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Abstract: Cell death represents a basic biological paradigm that governs outcomes and long-term
sequelae in almost every hepatic disease. Necroptosis is a common form of programmed cell
death in the liver. Necroptosis can be activated by ligands of death receptors, which then interact
with receptor-interactive protein kinases 1 (RIPK1). RIPK1 mediates receptor interacting receptor-
interactive protein kinases 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) and
necrosome formation. Regarding the molecular mechanisms of mitochondrial-mediated necropto-
sis, the RIPK1/RIPK3/MLKL necrosome complex can enhance oxidative respiration and generate
reactive oxygen species, which can be a crucial factor in the susceptibility of cells to necroptosis.
The necrosome complex is also linked to mitochondrial components such as phosphoglycerate mutase
family member 5 (PGAM5), metabolic enzymes in the mitochondrial matrix, mitochondrial perme-
ability protein, and cyclophilin D. In this review, we focus on the role of mitochondria-mediated cell
necroptosis in acute liver injury, chronic liver diseases, and hepatocellular carcinoma, and its possible
translation into clinical applications.
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1. Introduction

Liver diseases, including hepatitis B, hepatitis C, nonalcoholic fatty liver disease
(NAFLD), alcoholic liver disease (ALD) and related hepatic fibrosis, liver cirrhosis, liver
failure, and hepatocellular carcinoma (HCC), are the leading causes of illness and death
worldwide [1]. Despite extensive research on the pathogenesis of various liver diseases,
there are still no effective therapies for end-stage liver disease or targeted therapies for
NAFLD and alcoholic liver disease (ALD) [2–4]. Thus, a better understanding of the
molecular mechanisms and development of potential therapeutic target sites for liver
diseases are of great importance.

Mitochondria play a pivotal role in the generation of cellular energy and biosyn-thesis.
They are also key in the regulation of various types of cell death, including necropto-
sis [5–8], apoptosis [9–11], ferroptosis [12–15], pyroptosis [16], and other forms. Because
mitochondria play a crucial role in energy production [17,18], they must withstand most
cellular “stressors” including drugs, viruses, and metabolic disorders [19–21]. Impaired
mitochondria therefore result in a high level of oxidant production, defects in oxidative
phosphorylation, or calcium overload, which then become core factors determining cell
survival or death [22–24].

Necroptosis is a new form of programmed cell death, but it is challenging to detect
in vivo. Aberrant levels of necroptosis have been implicated in various inflammatory
diseases and ischemic injury, including liver diseases (specifically nonalcoholic fatty liver
diseases, nonalcoholic steatohepatitis, and liver cancer) [25–29]. The molecular necrotic
pathway is usually reduced by extracellular signals (such as ligation of death receptors)
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or intracellular cues (such as viral nucleic acids). The best typical signal transduction
cascade leading to the cell necroptosis is initiated by tumor necrosis factor receptor (TNFR).
The TNFR and other death receptors engage with their ligands. Then the necroptosis
occurs through the activating receptor-interactive protein kinases 1 (RIPK1), PIPK3, and
subsequently the pseudokinase mixed lineage kinase domain-like protein (MLKL) in certain
cell types [30]. Importantly, induction of necroptosis involves mitochondria and reactive
oxygen species (ROS) [31]. The necrosome complex (RIPK1/RIPK3/MLKL) was proposed
to induce necroptosis via induction of mitochondrial dysfunction involving a variety of
mechanisms, including induction of mitophagy [5], production of mitochondrial ROS [8],
activation of the mitochondrial phosphatase phosphoglycerate mutase family member 5
(PGAM5) [32,33], or induction of mitochondrial permeability transition (MPT) [34], as well
as by other processes [35].

In this review, we describe how mitochondria regulate necroptosis. Specifically, we fo-
cus on the role of mitochondria-mediated cell necroptosis in acute liver injury, chronic liver
hepatitis, liver cirrhosis, and hepatocellular carcinoma, as well as the possible translations
of these processes into clinical applications.

