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Abstract

Dengue infection plays a central role in our society, since it is the most prevalent vector-

borne viral disease affecting humans. We statistically investigated patterns concerning the

spatial spreading of dengue epidemics in Brazil, as well as their temporal evolution in all Bra-

zilian municipalities for a period of 12 years. We showed that the distributions of cases in

municipalities follow power laws persistent in time and that the infection scales linearly with

the population of the municipalities. We also found that the average number of dengue

cases does not have a clear dependence on the longitudinal position of municipalities. On

the other hand, we found that the average distribution of cases varies with the latitudinal

position of municipalities, displaying an almost constant growth from high latitudes until

reaching the Tropic of Capricorn leveling to a plateau closer to the Equator. We also charac-

terized the spatial correlation of the number of dengue cases between pairs of municipali-

ties, where our results showed that the spatial correlation function decays with the increase

of distance between municipalities, following a power-law with an exponential cut-off. This

regime leads to a typical dengue traveling distance. Finally, we considered modeling this

last behaviour within the framework of a Edwards-Wilkinson equation with a fractional deriv-

ative on space.

Introduction

Infectious diseases are still a relevant problem for humans [1]. Dengue viruses are the greatest

cause of arboviral disease around the world [2]. Dengue is an acute viral disease characterized

by two or more symptoms: fever, headache, retro-orbital pain, muscle and joint pains, rash,

nausea and vomit. There are four recognized dengue virus serotypes (dengue virus [DENV] 1,

2, 3, and 4). Infection by one of the serotypes is thought to produce lifelong immunity to that

particular one but only a few months immunity to the others [2–5]. Secondary infections are

more likely to result in severe infections and Dengue Hemorrhagic Fever (DHF) characterized

by fever, thrombocytopenia, increased vascular permeability and hemorrhagic disthesis [6].

DHF is a potentially lethal complication that in severe cases can cause circulatory failure [2].

Cross reactive but non-neutralizing antibodies from a previous infection bind to the new
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infecting serotype and facilitate virus access into cells, resulting in higher peak viral titres [2, 7,

8]. Current, prevention of dengue must focus on the mosquito because there are no specific

therapeutic agents for dengue. In 2016, the State of Paraná (Southern Brazil) launched the first

public dengue immunization program in the Americas with a novel tetravalent vaccine [9, 10].

Dengue is endemic in most tropical and subtropical countries (Latin America, South-East

Asia and Central Africa), where large dengue outbreaks occur, affecting both large and small

cities [11–16]. Estimates revealed that dengue epidemics have increased around 30 times

throughout the last 50 years. Around 108 new cases have occurred annually in more than 100

endemic countries, putting more than 40% of the global population at risk (ca. 2.5 billion of

people) [17]. This century, Brazil has reported more cases of dengue fever than anywhere else

in the world [18], more than 7 million up to 2013 [19]. The four dengue virus serotypes have

spread throughout Brazil [20]. Many municipalities have climatic conditions which are condu-

cive to the proliferation and vectorial capacity of A. aegypti [19]. Dengue was first recorded in

the state of São Paulo between 1851 and 1853. It was virtually eliminated after a campaign to

eradicate yellow fever, which has the same transmitting agent as dengue [21]. Two unprece-

dented epidemics occurred in 1998 and 2002, and a wide diffusion occurred between 2005 and

2009 corresponding to an overall nationwide increase in dengue incidence [16, 20, 21]. Studies

found in the available literature examined dengue epidemics in Brazil, including SIR-type

modeling [1, 22], model for vaccine cost-effectiveness [23], patterns of dengue circulation [24,

25], epidemiology [20], and dengue risk during the football World Cup [19]. There are also

some examples of other studies concerning spatial patterns of the dengue disease such as, spa-

tiotemporal modeling of climate-sensitive disease risk [26], modeling tools for dengue risk

mapping [27], and spatial correlation with socioeconomic and demographic variables in Bra-

zilian municipalities [28].

