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Abstract

Electroencephalography (EEG) has substantial potential value for examining individ-

ual differences during early development. Current challenges in developmental EEG

research include high dropout rates and low trial numbers, whichmay in part be due to

passive stimulus presentation. Comparability is challenged by idiosyncratic processing

pipelines. We present a novel toolbox (“Braintools”) that uses gaze-contingent stimu-

lus presentation and an automated processing pipeline suitable for measuring visual

processing through low-density EEG recordings in the field. We tested the feasibil-

ity of this toolbox in 61 2.5- to 4-year olds, and computed test–retest reliability (1-

to 2-week interval) of event-related potentials (ERP) associated with visual (P1) and

face processing (N290, P400). Feasibility was good, with 52 toddlers providing some

EEG data at the first session. Reliability values for ERP features were moderate when

derived from 20 trials; this would allow inclusion of 79% of the 61 toddlers for the P1

and 82% for the N290 and P400. P1 amplitude/latency were more reliable across ses-

sions than for theN290 andP400. Amplitudeswere generallymore reliable than laten-

cies. Automated and standardized solutions to collection and analysis of event-related

EEG datawould allow efficient application in large-scale global health studies, opening

significant potential for examining individual differences in development.
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1 INTRODUCTION

The human brain develops rapidly during the first 5 years of postna-

tal life. During this relatively short window of development, a range of

cognitive andmotor abilities develop andmature from infancy through

toddlerhood to preschool (Johnson & De Haan, 2015). Similarly, brain

structure and functioningundergo substantial changes (Grayson&Fair,
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2017), but our understanding of how these changes in the develop-

ing brain are linked to the equally substantive changes in behavioral

skills remains very limited. Research into early brain and cognitive

development is important scientifically but also has important practical

implications for measuring effects of early adversity during develop-

ment, for example, in global health (Dasgupta et al., 2016; Grantham-

McGregor et al., 2007; Turesky et al., 2019). However, large-scale
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efforts to collect neurocognitive data in early development remain

rare, in part due to methodological challenges related to scalable mea-

surement of brain functioning in infants and toddlers (Azhari et al.,

2020; Brooker et al., 2019; Byers-Heinlein et al., 2021; Noreika et al.,

2020).

One method that can provide temporally sensitive measures of

brain functioning is electroencephalography (EEG). Ongoing EEG

reflects the synchronized activity of large populations of neurons with

a millisecond temporal resolution (Lopes da Silva, 2013). EEGmethods

are particularly suitable for measuring neural responses in awake

infants and toddlers as there are few movement restrictions, in partic-

ular when using wireless EEG (Lau-Zhu et al., 2019). In event-related

approaches, ongoing EEG is time-locked to stimulus presentation and

averaged across multiple trials (Luck, 2014). The resulting sequence of

peaks and troughs (event-related potential [ERP]) represents neural

activity reliably elicited by a particular auditory, tactile, or visual

stimulus.

Although neural responses to different stimulus categories have

been widely studied in the lab, the published literature often dispro-

portionately reflects small groups of infants or young children from

high-income countries (HIC), who may not yield robust, generalizable

insights into development and are not suitable for studying individual

differences (Henrich et al., 2010).Moving key experimental techniques

to field settings where data can be collected at scale is important to

ensure greater sample diversity, increased sample size, and greater

translation of methodological innovation to population studies. To

do this, we must address several challenges. First, traditional ERP

paradigms with infants and toddlers are often associated with high

dropout rates with a range of 21%–50% (De Haan et al., 2002; Halit

et al., 2003; Jones et al., 2016; Stets et al., 2012; van der Velde& Junge,

2020;Webb et al., 2011). Such high attrition rates lead to small sample

sizes and constrain analyses of individual differences. For example,

analytic methods whose statistical power is affected by cluster size

(e.g., random effects models) are often utilized in developmental and

global health studies with independent sampling of specific subpop-

ulations (e.g., infants with elevated familial likelihood of autism, or

learning disability). Reliable estimates of individual differences with

suchmethods aremaximizedwith appropriate numbers of participants

(Austin & Leckie, 2018). In addition, high attrition rates could mean

that included samples are biased toward more attentive children,

reducing generalizability. Second, to maximize inclusion rates tradi-

tional analysis choices for infants and young children use thresholds

of 10 trials for inclusion (vs. 20 or 30 in adult studies; Hämmerer et al.,

2013; Huffmeijer et al., 2014). Although infant ERP components often

show larger amplitudes compared to adults, it is unknown whether a

lower number of trials compromises reliability of the measured neural

responses. Third, there is low consistency in the selected parameters

and manual steps taken during data analyses between different stud-

ies, labs, and even experimenters within labs (Noreika et al., 2020).