2. Mitochondrial Regulation of Necroptosis

Different types of cell death have distinct morphological and biochemical features.
Necrosis is unregulated cell death and often involves the release of various pro-inflammatory
factors, resulting in obvious inflammation and tissue damage [36]. Apoptosis is character-
ized by cytoplasmic and nuclear condensation (causing cell shrinkage) and cell membrane
blebbing, but unlike necrosis, there is no membrane disruption or cell leakage and, therefore,
there is a lack of inflammatory response [37]. Necroptosis is a new form of programmed
necrosis, which has features shared with both necrosis and apoptosis, such as being pro-
grammed but causing inflammation and tissue damage. Although cell death was initially
thought to be the result of inflammation, recent studies increasingly suggest that cell death
may occur first and trigger or amplify the inflammatory response [38].

Necroptosis is a regulated caspase-independent form of cell death involved in various
physiological and pathophysiological conditions [28,39–42]. On the one hand, many studies
have reported that the necrosome complex, RIPK1/RIPK3/MLKL, induces necrotic death
by induction of mitochondrial dysfunction [31,32,43,44]. On the other hand, a variety of
studies had questioned the importance of each of the mitochondrial facets in necroptosis.

2.1. ROS and the Necroptosis Signaling Pathway

Although the necrosome complex is known to induce necroptosis, its mechanism of
action is unclear. Several studies have revealed the association between ROS generation
and necrosome signaling [6–8].

In some cell types, mitochondrial ROS is essential for necroptosis by facilitating RIPK1
autophosphorylation, RIPK3 recruitment, and necrosome formation [6,7]. In a feedfor-
ward manner, RIPK1-mediated mitochondrial dysfunction and RIPK3 kinase activate the
pyruvate dehydrogenase complex, leading to excessive levels of ROS [8,45]. Schenk et al. re-
ported that ROS is an important regulator of BV6/tumor necrosis factor-a (TNF-a)-induced
necroptotic signaling and cell death. BV6/TNFa-stimulated ROS generation promotes
the formation of the necrosome complex, while silencing RIPK1 and RIPK3 reduces ROS
production [6]. Vanlangenakker et al. found that the loss of cellular inhibitor of apoptosis
protein-1 did not affect the basal level of ROS in L929 cells, but upon TNF stimulation, ROS
generation was significantly increased and the effect was inhibited by knocking down RIP3
and Nec-1(RIP1 inhibitor). Their results indicated a requirement for RIP1/RIP3-dependent
ROS in the process of necroptosis [46]. Another study showed that ROS induction required
RIPK3, and ROS functioned in a positive feedback circuit that ensured effective induction
of necroptosis in L929 cells [7]. In addition, to show the execution pathways of necrop-
tosis, Sun et al. showed that, in human colon cancer cells, the RIPK1/RIPK3 complex
induced necroptosis by accumulating cytosolic calcium through c-Jun N-terminal kinase
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(JNK) activation and mitochondrial ROS production [47]. The current data show that in
human acute myeloid leukemia HL60 cells, necroptosis mediation is closely associated
with mitochondrial ROS levels [48]. Taken together, these results definitively show that the
production of ROS from mitochondria is involved in necroptotic signaling during execu-
tion. However, TNF-induced ROS production was dependent on mitochondria, and the
inhibition of TNF-induced necroptosis by butylated hydroxyanisol was observed in cells
of mitochondrial depletion [5]. Further experimental research is needed to show whether
the mitochondrial ROS pathway is cell-specific or universal to all cells as an essential
component of necroptosis.

2.2. Phosphoglycerate Mutase Family Member 5 (PGAM5)

Studies have shown that during tumor necrosis factor (TNF)-induced necroptosis, the
interaction of RIPK3 with MLKL also induces translocation of the RIPK1/RIPK3/MLK
necrosome complex to the mitochondrial membrane, where RIPK3 activates an increasing
number of targets by phosphorylation [49–51]. One of these targets is PGAM5, an atypical
mitochondrial Ser/Thr phosphatase that localizes to the outer membrane of mitochon-
dria with its C-terminus facing the cytoplasm. Two splice variants of PGAM5, PGAM5L
and PGAM5S [52–54], are recruited to mitochondria, via RIPK3-dependent phosphoryla-
tion, in which PGAM5 dephosphorylates and activates dynamin-related protein 1 (Drp1),
subsequently leading to necroptosis [32,49] (Figure 1).

