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Ketamine is a powerful glutamatergic long-lasting antidepressant, efficient in intractable
major depression. Whereas ketamine’s immediate psychomimetic side-effects were
linked to glutamate changes, proton MRS (1H-MRS) showed an association between
the ratio of glutamate and glutamine and delayed antidepressant effect emerging
∼2 h after ketamine administration. While most 1H-MRS studies focused on anterior
cingulate, recent functional MRI connectivity studies revealed an association between
ketamine’s antidepressant effect and disturbed connectivity patterns to the posterior
cingulate cortex (PCC), and related PCC dysfunction to rumination and memory
impairment involved in depressive pathophysiology. The current study utilized the state-
of-the-art single-voxel 3T sLASER 1H-MRS methodology optimized for reproducible
measurements. Ketamine’s effects on neurochemicals were assessed before and ∼3 h
after intravenous ketamine challenge in PCC. Concentrations of 11 neurochemicals,
including glutamate (CRLB ∼ 4%) and glutamine (CRLB ∼ 13%), were reliably quantified
with the LCModel in 12 healthy young men with between-session coefficients of
variation (SD/mean) <8%. Also, ratios of glutamate/glutamine and glutamate/aspartate
were assessed as markers of synaptic function and activated glucose metabolism,
respectively. Pairwise comparison of metabolite profiles at baseline and 193 ± 4 min
after ketamine challenge yielded no differences. Minimal detectable concentration
differences estimated with post hoc power analysis (power = 80%, alpha = 0.05)
were below 0.5 µmol/g, namely 0.39 µmol/g (∼4%) for glutamate, 0.28 µmol/g
(∼10%) for Gln, ∼14% for glutamate/glutamine and ∼8% for glutamate/aspartate.
Despite the high sensitivity to detect between-session differences in glutamate and
glutamine concentrations, our study did not detect delayed glutamatergic responses
to subanesthetic ketamine doses in PCC.

Keywords: ketamine, glutamate, glutamine, magnetic resonance spectroscopy, depression, ketamine
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INTRODUCTION

Clinical experience confirmed ketamine as a potent tool for the
treatment of unipolar depression and bipolar disorders (Kraus
et al., 2017b), often effective when other antidepressants fail, i.e.,
in treatment-resistant major depressive disorder (TRD) (Zarate
et al., 2012; Fava et al., 2018; Phillips et al., 2019). Despite that, the
exact biological effects of ketamine in the brain remain unknown,
and sensitive in vivo metabolic markers of therapeutic drug
action still need to be established.

Ketamine’s antidepressant effect is likely mediated through
N-methyl-D-aspartate (NMDA) receptors on GABAergic
interneurons across cortical regions, where it acts as a glutamate
(Glu) antagonist (Abdallah et al., 2015). Thus, ketamine reduces
inhibitory control over cortical neurons and indirectly increases
cortical activity (Chen et al., 2018) and excitatory glutamatergic
neurotransmission in some brain regions such as the prefrontal
cortex (Moghaddam et al., 1997). In this regard, increased Glu
levels were measured in the cortex activated by physiological
stimulus (Bednarik et al., 2015b) and by ketamine challenge
(Stone et al., 2012; Milak et al., 2016; Javitt et al., 2018) with
single-voxel proton magnetic resonance spectroscopy (1H-MRS).
Patients suffering from depression had indeed lower cortical
glutamate levels due to neuronal loss, decreased neuronal
activity, and synaptic dysfunction (Maddock and Buonocore,
2011; Moriguchi et al., 2019) with post-stress dysfunctional
glutamate cycling resulting in excitotoxicity and neuronal
atrophy (Popoli et al., 2011). Thus, the glutamate model of
depression implicates alterations to glutamate-related excitatory
synaptic function (Sanacora et al., 2012). Synaptic Glu turnover
can be probed by in vivo MRS methods quantifying Glu and Gln
levels as well as their ratio (Glu/Gln) (Aanerud et al., 2017).