Dengue is an arboviral disease whose principal vector is the Aedes aegypti mosquito [2, 27],

an anthropophilic specie closely associated to human habitats. It prefers urban environments

[26], feeding and resting mainly inside buildings [29, 30]. It is an efficient vector, highly sus-

ceptible to the dengue virus, feeding preferentially on human blood [2]. In addition, it is

hypothesized that vertical transmission (from mother to offspring) in the Aedes mosquito pop-

ulation may allow the virus to persist during periods unfavorable for transmission to humans

[31, 32]. The limits of geographical distribution of the Aedes species seem to be related to tem-

perature [27, 30], which is closely connected with latitude. Temperature is a major extrinsic

factor affecting many population parameters of insects [33]. Some studies focus on the effect

of temperature on the A. aegypti such as its population dynamics [30], life history [33], devel-

opment of mosquitoes [34] and larval development [35]. In general, the temperature is not

related with longitude, which could imply that the dengue incidence does not depend on the

longitude if the population were homogeneous. Unlike most mosquitoes, the A. aegypti takes

more than one blood meal before the eggs are laid and finds habitats for its larvae in water stor-

age containers and domestic rubbish [2]. Humans and mosquitoes are the principal hosts to

the dengue virus; the mosquito remains infected throughout its life, but the virus is only

known to cause illness in humans [2]. The number of dengue cases in a region is expected to

be connected with the concentration of vectors and with the distribution of susceptible and

already infected individuals. The diffusion of dengue is the result of a complex process involv-

ing the spread of Aedes mosquitoes and their adaptation to urban environments, as well as

population mobility which facilitates the circulation of the virus [16]. Many other factors like

meteorological variables also play a central role in the number of new dengue cases in specific

regions that are strongly influenced by the transmission cycle [16, 36–39]. Apart from the den-

gue virus, the A. aegypti is also a vector for other tropical viruses such as yellow fever, chikun-

gunya virus and zika virus [40].

Spatial patterns of dengue cases in Brazil
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In the previous paragraphs, several studies about dengue were point out, such as those

related to the modeling of dengue dynamics [1], spatial correlation [25, 28] and evolution

in space and time [22] in specific cities, spreading among of cities joined by route [16], and

vulnerability associated to water and climate within a state [24]. In general, investigations

were based on data of some small regions. However, it would also be helpful to have

studies that focus on large scales, giving us a more embracing analysis. For instance, taking all

Brazilian municipalities into account, where the focus of analyses could be sensitive variables,

such as their populations, localizations and numbers of dengue cases while trying to fill this

gap in available dengue studies, at least in part, we employed these variables to investigate

the spatio-temporal dynamics of dengue cases in Brazil using statistical physics tools. This

multidisciplinary approach has become usual in many scenarios and it contributes towards a

better understanding of such systems, uncovering patterns or laws that rule the dynamics

of systems as a whole. Examples of such investigations include the study of physiological sig-

nals [41, 42], mortality of animals after accidents [43], population dynamics [44–46] and

spreading of diseases [47, 48]. We investigated dengue cases per se, their relationship with the

population and their connection with the geographic location of Brazilian municipalities. We

concentrated our studies on a period of years with specific attention to the relationship

between population and number of dengue cases, dependence on dengue cases as well as the

latitude and spatial correlation of dengue cases between pairs of municipalities. Our approach

consisted in disclosing statistical patterns and in modelling the findings within a reductionist

framework.

Data

We extracted the data on dengue cases for each Brazilian municipality directly from DATASUS

[49], which is a national public health system database freely available online and maintained

by the Data processing Department of the Brazilian Health System. Specifically, we obtained

the quantity

zi;t ðthe number of new dengue cases diagnosed in municipality i during the year tÞ: ð1Þ

As a whole, we analyzed data of approximately 6 million dengue cases diagnosed between Janu-

ary 2001 and December 2012. We used data of 5069 Brazilian municipalities with at least one

dengue case during this period. Cases were confirmed by clinical and epidemiological evidence

and with epidemiological investigations carried out by local health surveillance teams. Approxi-

mately 30% of dengue cases were laboratory-confirmed. During epidemics, dengue cases were

mostly classified by clinical and epidemiological criteria because of limited laboratory capacity

[16, 20]. Dengue is often asymptomatic, so the real number of cases can be larger than the data

reported. Furthermore, reports can be considerably underestimated, especially during low

endemicity periods, due to the differential operation of health services. However, during out-

breaks, the number of cases can even be overestimated. Dengue outbreaks often provoke social

upheaval, attracting intense media attention [16]. The data related to the population size in

each Brazilian municipality was obtained from IBGE, a Brazilian institution that carries out a

national census every 10 years. These data are also freely available online [50]. For a more pre-

cise approach, we employed data on the population of the municipalities projected for each

year without census [51]. The dataset analyzed in this work is attached as supplementary mate-

rial (see S1 Table).