Figure 1. The double function of phosphatase phosphoglycerate mutase family member 5 (PGAM5) in
necroptosis. A. After activation of death receptors, tumor necrosis factor signaling can instead induce
activation of receptor-interactive protein kinases 1 (RIPK1) and receptor-interactive protein kinases 3
(RIPK3). RIPK3 phosphorylates binds to mixed lineage kinase domain-like protein (MLKL), causing
generation of necrosomes. The RIPK1/RIPK3/MLKL necrosome shuttles to the mitochondrial
membrane, where RIPK3, after phosphorylation, activates PGAM5 located on the outer membrane of
mitochondria. The activated PGAM5 is recruited to mitochondria and activates dynamin-related
protein 1, resulting in necroptosis. B. PGAM5/PTEN-induced kinase 1 (PINK1)-mediated mitophagy
causes the accumulation of abnormal mitochondria leading to the overproduction of reactive oxygen
species, which worsens necroptosis.
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It is increasingly clear that PGAM5 is implicated in mitochondrial clustering, fragmen-
tation, mitophagy, apoptosis, and necroptosis [32,50,51,55,56]. Increased accumulation of
dimeric PGAM5, with a concomitant reduction in phosphatase activity, not only induces
fragmentation of mitochondria, but also sensitizes cells to death signals [57]. Conversely,
increased multimeric PGAM5 with a concomitant increase in phosphatase activity induces
nuclear clustering of mitochondria, which leads to mitophagy as a cell-protective mecha-
nism for handling damaged mitochondria [57]. To characterize the biological function of
PGAM5, Morimarki et al. generated Pgam5−/− mice and found that these mice responded
normally to multiple inducers of necroptosis, indicating that PGAM5 was dispensable
for necroptosis [58]. However, Lu et al. also found that PGAM5 was indispensable for
the process of PTEN-induced kinase 1 (PINK1)-dependent mitophagy which antagonizes
necroptosis. The loss of PGAM5/PINK1-mediated mitophagy causes the accumulation of
abnormal mitochondria, leading to overproduction of ROS, which worsens necroptosis.
Taken together, the results suggest that PGAM5 is downstream of RIPK1/RIPK3, induces
necroptosis, and protects cells from necroptosis via promoting mitophagy [59] (Figure 1).

2.3. Metabolic Enzymes

There is also evidence that some metabolic enzymes in mitochondria are involved in
TNF-induced necroptosis [60,61]. Zhang et al. reported that endogenous RIPK3 directly
increased glutamate-ammonia ligase (GLUL) and glutamate dehydrogenase 1 (GLUD1)
activity. GLUL is a cytosolic enzyme that catalyzes the condensation of glutamate (Glu) and
ammonia to form glutamine (Gln), which can be translocated into mitochondria to function
as an energy substrate [60,62]. GLUD1 is a mitochondrial matrix enzyme that converts Glu
to α-ketoglutarate, which provides the energy substrates for energy metabolism–associated
ROS production [61,63]. Silencing GLUL or GLUD1 using siRNA attenuates TNF-induced
necroptosis in NIH 3T3 cells, suggesting that GLUL and GLUD1 mediate the use of Glu or
Gln as energy substrates, which contributes to necroptosis [60,64] (Figure 2).

Figure 2. The role of metabolic enzymes of mitochondria in necroptosis. Endogenous RIPK3
can directly increase glutamate-ammonia ligase (GLUL) and glutamate dehydrogenase 1 (GLUD1)
activity. GLUL is a cytosolic enzyme that catalyzes the condensation of glutamate and ammonia to
form glutamine. Glutamine can translocate into the mitochondria to function as an energy substrate.
GLUD1 is a mitochondrial matrix enzyme that converts glutamate to α-ketoglutarate. GLUL and
GLUD1-mediated uses of glutamate or glutamine as energy substrates contribute to necroptosis.
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2.4. The mPTP and Cyclophilin-D