While acute metabolite responses to ketamine administration
are more likely associated with dissociative drug effects,
antidepressant effects are delayed and start to build-up 2 h
after ketamine administration (Berman et al., 2000; Zarate
et al., 2006). One of the sparse 1H-MRS studies investigating
delayed ketamine’s effects revealed a change in the Glu/Gln
ratio in the pregenual anterior cingulate cortex (ACC) 24 h
after ketamine infusion (Li et al., 2017). The Glu/Gln alterations
correlated with delayed ketamine-induced changes in functional
connectivity within the default mode network (DMN), including
the posterior cingulate cortex (PCC) (Li et al., 2020). Another
study showed that connectivity patterns between PCC and
regions involved in the DMN (posterior ACC, medial prefrontal
cortex), pregenual ACC, and dorsal medial prefrontal cortex were
modulated by ketamine (Scheidegger et al., 2012). Although MR
imaging connectivity studies show modulatory effects on PCC
connectivity, plausible underlying molecular mechanisms in this
region have not yet been described. An investigation revealed
that patients with major depression had increased resting activity
within DMN and PCC compared to healthy individuals (Bartova
et al., 2015), which correlated with behavioral measures of
rumination and brooding (Berman et al., 2011). These findings
were supported by another study, where PCC activity during
emotion processing predicted early antidepressant response
(Spies et al., 2017). PCC also connects to the hippocampus and

might be involved in memory impairment seen in depression
(Leech and Sharp, 2014). Hence, PCC dysfunction could also be
linked to rumination and memory impairment involved in the
pathophysiology of depression. The growing body of ketamine
research pointed to the role of PCC in depression and motivated
the current study.

Optimized 1H-MRS methodology can be used to accurately
measure glutamate and glutamine levels. Previous single-voxel
1H-MRS studies were mostly focused on ACC, and to our
knowledge, none investigated responses to ketamine in the
PCC. Therefore, it is pivotal to elucidate whether subanesthetic
ketamine administration leads to measurable glutamate and
glutamine responses in PCC in the period associated with the
presence of antidepressant effects. Such responses could serve as
important markers of ketamine’s antidepressant action.

Thus, we utilized the state-of-the-art single-voxel semi-LASER
methodology, fine-tuned for highly reproducible measurements
at a clinical 3T scanner (Terpstra et al., 2016). Our work aimed to
determine the biological in vivo effects of the ketamine-challenge
on the extended neurochemical profile, including Glu and Gln, in
PCC in twelve healthy volunteers.

MATERIALS AND METHODS

Cohort
Twelve healthy male adults (26 ± 5 y.o., mean ± SD) were
enrolled in this study. The study population was limited to
male participants to avoid oscillations in metabolite levels due
to hormonal fluctuations associated with the menstrual cycle
(Harada et al., 2011; Liu et al., 2015). Participants were free
from internal, neurological, or psychiatric disorders assessed
via medical history, physical examination, electrocardiogram,
and routine laboratory parameters. Any previous or current
psychiatric diagnoses were ruled out by the Structured Clinical
Interview for DSM-IV Axis-I Disorders (SCID I) conducted by
a trained psychiatrist. Individuals had no history of substance
abuse. Current drug use was excluded by urine drug tests
performed both at the screening visit and before the MRI
sessions. Subjects were excluded at screening if they had
any MRI contraindications. All participants provided written
informed consent and received financial reimbursement for their
participation. This study was approved by the Ethics Committee
of the Medical University of Vienna and carried out according to
the Declaration of Helsinki.

Experimental Design
Volunteers underwent two MRI scans. While the first scan
(MRI1) was performed without pharmacological challenge and
served as a baseline reference, participants received 0.8 mg/kg
bodyweight of racemic ketamine (Ketamine hydrochloride,
50 mg/mL ampoules, Hameln Pharma Plus GmbH) intravenously
over 50 min starting 193 ± 4 min (∼3 h) prior to the second
scan (MRI2). The dose of 0.8 mg/kg is highly efficient to elicit
antidepressant effects while kept sub-anesthetic (Perry et al.,
2007; Zarate et al., 2012; Fava et al., 2018). Vital parameters were
monitored continuously, and a clinician was present at all times.
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Venous blood samples were drawn at baseline and immediately
before and after MRI2. After centrifugation and separation of
plasma, samples were frozen at ≤−80◦C until analysis.