Spatial patterns of dengue cases in Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0180715 July 17, 2017 3 / 16

https://doi.org/10.1371/journal.pone.0180715


Data analysis

The profile of annual dengue cases

The evolution of the average number of dengue cases per 103 people each year is depicted in

Fig 1. A general profile of the average number of dengue cases during each year is presented in

Supplementary Information as S1 Fig. It is notable from the figure that the extreme Northeast

(red and yellow) is the most affected area, followed closely by the Southern regions (yellow).

The population distribution in Brazil is quite irregular, there are clusters on the coastal

zones, specially in the Southeast and Northeast. Another important nucleus is the Southern

region. The less populated areas are situated in the Mideast and the North [52]. In the North-

ern region (comprising the largest part of the Amazon forest), there was a low density of cases

in spite of the warn and humid climate, favorable to the A. aegypti mosquito, this could be

explained by the low urban population density [52].

Where municipalities are concerned, a pattern emerges: the annual distribution of zi,t fol-

lows a power law for large values, ca. *102. Power laws are usually used to describe a distribu-

tion that is heavy-tailed, i.e., the tail falls to zero much slower than an exponential function.

Power law distributions are surprisingly common in science, they have been observed in a

number of different areas, such as in extinction risk due to climate change [53], intensity of

Fig 1. Spatial distribution of dengue cases. Average number of dengue cases per 103 people between 2001 and

2012. Data on the population of the municipalities was projected for each year without census. The color scheme

indicates that the major incidence of dengue is found in the extreme Northeastern and Southern Brazilian regions.

The dashed lines correspond to the Equator and the Tropic of Capricorn.

https://doi.org/10.1371/journal.pone.0180715.g001
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wars [54], vertical transmission of culture and family names [55], number of hits on web pages

[56], human travel [57], and epidemics among isolated populations [58]. Fig 2A illustrates the

distributions of zi,t within municipalities for a fixed number of years (t varying from 2001 up

to 2012) in comparison to a power law in the form

Pðzi;tÞ / z� g
i;t ; ð2Þ

where P(zi,t) is the probability of finding zi,t new cases in municipality i during the year t, with

exponent γ = hγti = 1.81 ± 0.03 (99% confidence interval). This value is an arithmetic average

for the maximum likelihood of fit to the annual power laws hγti, shown in Fig 2B. All the

power laws are robust for around three decades, that is, from 102 to 105 cases, and the Cramér-

von Mises test supports that they can not be rejected at a confidence of 99%. The Cramér-von

Mises test is used to judge the goodness of fit of a distribution, employing the cumulative dis-

tribution function compared to the given empirical distribution [59–61]. It appears to be more

robust in the presence of a few extreme observations compared to other statistical tests [62]. It

is notable that, considering the error bars for 99% bootstrapped confidence intervals, the

annual γt exponents remain systematically constant during the whole period. The power law

behavior and its γ exponent resemble the values found for AIDS in Brazil γ’ 1.87 [48]. This

might suggest that the spreading of dengue fever has more influence of human circulation

than Aedes, since a new outbreak marks the arrival of a new serotype (infected person or vec-

tor) in the region that had previously presented the arthropod vectors [31].

Dengue cases vs population

As pointed out before, the number of new infections (illustrated in Fig 1) depends on many

factors, and it is not expected to be constant for different municipalities. Using the Brazilian

population data we identified how zi,t scales with population size pi,t in municipality i in year t.
As shown in Fig 3, the curve obtained is well-described by an average scaling law of the type

zi;t / pd
i;t; ð3Þ

Fig 2. Dengue occurrence in municipalities. (a) Probability Density Function P(zi,t) for a total of dengue cases per year. The dashed line is a power law

with exponent γ = 1.81 and serves as a guide to the behaviour of the tail, that includes approximately three decades. (b) Temporal evolution of the exponent

γt of the power laws for each year between 2001 and 2012. The error bars are 99% confidence intervals, indicating an approximately constant value. The

dashed line represents the average value γ = hγti = 1.81 and the respective 99% bootstrapped confidence intervals.

https://doi.org/10.1371/journal.pone.0180715.g002
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where δ is constant. A linear fit to the windows average values (15 logarithmically spaced win-

dows chosen through Wand’s procedure [63]) provided the exponent value δ = 1.07 ± 0.02