Some automated EEG preprocessing pipelines have been developed,

such as the HAPPE pipeline (Gabard-Durnam et al., 2018), the MARA

pipeline (Winkler et al., 2014), the MADE pipeline (Debnath et al.,

2020), the EEG-IP-L pipeline (Desjardins et al., 2021), and the adjusted

ADJUST algorithm (Leach et al., 2020). However, these have been

developed for high-density EEG systems; although high-density EEG

allows assessment of additional metrics like connectivity and source

analysis, systems are currently costly and there are few portable

versions available that are suitable for use in the field. Large-scale

studies incorporating assessment of single ERP features do not require

high-density systems, and there is thus an additional need for pipelines

that are tailored for low-density/low-cost EEG (Lau-Zhu et al., 2019).

The current project tests the feasibility of a fully automated low-

cost approach to collect event-relatedEEGdata for use in field settings.

The project comprises a toolbox—Braintools—that utilizes gaze-

contingent stimulus presentation. Gaze-contingent stimulus presen-

tation allows for data collection paced by the participants themselves,

as stimuli are only presented when participants are looking at the

screen. With this approach, data collection is tuned to the attentional

resources of the participants and should theoretically reduce dropout

rates and increase trials numbers and thus data availability. In addition,

the Braintools toolbox includes scripts for automated harmonized anal-

yses of the data that are not based on visual inspection by researchers

(Conte et al., 2020). Braintools is designed for use with a low-cost,

low-density portable, and wearable EEG system to enable scalability,

and thus automated pipelines do not rely on techniques like inde-

pendent component analysis (ICA) or principle component analysis

(PCA) that typically require high-density arrays (Winkler et al., 2014).

The Braintools paradigm has been implemented in studies in both

HIC (United Kingdom) and low-income countries (LIC; India and The

Gambia) to examine its potential for global health implementations.

The Braintools toolbox includes a range of visual and auditory tasks

commonly used in developmental research. Here, we focus on the

visual task as visual processing may be a suitable domain for examin-

ing individual differences during early development. The rapid devel-

opment of early visual processing is partly experience dependent, and

becomes faster and more efficient with increasing age (Geldart et al.,

2002; Röder et al., 2013). The visual cortex develops rapidly during

infancy and refines into childhood, supporting the development of

visual acuity, contrast sensitivity, and binocularity (Braddick & Atkin-

son, 2011; Leat et al., 2009; van denBoomenet al., 2015). Visual stimuli

can also be readily controlled in experimental designs. Together, these

features of visual processingmake the domain a good potential marker

for examining individual developmental differences.

Event-related EEG designs can be used to study both early-stage

components associated with domain-general visual cortical process-

ing, and later-stage components associated with the development of

domain-specific experience-dependent expertise. Early stage cortical

visual processing is often indexed by the P1, a positive deflection

around 100ms after stimulus onset at occipital electrodes that is asso-

ciated with low-level sensory processing of visual stimuli (Rossion &

Caharel, 2011) and can be most strongly elicited by high-contrast and

mid-spatial frequency stimuli such as checkerboards (Benedek et al.,

2016). Later-stage components are more sensitive to more complex

higher level processing, such as detecting and discriminating faces.

Young infants orient to faces from birth (Johnson et al., 1991), but face

processing continues to develop into adolescence (Kilford et al., 2016).