MRI/MRS Data Acquisition
MRI data were collected using a 64-channel head coil on a 3 Tesla
MR Scanner (MAGNETOM Prisma, Siemens Medical, Erlangen,
Germany). Structural T1-weighted images were acquired
during each measurement using a standard magnetization-
prepared rapid gradient-echo (MPRAGE) sequence (TE = 1800
milliseconds, TR = 2.37 milliseconds, 208 slices, 288 × 288 matrix
size, slice thickness 0.85 mm, voxel size 1.15 × 1.15 × 0.85 mm)
for accurate placement of the MRS volume of interest (VOI)
and within-VOI brain segmentation. The voxel that here we
refer to as “Posterior Cingulate Cortex” slightly extended from
the posterior cingulate into the parietal lobe (precuneus) but
did not extend into the occipital cortex (beyond the occipito-
parietal fissure). The 22 × 22 × 22 mm cubic PCC voxel was
be placed mid-sagittal on “auto-aligned“ anatomical images
based on anatomical landmarks (Figure 1). The voxel was
rotated in the sagittal plane by ∼30◦ to be aligned with the
posterior border of the splenium. To allow for patient motion
and chemical shift displacement, the voxel was backed away
anteriorly from the splenium and caudally from occipito-parietal
fissure by 2 mm. The precise description of the MRS-VOI
position secured its reproducible placement by a single operator
(Park et al., 2016).

The position of the VOIs for the post-ketamine MR scan was
determined based on the VOI placement of the baseline scan
when utilizing Autoalign coordinates (Dou et al., 2015). Standard
Siemens B0-shimming was used to minimize magnetic field
inhomogeneity within the MRS-VOI. MRS data were acquired
with a semi-LASER localization pulse sequence (Oz and Tkac,
2011) (128 NEX, TR = 5 s, AT = ∼11 min) with water (Tkác
et al., 1999) and outer volume suppression. STEAM based low
flip angle water excitation was used to prospectively (each TR)
correct for frequency drifts and to keep stable water suppression.
Standard full-passage adiabatic pulses were replaced by GOIA-
WURST refocusing pulses for optimal localization performance
and shorter echo time of 23 ms. Unsuppressed water spectra were
acquired as the internal reference for metabolite quantification in
absolute units and correction of residual eddy currents.

MRI/MRS Data Processing
Single-FID MRS data were corrected for small frequency and
phase fluctuations, summed and corrected for the residual eddy
current effects using an unsuppressed water signal (Klose, 1990).
Brain metabolites were quantified by LCModel (Provencher,
1993, 2001; Pfeuffer et al., 1999; Tkáč et al., 2009) using a
basis set of nineteen brain metabolites simulated with a spin
density matrix approach (Henry et al., 2006), which included:
alanine (Ala), ascorbate (Asc), aspartate (Asp), creatine (Cr),
γ-aminobutyric acid (GABA), glucose (Glc), glutamate (Glu),
glutamine (Gln), glutathione (GSH), glycerophosphocholine
(GPC), myo-inositol (Ins), scyllo-inositol (sIns), lactate
(Lac), N-acetylaspartate (NAA), N-acetylaspartylglutamate
(NAAG), phosphocholine (PC), phosphocreatine (PCr),

FIGURE 1 | Voxel position and sample MR spectra. An example of spectra
acquired before (MRI1) and after ketamine administration (MRI2) is shown
along with their fits and residuals of the fits resulting from LCModel
quantification. The insets with T1-weighted MPRAGE images depict the
typical MRS-voxel position in the posterior cingulate cortex in MRI1 (red) and
MRI2 (blue), and their mutual overlap (in purple).