(99% confidence interval; R2 = 0.995)—see also [64]. The result δ’ 1, in particular, indicates

that the average behaviour of zi,t scales almost linearly with the population in the affected

region, i.e., the number of cases increase with the growth of the population of the municipali-

ties. It should also be noted that this almost isometric scaling law agrees with the one obtained

for mortality rates due to influenza and pneumonia in cities of the United States around 1918

[65]. The linear law indicates that dengue has a strong local dependence, different to the usual

super-linear behavior which is commonly found in the literature concerning epidemics with

social appeal [48]. Also, for many social contexts, such as urban indicators [66, 67], in the case

of dengue fever, its relation with socio-economic factors is controversial [28, 68]. A conse-

quence of Eqs 2 and 3 is that

Pðzi;tÞ / p� g
i;t ; ð4Þ

with γ’ 1.81. This value is larger than other allometric exponents to urban indicators found

in the literature with regard to the population, such as unemployment (γ = 1.18) and sanitation

(γ = 1.00) [69].

According to the inset of Fig 3, we found that the distribution of the residuals ξ (difference

between the data and the average value) resembles a Gaussian, evidencing a random nature

intrinsic to the distribution of fluctuations.

Fig 3. Allometry between dengue cases and population. Each blue dot represents the number of dengue

infections in 2010 in a specific municipality versus the population living in that municipality. The red marks

represent window average values (15 logarithmically spaced windows chosen through the Wand’s procedure

[63]) and the error bars are 99% bootstrapped confidence intervals for these means. The continuous green

line is a fit to the window average values. The curve is a power law with exponent δ = 1.07 ± 0.02 (99%

confidence interval; R2 = 0.995). The inset shows in log-linear scale the distribution of the residuals around the

average tendency described by the spline interpolation.

https://doi.org/10.1371/journal.pone.0180715.g003
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Dengue cases vs geographic coordinates of municipalities

Since dengue epidemics mostly affect the tropical region of the globe, it is reasonable to inves-

tigate the connection between the number of dengue cases to geographical coordinates. Fig 4

reveals how the average number of dengue cases per million people (in log scale) correlates

with the geographic coordinates of the mentioned municipalities. We found that the average

values of zi,t fluctuate around a systematically constant value for different longitudes, due to

population clusterization in coastal zones (Southeast and Northeast) [52]. Nonetheless,

another pattern emerges for zi,t for different latitudes: (i) an almost linear growth from high

latitudes until the mid-latitude *20˚ S, despite the cluster of population in Southern

Brazil; (ii) an approximate plateau from the mid-latitude up to the Equator. The pattern (i)
is consistent with the fact that the southern limit of distribution of the A. aegypti in South

America, is given in literature by the line joining the city of Tacna in Southern Peru

(17˚360 S, 70˚120 W) to the city of Bahı́a Blanca in Argentina (38˚430 S, 62˚160 W), with a win-

ter isotherm of 10˚C [29, 30]. The impact of lower temperatures on species is a slow down of

development, generating smaller individuals, decreasing the capacity of attack, and conse-

quently, its efficiency as a vector [29, 30, 33]. Considering that the number of new cases of den-

gue is related to the density of vectors or their efficiency, our results are within the geographic

limits. This implies that the distribution of mosquitoes or their capacity as a vector is not con-

stant throughout the area where they are found, but only in higher latitudes (≳ 20˚ S) and

there is a linear decrease with the decrease of latitude (*20˚ S to *30˚ S).

The distribution of the residuals (ξlon and ξlat) resemble a Gaussian. They do not obey any

form of common distribution and are also different to the residuals obtained from the allome-

tric scaling. Their shape is mainly influenced by the geographical distribution of the

municipalities.

Fig 4. Dependence of dengue cases on the geographical coordinates of municipalities. Average number of dengue cases per million people (in log

scale) between 2001 and 2012 as function of the (a) longitudes and (b) latitudes. Each blue dot represents the average of dengue cases per municipality.

The red marks are window average values (17 equally spaced windows) and the error bars correspond to 99% bootstrapped confidence intervals for these

means. The continuous line is a first order interpolation of the average data. The dashed lines in (b) correspond to the Tropic of Capricorn and the Equator.

The bins were chosen through the Wand’s procedure and the inset shows the distribution of the residuals around the average tendency described by the

spline interpolation in log-linear scale. We note that the average values of cases per million people fluctuate around a constant value for different longitudes.