Faces provide important communicative cues that are critical during

social communication and interaction (Frith & Frith, 2007). Rapid and
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efficient face processing, and the ability to extract subtle information

from faces is therefore key for social functioning. Event-related EEG

designs are widely used to study face processing, particularly through

measuring the face-sensitive N170 component at parietal electrodes

in adults (Bentin et al., 1996). The N290 and the P400 components

are thought to represent the infant and toddler precursor of the adult

N170 (De Haan et al., 2002; Halit et al., 2003). The N290 is a negative

deflection around 290ms after stimulus onset, while the P400 is a pos-

itive deflection around 400ms after stimulus onset. The N290 shows a

faster latency and larger amplitude (more negative) response to face

stimuli than nonface stimuli, like cars, objects, and houses (Kuefner

et al., 2010). The P400 shows a smaller amplitude (less positive) for

faces than nonface stimuli (Conte et al., 2020; Di Lorenzo et al., 2020;

Jones et al., 2017). Furthermore, the N290 amplitude is larger for

inverted than upright human faces, while the N290 latencies and P400

amplitudes are similar for both orientations in 12-month-old infants

(De Haan et al., 2002). Toddlers, however, show a larger P400 ampli-

tude for inverted compared to upright faces (Peykarjou et al., 2013),

whereas the N290/N170 amplitude and latency show no modulations

byorientation (Hendersonet al., 2003; Peykarjouet al., 2013). Children

and adolescents show longer N170 latencies for inverted than upright

faces, while the inversion effect on N170 amplitude increases with age

showing more negative amplitudes for inverted faces (Itier & Taylor,

2004b). The N290 and P400 have often been the measures of inter-

est in studies examining developmental trajectories in young typically

developing children and young children with developmental disorders

(Bhavnani et al., 2021).

Although studies using EEG to examine categorical response differ-

ences in groups of infants and toddlers have provided clear insights

intobraindevelopment, usingEEGmeasures to assess individual differ-

encesbrings additional challenges. Research into individual differences

requires robust signals at an individual level that are stable and reliable

over brief time windows. Such measures could help track early devel-

opment of visual processing in relation to early adversity, for example,

in large population studies or in the context of global health research.

Encouragingly, previous studies have found test–retest reliabilities in

typically developing infants at values of 0.76 for N290 mean ampli-

tude, and 0.56 for P400 mean amplitude in response to faces over a

1- to 2-week interval (Munsters et al., 2019), and in typically develop-

ing 6- to 12-year-old children at values of 0.80 for P1 peak amplitude

in response to checkerboards and 0.77 for N170 peak amplitude in

response to faces over a6- to8-week interval (Webbet al., 2020).How-

ever, similar values for toddlers are not available as this has tradition-

ally been an age range in which data are very difficult to collect. Early

event-related measures may have the potential to help identify young

children who show atypical developmental trajectories and to predict

later outcomes. For instance, individual variability in face processing in

young children may predict later behavioral outcomes during toddler-

hood and mid-childhood, such as autism (Elsabbagh et al., 2009; Shep-

hard et al., 2020). To examine individual differences in visual processing

across early development in a reliable and robust way, there is a need

for novelmethods that reducedropout rates, are reliable, increase data

availability, and standardize data analyses.

Here, we examined the feasibility and test–retest reliability of the

Braintools toolbox in typically developing 2.5- to 4-year-old toddlers

in the United Kingdom as a first step. We examined P1 components

to checkerboards, and N290 and P400 components to faces (upright

and inverted orientation). We focused on early childhood because this

age range can be the most challenging to test (Brooker et al., 2019);