phosphoethanolamine (PE), and taurine (Tau). Also, a measured
spectrum of fast-relaxing macromolecules (MM) was included
in the basis set. Only metabolite concentrations quantified
with Cramèr-Rao lower bounds (CRLB) below 20% on average
were included in further analysis (Terpstra et al., 2016). High-
resolution MRI data were used for whole-brain segmentation.
The probabilistic maps of the gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF) were calculated with
SPM12 (Ashburner and Friston, 2005) from the T1-weighted
MPRAGE images. An in-house routine written in MATLAB
was used to determine the volume fractions of GM, WM, and
CSF in each VOI by adopting an iterative method of threshold
selection (Ridler and Calvard, 1978). The CSF fraction was
used to assess the brain tissue volume for each MRS-VOI.
The tissue water content was calculated using GM and WM
volume fractions in the VOIs assuming water contents of 84%
and 70% in GM and WM, respectively (Randall, 1938; Gröhn
et al., 2019). Thus, the CSF fraction and tissue-specific water
content were used to adjust metabolite concentrations obtained
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from each scan. Metabolite concentrations were additionally
corrected for T2-relaxation assuming relaxation times of water
(T2 = 100 ms); this value represents the mean T2 from all
subjects obtained by fitting the integrals of the unsuppressed
water acquired at different TEs with a biexponential fit with
the T2 of CSF fixed at 740 ms and assuming that the apparent
T2 of water under Carr-Purcell conditions is 1.5 times that
of the measured free precession T2 (Deelchand et al., 2018).
Finally, the overlap between the pre- and post-ketamine VOI
position was evaluated.

Ketamine and Metabolite Plasma Levels
Determination of ketamine, norketamine (norket), and
dyhydronorketamine (dhnk) plasma levels was accomplished
using gas chromatography-mass spectrometry (GC-MS/MS)
at the Clinical Department of Laboratory Medicine, Medical
University of Vienna, Austria. The applied method was validated
according to the European Medicines Agency (EMA) guideline
on bioanalytical method validation (European Medicines
Agency, 2011). Plasma levels were interpolated to the time point
in the middle of each MRS measurement for each subject using
linear interpolation in MATLAB.

Statistical Analysis
Data were analyzed in RStudio software version 1.2. All
continuous variables were tested for normality using the
Kolmogorov-Smirnov test. Signal-to-noise ratios (SNRs) and
spectra linewidths provided by the LCModel were first subjected
to comparisons with a Wilcoxon signed-rank test to ensure
the absence of systematic biases in the datasets induced by
distinctions in the data quality pre- vs. post-ketamine. The
same statistical test was carried out to compare metabolite
concentrations. The significance threshold was adjusted with
the false discovery rate method separately for metabolite
concentration and ratios to reduce the likelihood of false-
positive results to 5%. Results are presented as mean ± SD.
To estimate the sensitivity of our method to reveal differences
in metabolite concentrations between sessions, the minimal
detectable concentration differences were calculated by a post hoc
power analysis (power. 0.8, type I error. 0.05), which used the
observed standard deviations of the concentration difference
(post-ketamine minus baseline).

RESULTS

The spectra were measured from MRS-VOIs with high between-
session overlap 90% ± 5%, with reproducible spectral linewidth
2.5 ± 0.9 Hz and 2.8 ± 1.0 Hz and signal-to-noise ratio
64.5 ± 5.3 and 65.5 ± 5.0 in the first and second scan (p > 0.05,
respectively. The within voxel fractions of GM (72.4% ± 1.78%
and 73.4% ± 1.8%), WM (18.6% ± 3.1% and 17.8% ± 3.2%)
and CSF (8.7 ± 3.7% and 8.5 ± 3.1%, session 1 and session 2)
were similar in both sessions and the respective between-session
coefficients of variations were 1.0% (GM), 4.3% (WM) and 6.7%
(CSF) on average.

FIGURE 2 | Coefficients of variation. Mean between-session (within-subject)
coefficients of variation (CV, SD/mean) illustrate the variance between baseline
and post-ketamine scan. Bars are means; error bars represent
between-subject standard deviations.