Nonetheless, another pattern emerges for different latitudes: (i) an almost linear growth from high longitudes up to the mid-latitude * −20˚; (ii) an

approximate plateau from the mid-latitude up to the Equator.

https://doi.org/10.1371/journal.pone.0180715.g004
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Spatial correlation of the incidence rate of dengue cases

We conclude our study about dengue by focusing on the existence of spatial correlation in zi,t.

To investigate this aspect, we evaluated the spatial correlation function of zi,t between pairs of

municipalities that are r kilometers apart. The spatial correlation of some indicators can be

originated by the natural distribution of the population in the municipalities. Aiming to

remove this effect and considering that δ’ 1, we actually used the quantity yi,t = zi,t/pi,t, i.e.,

the incidence rate in municipality i in year t. Specifically, we computed

CðrÞ ¼
h½yi;t � mðrÞ�½yj;t � mðrÞ�ijri;j¼r

sðrÞ2
; ð5Þ

where μ(r) represents the mean value, σ(r) denotes the standard deviation of the quantity yi,t of

municipalities separated by r kilometers and h. . .i|ri,j = r stands for the arithmetic average over

municipalities whose distance ri,j is equal to r. To proceed with the analysis, we considered log-

arithmically spaced intervals of r for evaluating Eq (5). Fig 5A shows the temporal evolution of

the spatial correlation C(r) in log-log scale for the annual average number of dengue cases

among municipalities. There is a remarkably quick decay of the correlation function. In addi-

tion, this behavior can be distinguished from random noise for between two to three decades.

Considering the annual arithmetic average incidence rate per municipality over a period of

12 years (i.e., replacing yi,t by hyii ¼
1

12

P12

t¼1
yi;t in Eq (5)), we identified that C(r) follows a

power law with an exponential cut-off, as shown in Fig 5B. In general, the curve we obtained is

well described by

CðrÞ ¼ c0 r� y e� r=l ; ð6Þ

where c0 is a scale factor, θ is a critical exponent and λ is the correlation length. This type of

curve is a typical result in the neighborhood of critical points [70]. In our case, a non-linear

fit to the data (see the continuous red line on Fig 5B) leads to c0 = 2.40 ± 0.24, θ = 0.32 ± 0.03

and λ = 375 ± 66 km, whose errors represent a 99% confidence interval. Based on the Cramér-

von Mises test, these values can not be rejected at a 99% level of confidence (p-value 0.571).

Confirming our results, the spatial correlation present in the data is destroyed and can not be

distinguished from random noise with a simple shuffling of data. This is illustrated by the con-

tinuous orange line (shuffled) and the dashed black line (threshold of random noise) in Fig 5B.

The correlation length, λ = 375 km, represents an average distance over which the intensity

of the number of dengue cases persists. The mobility of A. aegypti is only a few meters, flying

long distances only in exceptional circumstances, for example, it is capable of a sustained flight

for 1 kilometer over water [29]. As such, it is reasonable to assume that the virus dispersal over

long distances is made either through the circulation of infected individuals or by carrying

infected mosquitoes. Our study provides another view about space correlations, since previous

investigations focused on micro regions [26, 28] and special cases of road networks connecting

medium sized municipalities to small ones [16]. Furthermore, in a similar study, although

related to spread obesity, it was pointed out that parameter λ is typically connected to the fini-

tude of the empirical data, depending sub-linearly on the size of the system [71]. Fig 5C shows

the critical exponent θ of the power law decay, considering C(r)/ e − r/λ.

A correlation function decaying as power law can be found in several studies, such as in lit-

erary texts [72]. The average incidence rate is long-range correlated with respect to space, and

the correlation function C(r) decays even faster than a power law due to the finitude of the sys-

tem. Reinforcing this result is that, by shuffling the average dengue rates among municipalities,

the spatial correlations are destroyed and the profile of the residual distributions (insets of the

Spatial patterns of dengue cases in Brazil
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Fig 4A and 4B) is drastically changed. Specifically, both the residual distributions for latitude

and longitude become approximately equal, simply reflecting the spatial distribution of Brazil-

ian municipalities.