Mitochondrial permeability transition pores (mPTPs) may be another potential mito-
chondrial mediator of necroptosis. The mPTP is a nonspecific channel that spans the inner
mitochondrial membrane. Organ injury results in the opening of mPTPs, which leads to
changes in mitochondrial transmembrane potentials, dysfunction of oxidative phospho-
rylation, accumulated ROS, and ultimately mitochondrial rupture [65]. Inhibition of the
mPTP opening suppresses necroptotic cell death, suggesting the involvement of mPTPs in
the necroptotic pathway. In addition, cyclophilin-D is an important regulator of mPTPs,
and can control the process of necroptosis [33,34]. Cyclophilin-D knockdown protected
mouse microvascular endothelial cells from necroptosis by inhibiting RIPK3-downstream
mix-lineage kinase domain-like protein phosphorylation [34]. He et al. reported that loss of
cyclophilin-D reduced necroptosis in mouse embryonic fibroblasts [66], and another study
reported that a cyclophilin-D inhibitor inhibited TNF-induced zebrafish macrophage ROS
accumulation and necroptosis [33].

2.5. The B Cell Lymphoma 2 (BCL-2) Family

The BCL-2 protein family comprises three subsets: anti-apoptotic proteins (BCL-2,
MCL-1, BCL-W, and BCL-XL), pro-apoptotic BCL-2 proteins (BAK, BAX, and BOK) and
BH3-only proteins (BID, BIM, BAD, BMF, HRK, PUMA, NOXA, and BIK). Present studies
have demonstrated that the BCL-2 family members induced outer membrane permeabi-
lization to mediate cell apoptosis [67–69]. Recently, Karch et al. reported that BCL-2 family
members are also required for mitochondrial pore-dependent necrotic cell death by facili-
tating outer membrane permeability of the MPTP [70]. Absence of Bax/Bak decreased the
outer mitochondrial membrane permeability without altering the inner membrane MPTP
function, leading to resistance to mitochondrial calcium overload and necroptosis.

Hitomi et al. identified the BMF protein of the BCL2 family in the mitochondrial
outer membrane as a potential mediator of TNF-α -induced necroptosis [71]. At least in
L929 cells, knockdown of BMF suppressed the necrotic response to TNFα. Whether the
same mechanism exists in other types of cells is unknown, and the function of BMF in
mitochondria has not been definitively established [71]. Lin et al. found that overexpression
of BCL-2 alleviated cytochrome c release and necroptosis induced by green tea polyphenols,
and knockdown of BAX and BAK in Hep3B cells also ameliorated cytochrome c release and
necroptosis [72]. These results indicate that necroptosis was related to the translocation of
BAX and BAK to the mitochondria and the release of cytochrome c [72]. BAX/BAK were
implicated as necessary mediators of necroptosis [35,73]. However, other studies suggested
that the BCL-2 family has no involvement [5,74].

2.6. Others

Many studies have described the pivotal role of mitochondria in execution of the
necroptotic progress. However, several studies have questioned the importance of each
of the mitochondrial facets in necroptosis [5,43,75–77]. It has also been shown that cells
depleted of mitochondria through enforced mitophagy remain able to undergo necroptosis,
implying that mitochondria or mitochondrial metabolism are not essential for the execution
of necroptosis [5].

3. Mitochondrial Mechanisms of Necroptosis in Liver Diseases
3.1. Acute Liver Injury

Mitochondrial dysfunction has also been linked to acute liver injury. Atypical mito-
chondrial Ser/Thr phosphatase PGAM5 is overexpressed in hepatocytes of patients with
autoimmune hepatitis and in mice with ConA-induced experimental hepatitis [78]. Fur-
thermore, silencing PGAM5 protects mice from ConA-induced hepatocellular death [78].
Qian et al. reported that the RIPK1/RIPK3/MLKL signaling pathway was activated in
mice with acute liver injury induced by Listeria monocytogenes infection, subsequently lead-
ing to necroptosis and hepatic damage. Knockdown of RIPK1 attenuates mitochondrial
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dysfunction and necroptosis in hepatic tissues from L. monocytogenes-infected mice [79].
Some research groups have reported that RIP1 and RIP3 are both critical mediators of
necroptosis in APAP-induced acute liver injury [71,80]. The RIP1 inhibitor not only sup-
presses APAP-induced translocation of BAX from the cytoplasm to mitochondria, but also
suppresses APAP-induced translocation of AIF from the mitochondria to nuclei, suggest-
ing that mitochondrial Bax and AIF translocations might be key events in the process of
APAP-induced necroptosis [81].