The reproducible quality of measured spectra and their fitting
in LCModel along with voxel position is displayed on Figure 1.
Six metabolites (Glu, myo-Ins, tCho, tCr, tNAA, and Glx) and
macromolecules were quantified with CRLBs below 5%. Another
4 metabolites (Asp, Gln, GSH, Tau, and Glc + Tau) fulfilled the
criteria of reliable quantification (CRLB < 20%). Ala, Asc, Glc,
sIns, PE, and Lac, had CRLB > 20% consistent with previous
literature (Terpstra et al., 2016) and were not analyzed. The mean
between-session coefficients of variation (SD/mean) were below
3% for Glu, myo-Ins, tCho, tCr, tNAA, Glx, below 8% for all
other reliably quantified metabolites and their ratios (Glu/Gln
and Glu/Asp) (Figure 2).

Pairwise comparison yielded no statistically significant
difference between neurochemical concentrations measured
at the baseline and after ketamine administration. Stable
neurochemical profiles for both scans are demonstrated in
Figure 3. The differences in concentrations (absolute values)
between both sessions are substantially smaller than minimal
detectable differences estimated by the post hoc power analysis
(Figure 4). Minimal detectable differences were below 0.5 µmol/g
for all metabolites.

Mean plasma concentrations were 77.6 ± 14.7 ng/ml for
ketamine, 105.0 ± 21.3 ng/ml for norket, and 21.8 ± 11.15 ng/ml
for dhnk. The concentration of ketamine and its metabolites
was measured in the middle of the metabolite spectra collection
(MRI2), i.e., 193 ± 4 min. after ketamine bolus starts and will
serve as a reference for other studies.

DISCUSSION

MR spectra, obtained in PCC before and ∼3 h after ketamine
administration, were referenced to tissue water concentration to
reliably quantify 11 neurochemicals in absolute units (µmol/g),
and to elucidate delayed ketamine effects in between-session
comparison. Ketamine-induced change in Glu and Gln ratio
was also assessed (Li et al., 2020). The antidepressant actions
of ketamine were previously linked to antagonistic effects
on NMDA receptors of GABA interneurons with consequent
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FIGURE 3 | Metabolite quantification in LCModel. Concentrations of
metabolites were assessed separately or as sums and are shown in absolute
units. Ratios of metabolites are presented in relative units. Data acquired at
baseline and 193 ± 4 min. after ketamine administration (N = 12) were
compared with the standard paired t-test, which revealed no differences
between pre- and post-ketamine sessions.

FIGURE 4 | Measured differences and estimated effect size. Plot displays
absolute values of measured average differences between sessions (baseline
minus post-ketamine, N = 12) and minimal detectable differences estimated
with power of 0.8 and alpha = 0.05.

disinhibition of glutamatergic neurons and glutamate release
in some brain regions. Thus, ketamine indirectly activates α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
Glu receptor, which triggers second messenger pathways
implicated in synaptic function and plasticity (Maeng et al., 2008;
Duman et al., 2016; Aleksandrova et al., 2017; Höflich et al.,
2017a; Kraus et al., 2017a). Glu, which is involved in several
critical metabolic pathways (Mangia et al., 2012), is mostly (80%)
created from glutamine by synaptically localized glutamine-
synthetase (Tani et al., 2014). Thus, assessing levels of brain
glutamate and his precursor glutamine probes the glutamine-
glutamate cycle and synaptic functioning (Duarte et al., 2012;
Abdallah et al., 2018) and provides insight into ketamine’s
antidepressant activity.

Given the dynamic relationship between concentrations of
both transmitters via the glutamate-glutamine cycle, their ratio
is more susceptible to capture their changes going in the
opposite direction, rather than Glu and Gln concentrations
assessed separately (Duarte et al., 2012). Besides, we explored
another physiologically meaningful ratio, i.e., Glu/Asp, which

might reflect deficits in glucose oxidation (Bednařík et al.,
2018) reversible by ketamine (Chen et al., 2018). However,
in the current study, sub-anesthetic doses of ketamine caused
significant concentration changes neither in the separately
quantified metabolites nor in the Glu/Gln or Asp/Glu ratios.