As previously pointed out, the spread and growth of dengue is related to mobility. In

modeling the correlation C(r) with respect to spatial correlation of human mobility, we

employed the Edwards-Wilkinson equation [73]. This equation initially intended to investigate

the growth of interfaces [73, 74], but it may be useful to investigate a diffusive process which

starts at the origin and grows radially, intermingled with a random noise η (random source).

The Edwards-Wilkinson equation was used in the study of other collective phenomena such as

elections [75], homicide crimes [76] and lightning activity [77]. Unfortunately, this description

is not a sufficient approximation to describe the spreading of an epidemic such as dengue. One

Fig 5. Decay of the spatial correlations of dengue cases. (a) Temporal evolution from 2001 up to 2012 of the spatial correlation shown in

log-log scale for the annual number of incidence rates among Brazilian municipalities. The dashed black line is a guide to distinguish from

random noise with a confidence level of 99%. (b) Annual average of the spatial correlation shown in log-linear scale for the total number of

dengue cases among municipalities between 2001 and 2012. The continuous red line is a non-linear fit of Eq (6) to the data; the parameters

where found to be c0 = 2.40 ± 0.24, θ = 0.32 ± 0.03 and λ = 375 ± 66 km, errors which represent a 99% confidence interval. The dashed black

line is a guide to distinguish from random noise with a confidence level of 99%, while the continuous orange line is the output of the spatial

correlation function computed after shuffling the position of the municipalities, showing the lack of spatial correlations. (c) Plot in log-log

scale, showing the power law component of the spatial correlation through the data re-escalated by multiplying an exponential factor.

https://doi.org/10.1371/journal.pone.0180715.g005
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notable reason is the small world feature [78] due to long trips by infected people [15]. As

such, it becomes natural to generalize the Edwards-Wilkinson equation by replacing the

Brownian motion so as to incorporate long jumps whose lengths could follow. Therefore, we

used a Lévy distribution, because such characteristics make our model more consistent to

human mobility. In fact, in contrast with the Gaussian cases, Lévy flights are characterized by

frequent movement for short distances, interrupted by random changes of direction that are

only occasionally followed by movements over longer distances. Sorting out the displacement

lengths covered in these journeys by size frequency, results in a distribution with a long tail

that obeys a power law [79]. This pattern, for instance, has been found in the displacement of

animals [80, 81], and humans in local [82], nation-wide [57] and global sphere [79]. Thus, the

model under consideration here is written as a generalized Edwards-Wilkinson equation:

@

@t
yðr; tÞ ¼ nra yðr; tÞ þ Zðr; tÞ ; ð7Þ

where y(r, t) represents the average incidence rate in a municipality localized by the position of

vector r in relation to another municipality forming a pair, ν is a diffusion constant, η(r, t) is a

random noise with zero mean and finite variance uncorrelated in space and time.rα is a Riesz

fractional operator and leads to long jumps, playing the role of a Laplacian arbitrary order,

defined by Ffraf ðrÞg ¼ � kaFff ðrÞg, where k = |k| and Ff� � �g is the Fourier transform

[83, 84]. Usually, the range 0< α� 2 is used to assure that y(r, t) is non-negative when

η(r, t) = 0. Notice also that a smaller α favors longer jumps. Furthermore, the limit α = 2 corre-

sponds to the usual Laplacian, leading again to the Edwards-Wilkinson equation and conse-

quently to a Gaussian distribution.

In the deterministic case (i.e., when η(r, t) = 0), the solution of Eq (7) in the infinity space

can be obtained analytically by making use of a Lévy distribution [85]. In general, it can be

demonstrated that for an infinity system, Eq (7) leads to a height-height correlation function

in the form of

Cðr; tÞ � r� ðd� aÞ ; ð8Þ

where d represents the spatial dimension of the system analyzed [86, 87]. Because humans and

Aedes mosquitoes live essentially close to the Earth’s surface, we do not use data on altitude. As

a consequence, d = 2. Our model does not incorporate data from local relief features, that is,

altitude is not an independent variable in this study. As such, our model only used the average

behavior as regards the altitude. Thus, the use of the previous θ, θ = 0.32 ± 0.03, in the relation

θ = d − α leads to α’ 1.68. This result shows the consistency of our model in the spread of

dengue with the possibility of long jumps, in contrast with the case α = 2, where only short-

ranged jumps occur. Additionally, even when long range correlations are known to be present,

a cut-off value will eventually emerge. In general, as previously pointed out, this kind of cut-off

may be associated with the finitude of the system; an example related to humans occurs in the

study of obesity prevalence [71]. The incorporation of this aspect in our study was obtained by

multiplying the power law of our model by an exponential cut-off.