3.2. Chronic Liver Diseases

Cell death is an important feature in chronic liver disease, and apoptosis is the pre-
dominant type of cell death observed. A great deal of research revealed an unequivocal
link between cell apoptosis and chronic liver diseases [82,83], while the occurrence of
necroptosis in the liver and its contribution to the chronic liver diseases is controversial [84].
Present studies showed that activated MLKL forms translocate to the cell membrane and
execute necroptosis [77,85,86]. MLKL-driven rupture of the cell membrane is the neces-
sary step of necroptosis. At present, the only known activator of MLKL is RIPK3. Thus,
MLKL and RIPK3 are necessary for necroptotic death [87]. Notably, hepatocytes clearly
express MLKL, while they do not express RIPK3 under basal conditions [88]. RIPK3 was
not detected even in primary mouse hepatocytes after cell culture with TNF or APAP
at different time points [88,89]. Whether hepatocytes express RIPK3 or not is crucial,
because as far as we know, hepatocytes that do not express RIPK3 will not undergo necrop-
tosis [90]. However, in some unique circumstances, for example, MLKL contributes to
hepatocyte death in concanavalin A injury and that MLKL-induced death is independent
of the PIPK3 [91]. Roychowdhury et al. examined the effects of RIPK3 using an alcoholic
model [92]. They reported that increased expression of RIP3 was found in liver tissues of
mice after chronic ethanol feeding, as well as in liver tissues from patients with alcoholic
liver disease. The RIP3−/− mice were protected from ethanol-induced steatosis, hepatocyte
injury, and expression of proinflammatory cytokines compared with WT (C57BL6/j) mice.
While the expression of RIP1 in mouse liver tissues had no change following ethanol
feeding, and inhibition of RIP1 kinase by necrostatin-1 did not mitigate ethanol-induced
hepatocyte injury [92]. Roychowdhury et al. also explored the contribution of necroptosis
to high fat diets (HFD)-induced liver injury [93]. They found the expression levels of RIPK3
and MLKL were increased in HFD-fed C57BL/6 mice liver. HFD did not increase MLKL in
RIPK3 knockout mice. The RIPK3−/− mice had basic glucose intolerance even on chow
diets. Interestingly, HFD worsened the hepatic steatosis, inflammation, and hepatocellular
apoptosis in RIPK3−/− mice compared with WT control [93]. RIPK3−/− had diametrically
opposite results in the HFD model and the alcohol model.

Although the proximal molecular pathway of the necroptosis is well studied, the
downstream signaling has been poorly understood. Recent advances in our understanding
of the role of mitochondria have led to the recognition that impaired mitochondrial func-
tion may be responsible for chronic liver diseases [21,94–96]. The relationships between
mitochondria and necroptosis in chronic liver disease are poor studied.

3.3. Hepatocellular Carcinoma (HCC)

Increasing evidence has shown that necroptosis occurs in hepatoma cells through
mitochondrial-associated signaling pathways [97–99]. Heslop et al. reported that sorafenib
promotes hepatoma cell death by necroptosis and induces mitochondrial dysfunction [97].
Moreover, activated JNK translocation to mitochondria blocks electron transport at Com-
plex I or II, thereby decreasing the oxidative phosphorylation system (OXPHOS) and
promoting ROS formation as a common mechanism of mitochondrial dysfunction [98].
Cell necroptosis is suppressed by a JNK inhibition, indicating that mitochondrial dysfunc-
tion promoted by JNK is an important driver of necroptosis [97]. In another study, BAX and
BAK, two essential mitochondrial permeability transition pore proteins, were activated by
green tea polyphenols and by their translocation and homo-oligomerization in mitochon-
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dria. Necroptosis was ameliorated in Hep3B cells (BAK−/−), and Hep3B cells (BAX−/−).
Moreover, overexpression of BCL-2 decreased necroptosis. The results suggested that
necroptosis could be induced by green tea polyphenols in p53-deficient Hep3B cells, and
that necroptosis was associated with BAX/BAK translocation and homo-oligomerization
in mitochondria [72]. Rizza et al. found that knockdown of S-nitrosoglutathione reductase
resulted in mitochondrial defects and that S-nitrosoglutathione reductase deficient HepG2
cells and tumors were sensitive to succinate dehydrogenase inhibition, which induced
RIP1/PARP1-mediated necroptosis and suppressed tumor growth [99].