a recent review noted there have been no reliability studies during

toddlerhood (Brooker et al., 2019); and this is the age range in which

many neurodevelopmental disorders become initially apparent in

behavior, making it an important age range for large-scale studies of

child development. Toddlers were tested twice over a 1- to 2-week

interval with a low-density EEG system. We chose 1–2 weeks as the

interval because shorter intervals might lead to repetition effects in

the neural responses and data loss. Young children are less interested

in stimuli that they have recently seen. This results in lower numbers of

artifact-free trials and subsequently into smaller sample sizes for test–

retest reliability analyses (Haartsen et al., 2020). In contrast, longer

intervals may reflect developmental change rather than stability of

the measures (Blasi et al., 2014; Haartsen et al., 2020). We estimated

the reliability of measures of P1, N290 and P400 peak latency, peak

amplitude, andmean amplitude. As both previous researchwith infants

(Munsters et al., 2019) and adults (Huffmeijer et al., 2014) suggests

peak latency measures are not robust, we additionally examined

the utility of a method called “dynamic time warping” (DTW), which

rather than relying on the identification of individual peaks, warps an

individual EEG signal until it matches a reference signal to identify

the general delay between the two (Zoumpoulaki et al., 2015). We

computed intraclass correlations (ICCs) of the ERP measures across

different numbers of included trials in order tomake recommendations

about the minimum trial numbers needed for stable estimates. We

furthermore calculated ICCs within sessions or split-half reliability to

examine internal stability at different numbers of trials.

2 METHODS

2.1 Participants

Sixty-one (34 female) typically developing full-term children were

recruited when they were between 30- and 48-month old from the

Greater London area via the Birkbeck Babylab database. Participants

were invited to attend two visits to the lab with an interval of 1–

2weeks between visits. Parents/caregivers gavewritten informed con-

sent upon arrival at the Babylab and after the study was explained to

them by the researchers. They also filled out a demographic question-

naire, a medical questionnaire, and a language questionnaire.

The group of children in this whole recruited sample had an aver-

age age of 38.36 months (SD = 4.67, ranging from 30 to 49 months)

at the day of their first visit. The second visit took place for 51 of

these children with an average 10 days after the first visit (SD = 5,

ranging from 7 to 28 days). Annual household income for the fami-

lies was below £40,000 for 25% of the children in the recruited sam-

ple, between £40,000 and £99,999 for 44%, and above £100,000 for



4 of 19 HAARTSEN ET AL.

F IGURE 1 The Braintools paradigm. Children participated in the Braintools study wearing an Enobio EEG system (a).While their EEGwas
recorded, theywatched the FastERP task where checkerboards, faces, and animals being presented in blocks of trials (b). The grand averages across
sessions for the checkerboard trials (c left) and the face trials (c right) display clear peaks for the ERP components: P1 during checkerboards, and
N290 and P400 during faces. Shaded areas around the grand averages represent the standard error of themean across sessions

32% (data were missing for N = 4). Households on average consisted

of 1.47 people per bedroom (SD= 0.47), ranging from 0.75 to 3 people

per bedroom (data missing for N = 3). Further, 30 of 61 children heard

English at least 95%of the time at both home and nursery (datamissing

for N = 8). Other languages the children heard were Amharic, French,

Gujarati, German, Hindu/ Urdu, Italian, Malayalam, Mandarin, Roma-

nian, Russian, Polish, Portuguese (also Brazilian Portuguese), Spanish,

and Turkish. Finally, four children had speech delays requiring speech

therapy, and two children had a relative with speech delays requiring

speech therapy.

Participants received a Babylab tote bag or t-shirt and certificate

after completing the study. This study received ethical approval from

the Department of Psychological Sciences ethics committee at Birk-

beck (ref. no. 171874).

2.2 Stimuli and apparatus

Ateach session, childrenparticipated in a25-minEEGbattery.Depend-

ing on their engagement, the visual and auditory battery duration var-

ied between 22 and 27 min. The first portion of the EEG battery

included the FastERP task, interspersed with short cartoon clips and

dynamic videos. At the end of the battery, children participated in an

auditory oddball task. The FastERP task consisted of the presentation

of visual stimuli and recording the event-related response (Figure 1).

The visual stimuli presented on each trial were either one of four

female faces (of African, Asian, South Asian, and Caucasian ethnicity;

Tye et al., 2013), one of the 50 cartoon images of animals (designed

by Freepik from Flaticon), or a checkerboard (Benedek et al., 2016).