Conclusion

In this work, we found patterns in dengue cases for Brazilian municipalities: the distribution

of dengue fever cases follows a power law; the relationship between the population and the

number of cases obeys an isometric rule; the existence of a dependence on the number of den-

gue cases with the latitude of the municipalities; a spatial correlation decaying as a power law

with an exponential cut-off.
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With small spatial scales (i.e., at municipal level), the distribution of dengue cases showed a

robust power law behavior for twelve years with an average negative exponent, as illustrated in

Fig 2. A similar result was found to AIDS in Brazil [48]. In the AIDS case, humans are the

main carrier of the disease. The fact that dengue presents a similar distribution could be an

indication that human mobility is more consequential than vector mobility, which has a lim-

ited locomotion capacity. Furthermore, the vector can be transported by population move-

ment. The appearance of the power law behavior is a distinct pattern: power laws decay slower

than exponential regimes and are ubiquitous in nature, commonly emerging from critical

phenomena.

We also analyzed how the distribution of dengue cases scales with the population of the

region where they were centered. In relation to the population of the municipalities, Fig 3 illus-

trates the almost isometric rule between the number of dengue cases against the population of

the municipalities. Population size did not affect dengue case rates significantly in Brazilian

municipalities in the period 2001–2012. Similar behavior has been identified for other ill-

nesses, for instance, in the study of mortality rates by influenza and pneumonia for cities in the

United States around 1918 [65].

In Fig 4, we characterized dengue epidemics encompassing all Brazilian municipalities by

taking their geographic location into account. We found that dengue cases have an approxi-

mately constant tendency in their average values for a wide range of longitudes. As for the

dependence of dengue cases on the latitude of municipalities, two distinct regions were identi-

fied: an almost linear growth up to the Tropic of Capricorn and an approximate plateau

between the Tropic of Capricorn and the Equator. Considering that the number of new den-

gue cases is related to the density of vectors, our results are within the limits found in the litera-

ture concerning the A. aegypti. More precisely, such results imply that the distribution of

mosquitoes is not constant in all areas where it is found, but only in higher latitudes where

there is a linear decrease with the increase of latitude.

We conclude our study with an investigation of the spatial correlations of dengue cases

between pairs of municipalities (Fig 5). Our results show that the correlation function in terms

of the distance between each pair of municipalities decays as a power law with an exponential

cut-off. We proposed to model the power law decay via a generalization of the Edwards-Wil-

kinson equation with a fractional derivative on space. This model connects the spatial correla-

tion of the number of new dengue cases diagnosed per capita among municipalities with

human mobility in the transmission of dengue. In this context, the correlation length repre-

sents an average distance over which the intensity of dengue cases persists. Our results could

be more embracing than those found in literature, where spatial correlation is studied in

microregions or only for a few special cases. Our findings indicate that population mobility

has an important role in the spread of the dengue virus [16, 29, 31]. Although there is a lack of

studies available about human mobility in Brazil, our results imply that the risk area brought

about by a large outbreak could be larger than the one commonly considered in local studies.

Presently, Brazil faces a complex epidemiological scenario characterized by simultaneous

circulation of three arboviruses—dengue, chikungunya and zika –, transmitted by the Aedes
Aegypti mosquito. Knowing more about the spread of dengue fever can also intensify the fight

against these other infections. Arboviruses are a huge concern to public health due to a diver-

sity of infectious agents involved, unexpected clinical manifestations and potential complica-

tions associated with the cases. Furthermore, there is difficulty in the implementation and

maintenance of educational and sanitary measures. Any additional information about spread-

ing patterns of these diseases may be useful in the preparation and guidance of states and

municipalities towards the adoption of measures for vector control and epidemiological sur-

veillance. For example, if a municipality presents an amount of cases higher than was identified
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in the average allometric behaviour, the incidence of dengue should be given special attention

by public health organizations. The region between * −20˚ and the equator had a higher inci-

dence of dengue and, therefore, this region should receive greater attention from public

authorities. The distance of correlation indicates that efforts against the spread of dengue

should not be local, but cover regions in accordance with this correlation.