4. Therapies and Perspectives

Mitochondria play an essential role in necroptosis, suggesting that efficient strategies
to target mitochondrial-induced cell death pathways may have particular promise for
liver disease. Majdi et al. reported that the necroptosis pathway was activated during
nonalcoholic fatty liver disease, and inhibition of RIPK1 ameliorated the characteristics
of non-alcoholic steatohepatitis in high fat diet fed mice [100]. Furthermore, it reversed
steatosis via an MLKL-dependent mechanism, which was at least partially involved in
mitochondrial respiration [100]. A recent study showed that targeting nuclear protein
1-induced cell death and controlling HCC progress by apoptosis and necroptosis led to
mitochondrial metabolism failure via inhibiting intracellular levels of ATP in HepG2 and
HepB3 cells [101]. Prevention of mitochondrial alterations promises to be an effective
strategy for treatment of in liver inflammatory diseases and HCC. However, at present, no
anti-mitochondrial drugs have proven to be absolutely effective. New selective molecules
that target mitochondrial dysfunction are needed for different liver pathology.

A current drawback is that animal models used to study mechanisms of liver diseases
lack the full features of the human disease [102–104]. Some existing strategies have been
reported to target mitochondrial dysfunction with liver diseases, but they are likely to have
many nonspecific effects [105–107]. It will therefore be important to develop and test small
molecules that target specific steps in the mitochondrial-mediated cell death signaling
pathways. Advances in gene manipulation technology could enable the correction of
mutated genes important in mitochondrial-mediated cell death pathways, thereby altering
the course of certain liver disorders.

5. Conclusions

Mitochondrial function and cell death pathways have long been considered to be two
of the major regulators of cell survival or death. With identification of a newer cell death
pathway, necroptosis has been extensively studied in different hepatic disease models.
Notably, mitochondria not only control energy production, oxidative phosphorylation, and
ROS generation, but also participate in the necroptosis pathway by regulating transloca-
tion of Bax and Bak to mitochondria and multiple mitochondrial constituents (PGAM5,
cyclophilind-D, and some metabolic enzymes). In various liver diseases, mitochondria
are multifaceted regulators of the necroptosis pathway to promote inflammation, enhance
immune responses, and regulate the progression of diseases. In a feedforward manner,
necroptosis can lead to mitochondrial dysfunction via the PIPK1/PIPK3/MLKL pathway.
Some existing strategies have been discovered, which target mitochondrial dysfunction
during liver disease. Advances in gene manipulation technology can enable the correc-
tion of mutated genes important for mitochondrial-mediated pathways, thereby altering
the course of certain liver disorders. In conclusion, improving our understanding of
the dysfunctions involving mitochondrial and mitochondrial-mediated necroptosis could
provide potential therapeutic targets for treating liver diseases; however, much work
needs to be done before identifying safe and effective inhibitors or drugs that improve
mitochondrial function.
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Abbreviations
RIPK1 receptor-interactive protein kinases 1
RIPK3 receptor-interactive protein kinases 3
MLKL mixed lineage kinase domain-like protein
PGAM5 phosphoglycerate mutase family member 5
NAFLD nonalcoholic fatty liver disease
ALD alcoholic liver disease
HCC hepatocellular carcinoma
ALD alcoholic liver disease
TNFR tumor necrosis factor receptor
TNF-α tumor necrosis factor alpha
ROS reactive oxygen species
mPTPs mitochondrial permeability transition pores
BCL-2 B cell lymphoma 2
Drp1 dynamin-related protein 1
PINK1 PTEN-induced kinase 1
GLUL glutamate-ammonia ligase
GLUD1 glutamate dehydrogenase 1
OXPHOS oxidative phosphorylation system
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