PCC is functionally and structurally interconnected to
the pregenual ACC, the structure implicated in reward and
anhedonia (Höflich et al., 2017b, 2018), the crucial depressive
symptom associated with aberrant glutamate metabolism (Walter
et al., 2009). Therefore, ACC was most often targeted in the MRS
ketamine experiments, which mostly showed an increase in Glu
levels after acute ketamine administration and an increase in
Gln/Glu 24 h after ketamine infusion. Besides pregenual ACC,
PCC connects to other nodes of DMN (dorsal ACC and medial
prefrontal cortex, MPFC), and to the dorsolateral prefrontal
cortex. An increase in connectivity between these regions seen
in depression was reverted by ketamine (Scheidegger et al.,
2012). MPFC, along with PCC, are involved in the encoding of
negative memories. The functional activation of these structures
was linked to the severity of depressive symptoms (Foland-Ross
et al., 2013). Another study showed altered connectivity between
PCC and lateral orbitofrontal cortex in depression (Cheng et al.,
2018). These findings support the theory that the non-reward
system in the lateral orbitofrontal cortex has increased effects on
the PCC, contributing to the memory system and rumination
about sad memories and events in depression (Berman et al.,
2011). Overall, PCC is functionally and structurally connected
to brain regions involved in affective functions, memory,
DMN, and cognition, all related to depression pathophysiology
(Leech and Sharp, 2014).

Despite the critical role of PCC in the development and
treatment of depressive symptoms, little is known about the
underlying molecular mechanisms. To our knowledge, this
is the first single-voxel 1H-MRS study assessing metabolite
response to the ketamine administration in the PCC. To
date, only a single multi-voxel 3T ketamine study assessed
Glx (Glu + Gln) and GABA concentrations in the voxels
located in PCC utilizing edited 3D 1H-MRSI methodology
(Silberbauer et al., 2020). In agreement with our outcomes, this
study revealed no Glx/tCr responses ∼2 h after the ketamine
challenge. Although the multivoxel method provided valuable
information from other brain regions along with PCC, the
work was primarily focused on GABA, and CRLB for Glx
in the PCC was ∼9%, i.e., substantially higher than in the
current study (CRLBGlx = ∼3%). In contrast to our study, the
separation of Glu and Gln was not feasible with the multi-voxel
approach. In addition, the current manuscript is one of the sparse
contributions in ketamine literature that investigates non-acute
effects of ketamine on neurochemicals (Li et al., 2017, 2020;
Silberbauer et al., 2020).

Moreover, the current study benefited from high
within-session (Bednařík et al., 2020) and between-session
reproducibility in quantifying neurometabolites (Bednarik
et al., 2015a; Terpstra et al., 2016). Notably, the method used
in the current clinical trial includes several improvements
that were not utilized to obtain data for the methodological
test-retest study (Terpstra et al., 2016). Specifically, implemented
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prospective scan-to-scan frequency correction led to stable water
suppression performed with a frequency-selective method, i.e.,
VAPOR. Additionally, standard HS4 full-passage adiabatic pulses
(Deelchand et al., 2014) were replaced with GOIA-WURST
pulses resulted in more precise localization of MRS voxel. Lower
power requirements of GOIA-WURST allowed shortening of the
echo time from 28 to 23 ms (Öz et al., 2020). This governed a
slight increase in SNR and a reduction in J-evolution (Landheer
et al., 2020). Additional OVS pulses added in the sequence
minimized unwanted lipid signals in the spectra. Presumably,
these improvements contributed positively to the sensitivity to
detect between-session differences in neurotransmitter levels.
Indeed, achieved between-session CVs were lower compared to
the previous study (Terpstra et al., 2016) and were below 8% and
3% for Gln and Glu, respectively. Nonetheless, this effect can be
mainly ascribed to SNR gain owing to larger MRS-VOI (8 mL vs.
10 mL) and more transients (64 vs. 128).