Examples of the stimuli are presented in Figure 1b. Both faces and
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animals were presented in upright and inverted (180◦ rotated) ori-

entation. In total, 144 trials with faces (18 upright and 18 inverted

repeated presentations for each of the four faces), 72 trials with ani-

mals (36 upright and 36 inverted images randomly selected of 50

possible cartoon images), and 72 trials with the checkerboard were

presented in randomized order within 18 blocks of 16 trials each,

with a constraint that no more than three of the same stimulus types

(face/animal/checkerboard) were presented in a row. Each block began

with a gaze-contingent fixation stimulus (Flaticon image of an object,

3 by 3 cm with a subtended visual angle of 2.9◦), which was randomly

selected. When participants fixated the Flaticon, after a random 200–

400 ms delay the Flaticon was replaced by the stimulus (animal or

checkerboard; both width and height of 17 cmwith a subtended visual

angle of 16.1◦; or a facewithwidth of 17 cm and height of 21.8 cmwith

a subtended visual angle of 20.6◦), presented for 500 ms. The stimulus

then shrank to a size of 0.2 cm (over a random200–300ms period) and

faded out. After a blank screen (200–300 ms variable), either another

stimulus was presented, or a fixation stimulus if the participant had

looked away from the screen. Cheerful instrumental music was contin-

uously played during the FastERP task.

Blocks of the FastERP taskwere alternatedwith dynamic video clips

and short cartoon clips (not analyzed here). The dynamic videos con-

sisted of a social video and a nonsocial video f which presentation was

alternated (Jones et al., 2015). The social video consisted of five short

vignettes of two women singing nursery rhymes with a total duration

of 60 s. The nonsocial video consisted of six short vignettes of spin-

ning andmoving toyswith a total duration of 60 s. The 12 short cartoon

clips displayed animals and had a duration of∼5 s. Each session started

with the presentation of the dynamic social video, followed by a block

of the FastERP task. The FastERP task and video clips were alternated

during the rest of the session. Each dynamic video clip was presented

three times, and each animal cartoon clip was presented once. Presen-

tation order of the FastERP task, dynamic videos, and animal cartoon

clips was identical for all participants.

Stimulus presentation was controlled by a MacBook Pro (15-inch,

part numberMR942B/A, with an eighth-generation Intel i7 6-core pro-

cessor, 2016) on an external monitor screen (Asus VG248, 24-inch

screen size, 1920× 1080 resolution at 60Hz). A portable Tobii Pro X2-

60 eye-tracker was attached below the screen and data were recorded

with Tobii Pro SDK 3Manager. Stimuli were presented and data were

saved from the laptop using the stimulus presentation framework,

Task Engine (https://sites.google.com/site/taskenginedoc/; Jones et al.,

2019). This framework is optimized for standardized EEG and eye-

tracking (ET) data collection. Here, the frameworkwas run on amacOS

High Sierra 10.13.6 system, in Matlab R2017a, with Psychtoolbox

3.0.14, Gstreamer 1.14.2 for stimulus presentation, and a Lab Stream-

ing Layer to connect to the EEG system; EEG and ET task events were

time stamped and saved inMatlab format.

EEG was simultaneously recorded with a wireless geltrode Enobio

EEG system (NE Neuroelectrics, Barcelona, Spain) and transmitted to

the laptop using Bluetooth. Eight EEG electrodes were placed at FPz,

Fz, Cz, Oz, C3, C4, P7, and P8 (also see Supplementary Materials SM1

for channel layout). We selected a low-density array because for EEG

with childrenwith hair (i.e., not babies), the amount of time required to

appropriately seat electrodes and ensure a good quality signal scales

with the number of electrodes. Larger arrays can thus increase dropout

rates for children with limited patience for cap placement, and also

can be challenging to incorporate in large-scale studies where time is

essential. Given our focus on selected ERP signals measured at known

locations,wewere able toutilize a low-density array focusedon thekey

locations of interest: Oz on the occipital area to measure the P1 com-

ponent (Benedek et al., 2016; Rossion &Caharel, 2011), and P7 and P8

over parietal areas tomeasure theN290 and P400 components (Conte

et al., 2020; De Haan et al., 2002; Di Lorenzo et al., 2020; Halit et al.,

2003; Jones et al., 2017).

The CMS and DRL electrodes were attached to a clip on the partic-

ipants’ ear. For participants who refused to wear the ear clip, the CMS

and DRL electrodes were placed on the mastoid with stickers (N = 8).