In order to improve our understanding of the spatio-temporal dynamics of dengue, it

would be helpful if dengue cases in other regions as large as Brazil were also investigated. In

particular, to verify if the dynamics explored in our study could serve as a model for investiga-

tion in regions with similar climate. More specifically, how the peculiarities inherent to each

region can cause interference in the patterns obtained in our analysis. Thus the possible final

results, obtained with a large database, could be seen as a basis for public health policies such

as those exemplified in the previous paragraph.
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40. Portal da Saúde;. http://portalsaude.saude.gov.br/images/pdf/2015/agosto/26/2015-020-publica——o.

pdf.

41. Ivanov PC, Chen Z, Hu K, Stanley HE. Multiscale aspects of cardiac control. Physica A: Statistical

Mechanics and its Applications. 2004; 344(3–4):685–704. https://doi.org/10.1016/j.physa.2004.08.016

Spatial patterns of dengue cases in Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0180715 July 17, 2017 14 / 16

https://doi.org/10.1016/j.fss.2013.04.003
https://doi.org/10.1016/j.fss.2013.04.003
https://doi.org/10.1016/j.vaccine.2013.06.036
https://doi.org/10.1016/j.vaccine.2013.06.036
https://doi.org/10.1016/j.gloenvcha.2014.09.007
https://doi.org/10.1016/j.ijid.2014.03.452
https://doi.org/10.1016/j.cageo.2010.01.008
https://doi.org/10.1186/1476-072X-13-50
http://www.ncbi.nlm.nih.gov/pubmed/25487167
https://doi.org/10.1016/j.scitotenv.2008.01.010
http://www.ncbi.nlm.nih.gov/pubmed/18262225
https://doi.org/10.1016/j.ecolmodel.2015.07.007
https://doi.org/10.1016/j.epidem.2010.01.001
https://doi.org/10.1016/j.epidem.2010.01.001
http://www.ncbi.nlm.nih.gov/pubmed/21352772
https://doi.org/10.1016/j.actatropica.2015.02.010
http://www.ncbi.nlm.nih.gov/pubmed/25733491
https://doi.org/10.1016/j.actatropica.2011.04.004
https://doi.org/10.1016/j.actatropica.2011.04.004
http://www.ncbi.nlm.nih.gov/pubmed/21549680
https://doi.org/10.1016/j.vetpar.2015.02.003
https://doi.org/10.1016/j.vetpar.2015.02.003
http://www.ncbi.nlm.nih.gov/pubmed/25747489
https://doi.org/10.1001/jama.275.3.217
http://www.ncbi.nlm.nih.gov/pubmed/8604175
https://doi.org/10.1111/j.1365-3156.2009.02277.x
https://doi.org/10.1111/j.1365-3156.2009.02277.x
http://www.ncbi.nlm.nih.gov/pubmed/19392743
https://doi.org/10.1371/journal.pntd.0000775
http://www.ncbi.nlm.nih.gov/pubmed/20689820
https://doi.org/10.1371/journal.pntd.0001908
http://www.ncbi.nlm.nih.gov/pubmed/23209852
http://portalsaude.saude.gov.br/images/pdf/2015/agosto/26/2015-020-publica----o.pdf
http://portalsaude.saude.gov.br/images/pdf/2015/agosto/26/2015-020-publica----o.pdf
https://doi.org/10.1016/j.physa.2004.08.016
https://doi.org/10.1371/journal.pone.0180715


42. Bartsch R, Kantelhardt JW, Penzel T, Havlin S. Experimental Evidence for Phase Synchronization

Transitions in the Human Cardiorespiratory System. Physical Review Letters. 2007; 98:054102. https://

doi.org/10.1103/PhysRevLett.98.054102 PMID: 17358862

43. Antonio FJ, Mendes RS, Thomaz SM. Identifying and modeling patterns of tetrapod vertebrate mortality

rates in the Gulf of Mexico oil spill. Aquatic Toxicology. 2011; 105(1–2):177–179. https://doi.org/10.

1016/j.aquatox.2011.05.022 PMID: 21718661

44. Milne BT. Motivation and Benefits of Complex Systems Approaches in Ecology. Ecosystems. 1998;

1(5):449–456. https://doi.org/10.1007/s100219900040

45. Yamasaki K, Matia K, Buldyrev SV, Fu D, Pammolli F, Riccaboni M, et al. Preferential attachment and

growth dynamics in complex systems. Physical Review E. 2006; 74:035103. https://doi.org/10.1103/

PhysRevE.74.035103
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