To convey the level of sensitivity at which we ruled out the
ketamine effects on neurochemicals, a post hoc power analysis
was employed to estimate minimal detectable differences between
the two sessions (post-ketamine minus baseline). The analysis
determined minimal detectable differences of 0.39 µmol/g and
0.28 µmol/g for Glu and Gln, respectively. Translated in relative
unites, this indicates, between-session difference of ∼4% in
(Glu), ∼10 % in (Gln), and ∼14% in Glu/Gln ratio could be
detected in the current study. This sensitivity level allowed to
detect functional Glu responses of ∼4% to visual stimulation
in the human visual cortex with the same 3T methodology
(Bednarik et al., 2019). Authors of another negative MRS
ketamine study conducted at 7T estimated their sensitivity to
detect Glu responses to ketamine at 8% (Evans et al., 2018).
This example emphasizes the critical importance of indicating
the power to detect metabolite responses and to utilize optimized
methodologies for pharmacological studies.

Despite the high sensitivity of the current methodology, no
changes in glutamatergic metabolites in the PCC were observed.
In this regard, it is important to note that some studies did
not show significant changes in cortical glutamate or glutamine
during ketamine challenge in ACC (Taylor et al., 2012; Bojesen
et al., 2018; Evans et al., 2018) and OCC (Taylor et al., 2012).
This corroborates our recent study utilizing edited 3D MRSI
methodology (Silberbauer et al., 2020) that did not prove delayed
Glx changes in several brain regions, including ACC and PCC,
after ketamine administration. PCC is a structure with complex
connectivity and functions; therefore, it is plausible that the
ketamine-related metabolite responses could have occured in a
subregion of PCC and could not have been revealed due to
the partial volume effect given the voxel size of ∼10 mL. It is
also possible that delayed changes in Glu and Gln previously
detected in ACC (Li et al., 2017) are region-specific and do
not occur in PCC. Glutamatergic deficiency in the PCC likely
plays a role in acute psychomimetic ketamine effects (Northoff
et al., 2005; Ma and Leung, 2018) and can be assessed with
sensitive MRS methodologies in the future. For instance, recent
advances in 7T MRSI methodology showed excellent Gln and
Glu separation and accurate Glu/Gln mapping over the entire
brain (Hingerl et al., 2020). Glutamate is coupled to the synthesis

of inhibitory neurotransmitter GABA with an important role
in depression (Lener et al., 2017). Unfortunately, in the current
3T study, we were not able to quantify GABA with sufficient
reliability. However, PCC GABA levels were not disturbed in a
previous ketamine study (Silberbauer et al., 2020) utilizing 3D
MRSI and spectral editing (Moser et al., 2019; Spurny et al., 2019,
2020). Our study only focused on men population. However,
the higher prevalence of anxiety or depression in women
than men can be attributed to sex-specific neuronal exposure
to different hormonal levels and might cause distinctions in
ketamine effects between sexes (Alonso et al., 2004; McHenry
et al., 2014). Some animal studies indeed reported distinctions
in responses to antidepressants between males and females
(Dalla et al., 2010).

Changes in metabolite fluxes are not necessarily reflected by
changes in metabolite concentrations. In contrast to 1H-MRS, the
speed of metabolite turnover and Glu/Gln cycling can be assessed
by technically challenging and clinically less accessible 13C-MRS
(Abdallah et al., 2018). Emerging non-invasive approaches, which
benefit from direct and indirect detection of deuterium-labeled
tracers with 2H and 1H-MRS, respectively, promise to provide
clinically available quantitative markers of energetic glucose
metabolism and synaptic processes that are relevant to ketamine
action (Lu et al., 2017; De Feyter et al., 2018; Rich et al., 2020).
Also, methods of chemical exchange saturation transfer (CEST)
can potentially gain from more sensitive molecular detection of
Glc and Glu and can verify our findings in the future (Cai et al.,
2012; Roalf et al., 2017; Poblador Rodriguez et al., 2019).

CONCLUSION

In conclusion, the current study did not reveal metabolite
responses to the ketamine challenge in the period associated
with the development of ketamine’s antidepressant action in
the posterior cingulate cortex. Specifically, this study ruled out
the changes of glutamatergic metabolites, i.e., glutamate and
glutamine and their ratio with the respective sensitivity to detect
these responses at 4% (Glu), 10% (Gln), and 14% Glu/Gln.
While our conclusions might be influenced by the partial volume
effect and complex structure of the PCC, quantification outcomes
and comprehensive sensitivity analysis will provide valuable
information for planning other studies with scan-rescan design.
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