Data were recorded with a 500 Hz sampling rate using Neuroelectrics

NIC 2.0 software (Barcelona, Spain). Data quality during the session

wasmonitored using the Neuroelectrics Quality Index (QI) rather than

impedance check (impedance check feature is not incorporated in the

EEG system used here). The QI is calculated from line noise (power in

49–51 Hz range), main noise (power in the 1–40 Hz frequency range),

and the offset of the signal every 2 s. NIC software shows the color

codes of the QI for each channel with green for low QI and good data,

orange average data quality, and red for highQI and low data quality.

Each session was recorded with a webcam (HD ProWebcam C920)

andOpen Broadcaster Software (OBS).

2.3 Procedure

Procedures were identical for both sessions and were performed by

two researchers per session (EB, TDB). During the experiment, chil-

dren were seated on their parent or caregiver’s lap at approximately

60 cm from the screen. The EEG cap and ear clip were positioned on

the children while they watched a cartoon video of their choice until

all of the EEG signals were of sufficient quality. The researchers aimed

to improve data quality until each of the QI values for the EEG chan-

nels were green (or most green and some orange depending on the

state and tolerance of the participant). Parents/caregivers were asked

towear apair of plastic shutter glasses toensure theeye-trackerpicked

up only the child’s eye gaze. After a successful five-point ET calibration,

the experimenters proceeded with the Braintools battery (or if at least

four of five points were successfully calibrated, defined per calibration

point as accuracy and precision both less than 2.5◦ of visual angle from

at least one eye). During this battery, the visual task was presented in

blocks, and music was played throughout the session in order to keep

the children engaged. Researchers further attempted to improve the

signal quality when they noticed EEG quality dropped (by inspection of

the EEG signal or red color codes).

Blocks and trials for the visual task were presented in a gaze contin-

gent fashion; trials were only presented when the children were look-

ing at the screen and presentation paused when the children looked

away. Researchers asked the toddlers to name or count the animals

https://sites.google.com/site/taskenginedoc/;
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theywere seeingout loud. If the childrenwerenot looking at the screen

for a prolonged period of time, experimenters tried to re-engage the

children’s attention to the screen by playing a short auditory attention

getter.

2.4 Assessment of visual attention

Gaze was extracted from the ET recording during the presentation of

the stimulus for each trial (0–500 ms). We interpolated gaps with a

duration of 150 ms or less and then calculated the number of valid tri-

als for the FastERP task. A trial was considered valid if the proportional

looking time during the stimulus presentation was 50% or above. We

then calculated the percentage of valid ET trials relative to the total

number of presented trials in the ET data as ameasure of attentiveness

during the whole session. Based on these data, we created a subsam-

ple of children whowere very attentive (≥60% trials attended for both

sessions) within which to additionally assess reliability.

2.5 Data preprocessing

Data were preprocessed using a combination of in-house written

scripts and FieldtripMatlab scripts inMatlab R2018b (in-house scripts

are available on GitHub; Haartsen et al., 2021, and Fieldtrip scripts are

available via; Oostenveld et al., 2011). First, data validity was checked

and corrected where necessary and possible, for example, cases with

technical issues during data collection or saving, or inaccurate timing

or absence of EEGmarkers. Enobio data were converted into Fieldtrip

format for further preprocessing.

Continuous data were segmented into trials from −100 to 600 ms

after stimulus onset. Then trials were split into two datasets by condi-

tion (checkerboards or faces) in order to apply task-specific process-

ing steps. For the checkerboard trials, signals for the occipital channel

Oz, and C3, C4, and Cz (for later re-referencing) were filtered using

a 0.1–40 Hz bandpass filter (with 3 s padding on both sides) to filter

out high-frequency noise from muscle artifacts and a dft filter (at 50,

100, and 150Hz) to filter out the still remaining residual line noise due

to the shallower slope of the bandpass filter. Data were baseline cor-

rected with −100 to 0 as baseline window. Trials were marked bad if

the signal was flat (if amplitude did not exceed 0.0001 µV) or exceeded

thresholds of−150 and 150 µV (selected based on initial inspection of

data quality at different thresholds, see SM2). A channel was excluded

if artifacts were present for 80% of the trials or above and a trial was

excluded if the signal for Oz included artifacts. Next, we re-referenced

the data on a trial-to-trial basis to Cz, or the average of C3 and C4 if

Cz contained artifacts. If channels C3 and/or C4 contained artifacts as

well, the whole trial was excluded from further analysis.

