a community typing approach and
identified three distinct metacommunities in the sputum
microbiota of a healthy Korean twin-family cohort. These
metacommunities were strongly driven by two dominant
bacterial genera, Prevotella and Neisseria, and illustrated different
ecological characteristics, as demonstrated by the community
diversity. The N1 metacommunity consistently showed the
greatest richness and evenness, whereas the P metacommunity
occupied the other end of the spectrum. This lower community
diversity was associated with host metabolic parameters similar
to those observed in the gut microbiome in which reduced
diversity indicates metabolic disorders. A previous study suggests
that lower diversity in the sputum microbiome is associated
with more severe bronchiectasis and defective lung function,
as determined by FEV1 values (Dicker et al., 2021). Lower
sputum bacterial diversity and evenness are also associated with
an elevated level of proinflammatory cytokines (Durack et al.,
2020). A link between reduced microbial diversity and impaired
health could be induced by medications, host immune responses,
or dominance by the pathogenic taxa (Faner et al., 2017).
Therefore, the findings of reduced bacterial diversity in samples
from subjects without any pulmonary disease suggest a microbial
imbalance and potential associated immune changes.

Bacterial network analysis indicated potential adverse impacts
driven by Prevotella and neighboring bacteria on the host health.
Megasphaera (an anaerobe), Atopobium (a facultative anaerobe),
Oribacterium (an anaerobe), Actinomyce (a facultative anaerobe),
and Veillonella (an anaerobe), all of which were directly and
strongly connected to Prevotella, are associated with smoking,
lung cancer, and COPD (Morris et al., 2013; Lee et al., 2016;

Wu et al., 2017). Given that the healthy lung provides an
aerobic environment for the bacterial community (Huffnagle
et al., 2017), anaerobic metabolism of bacteria coexisting with
Prevotella supports their potential pathogenic effects in the lung.
Moreover, the bacterial cluster that includes Prevotella showed
more significant correlations with various host health parameters
(i.e., HDL cholesterol level, waist circumference, blood pressure,
and PY) than the P metacommunity. Therefore, we speculate
that the negative associations of the P metacommunity with
host physiology could be strongly influenced by specific bacterial
interactions, with Prevotella as the keystone bacteria. Of note,
we cannot exclude the possibility that such characteristics of the
P metacommunity identified in this study may be induced by
smoking, which has known adverse health effects.

We found it intriguing that respiratory Prevotella interacts
with potential inflammatory bacteria, suggesting the potential
to trigger local and systemic inflammatory conditions in a
healthy population. A previous report suggests that Prevotella
is associated with diseases at mucosal sites (i.e., periodontitis,
complications related to rheumatoid arthritis, bacterial vaginosis,
and metabolic disorders (Larsen, 2017). However, other studies
show that Prevotella in the lung is protective because of its limited
inflammatory capacity and its ability to increase pulmonary
tolerance to respiratory pathogens (Bassis et al., 2015; Dickson
et al., 2015). We found that all three metacommunities (i.e., N1,
N2, and P) harbor Prevotella as one of the top driving bacteria,
but with different abundance (about 20% abundance in N1 and
N2 and 40% in P). Prevotella is a distinctive bacterium that lacks
consensus regarding its role in inflammatory disease (Larsen,
2017). Given that our findings are based on a healthy population
cohort, further studies are warranted to examine the association
between host health dynamics and Prevotella abundance in the
long term [including characterization at lower taxonomic levels
(i.e., species or strain levels)].

Application of community typing to sputum samples collected
from an external COPD cohort (Haldar et al., 2020) clearly
distinguished HSs from patients; it also identified two sub-
metacommunities within patients. Strong separation of the
healthy population from diseased subjects confirms complete
microbial dysbiosis in patients. Furthermore, the COPD
sub-metacommunities themselves illustrated changes in the
community diversity, functional potential, and pathogen (i.e.,
Serratia and Moraxella) abundance. Accordingly, we expected to
find different degrees of disease severity between the two COPD
metacommunities and assumed that the CS2 metacommunity
would include patients with more severe COPD given its reduced
microbial diversity and increased abundance of Moraxella.
A previous study reported that Moraxella catarrhalis secretes
an endonuclease distinct from that of Serratia, and Moraxella
endonuclease was found to have enhanced cell–cell interactions
and biofilm formation, which can aggravate disease conditions
(Tan et al., 2019). Another previous study reported that patients
with COPD with mild symptoms harbored only Serratia,
not Moraxella (Kostadinova et al., 2015; Wang et al., 2016).
Moreover, different numbers of coexclusions observed during
network analysis of the two COPD metacommunities implies
the competition triggered by environmental changes, such as
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disease severity. We observed that the microbial interactions,
especially with the COPD pathogens, changed according to the
COPD metacommunity. A recent study that identified subgroups
of neutrophilic patients with COPD (i.e., neutrophilic balanced
and neutrophilic Haemophilus subgroups) based on their sputum
microbiome supports the possibility of distinguishing COPD
severity using the microbiome data (Wang et al., 2021). The
authors observed that the neutrophilic balanced subgroup had
increased abundances of Prevotella and Veillonella, while these
bacteria were lower in exacerbation subjects. Given that the
microbial dynamics at deeper taxonomic levels change according
to COPD severity (Wang et al., 2020), further studies should
determine the taxa driving microbial interactions at the species
or strain levels.

In conclusion, we showed that the cluster-based analysis
(such as community typing) of the sputum microbiome can
unmask key bacteria associated with host clinical phenotypes
more effectively than the abundance-based approach; moreover,
this approach shows a potential diagnostic and therapeutic
application of the sputum microbiome to a heterogenic disease,
such as COPD. COPD is a largely heterogeneous disease
that shows a variable prognosis and response to drugs.
Thus, microbial community typing of patients with COPD
can help to identify those who share a similar microbial
background and provide relevant targets to prevent disease
exacerbation. Further studies are warranted to examine the
long-term dynamics of Prevotella in host health conditions
and the deeper links between distinct metacommunities and
COPD phenotypes.
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