For the face trials (upright and inverted, all ethnicities), we selected

parietal channels P7 and P8, and Cz, C3, and C4 for later re-

referencing. Filters, baseline correction andartifact identificationwere

identical to those used for the checkerboard trials. A channel was

excluded if the signal was bad for 80% of the trials or above and a trial

was excluded if the signal for P7 and/or P8 contained artifacts. Finally,

the re-referencing procedure for face trials was identical to the proce-

dure for the checkerboard trials.

The animal trials were intended to maintain toddler attention in

the paradigm. For completeness, we preprocessed these trials with the

same parameters as the face trials. Further visual inspection of the

grand averages of the animal trials indicated that the event-related

responses elicited were weak (see SM3). These trials may not provide

comparable neural responses because toddlers sometimes named or

counted the animals; and because the icons chosen had lower visual

complexity than the faces. We therefore excluded the animal trials

from further analyses.

2.6 Extracting ERP features

ERP components are typically defined as peaks within prespecified

time windows. We based time windows of interest on both previous

literature and grand averages of the current data (see Figure 1).

Time windows for the P1 component in previous studies were 90–

170 ms in 4-year olds (van den Boomen et al., 2015), and 50–200 ms

in 4-year olds (Jones et al., 2018). The N290 was identified within

windows of 286–610 ms in 3- to 4-year olds (Dawson et al., 2002),

and 190–390 ms in 4-year olds (Jones et al., 2018), whereas the P400

was identified within windows of 286–610 ms in 3- to 4-year olds

(Dawson et al., 2002), and 300–600 ms in 4-year olds (Jones et al.,

2018). We adjusted these time windows for our age and setting by

examining grand averages of the components across all available data

sessions with 10 artifact-free trials or more (note; we included both

test and retest datasets and used a cutoff of 10 trials in accordance

with previous ERP studies; Jones et al., 2018; Webb et al., 2011).

P1 was measured at Oz, and N290/P400 at the average of the P7

and P8. As an additional check for individual averages with limited

signal content, we excluded individually averaged time series from the

grand average where amplitudes did not exceed 1 or −1 µV. We then

confirmed that the peaks in the grand averages were within the peaks

from the previous studies. We adjusted the end of the N290 and start

of the P400 window to decrease the overlap, and the end of the P400

window to match up with the offset of the stimulus. Final windows

were: P1—most positive peak between 50 and 200 ms after stimulus

onset; N290—most negative peak between 190 and 350 ms after

stimulus onset; P400—between 300 and 500 ms after stimulus onset

(see Figure 2).

To examine test–retest reliability across different numbers of tri-

als, we randomly selected subsets of trials from the clean datasets for

each individual: (a) 10–20–30–40–50—all available trials for checker-

boards, (b) 10–20–30–40–50–60–70–80–90–100—all available trials

for faces (where an equal balance of upright and inverted were used),

and (c) 10–20–30–40–50–60—all available trials for faces upright and

faces inverted separately. We averaged EEG data across these ran-

domly selected trials (and channels of interest if multiple) for checker-

boards and faces and applied a baseline correction (−100 to 0 ms as

baseline) to the time series.
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F IGURE 2 Timewindows of interest for the components of interest. Grand average during checkerboards with the P1 peak (arrow) and time
window of interest (50–200ms in orange) is displayed on the left (a), and grand average during faces (all orientations) with the N290 and P400
peak (arrow) and timewindows of interest (N290: 190–350ms in purple, and P400: 300–500ms in yellow) is displayed on the right (b)

Peaks for the individually averagedERPswere identifiedwith a peak

identification algorithm. First, all positive peakswere identifiedby test-

ing at each EEG sample (sample X) if the amplitude was larger than the

amplitude of following EEG sample (sampleX+1). If the following sam-

ple (sample X+ 1) had the same amplitude as the current sample (sam-

ple X), the algorithm tested whether the sample after (sample X + 2)

had a lower amplitude (negative deflection) and identified the following

sample (sampleX+1) as a positive peak. If the following sample (sample

X+ 1) had a smaller amplitude than the next sample (sample X+ 2), this

sample was considered as part of a plateau and the algorithm skipped

to the next sample. Second, all negative peaks were identified by test-

ing at each EEG sample (sample X) if the amplitudewas smaller than the

amplitude of the following sample (sample X+ 1). If the following sam-

ple (sample X+ 1) had the same amplitude as the current sample (sam-

ple X), the algorithm tested whether the sample after (sample X + 2)

had a higher amplitude (positive deflection) and identified the following

sample (sampleX+1) as anegativepeak. If the following sample (sample

X + 1) had a larger amplitude than the next sample (sample X + 2), this

sample was considered as part of a plateau and the algorithm skipped

to the next sample. The result of this algorithm was a list of all positive

and negative peaks identified throughout the ERPwaveform.

From this list of peaks, the peaks of interest were selected. For the

P1 peak, all positive peaks were selected occurring in our timewindow

of interest (50–200 ms). We selected the identified peak as P1 peak if

there was only one peak within the window. If multiple positive peaks

were present during the time window, we selected the peak with the

largest amplitude as the P1 peak. If no positive peaks were present in

the time window, we widened our window with 20 ms on either side

(30–220 ms) and selected the only peak or largest peak if multiple

peakswere present. In the instances where no peakswere found in the

widewindoweither, we noted down that no P1 peakwas identified and

the P1 was considered invalid. These waveforms were excluded from

further analyses (to ensure sample sizes for reliability analyses were

consistent across P1 features).

For the N290 peak, we selected all negative peaks occurring during

our time window of interest (190–200 ms). As for the P1 peak selec-

tion, we selected the negative peak as N290 peak if only one peak was

present during the time window. Otherwise, we selected the negative

peak with the largest amplitude. If no negative peak was present, we

widened ourwindowwith 20ms on either side (170–370ms). The only

peak or peak with largest amplitude was selected as N290 peak. If no

negativepeakswere identified in this process,weconsidered thisN290

as invalid and the waveformwas excluded from further analyses.

For checkerboards, we extracted P1 peak latency and peak ampli-

tude (averaged across a 60-ms window centered around the P1 peak

by the algorithm described above and if valid). For faces, we extracted

N290 peak latency, peak amplitude (average amplitude across a 60-ms

window centered around the N290 peak by the algorithm described

above and if valid) and mean amplitude (190–350 ms). We also calcu-

lated P400 mean amplitude (300–500 ms); we did not compute peak

latency or amplitude because the P400 has a wider peak morphology

and its peak is consequently more difficult to identify. Identified peaks

were considered likely to represent “noise” and removed from further

analysis if the amplitude at the ERP peak latency did not exceed the

amplitude of the largest peak of the same directionality (positive or

negative) during the baseline. Note, amplitudes here were calculated

to the point of the peak instead of averaged across a 60-ms window

centered around the peak for the ERP component features. With this

method we avoided averaging across 60% of our baseline window

(−100 to 0 ms) and averaging across samples outside the baseline

window (if peak was close to −100 ms) or during the presentation

of the stimulus (if the peak was close to 0 ms) as would be the case

with averaging across a 60-ms window centered around the peak in

the baseline window. These measures were extracted across ERPs for

faces collapsed, faces upright, and faces inverted.

Another way to extract the latency of neural responses is to apply

DTW to the data. This method takes an individual waveform and cal-

culates the distance it needs to be transformed or warped in order to

resemble a referencewaveform. The result of this calculation is awarp-

ing pathwith distances between twowaveforms across the time series.

The DTW direction measure is defined as the area between this warp-

ing path and the main diagonal of the cost matrix normalized by area
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under the diagonal (also termed DTWdiff in Zoumpoulaki et al., 2015).

A DTW direction value of 0 would indicate the individual waveform

and reference waveform are identical. A negative value would reflect

a shorter latency in the individual waveform than the reference wave-

form,whereas apositive valuewould reflect a longer latency in the indi-

vidual waveform than the referencewaveform. Thismethod provides a

general measure of neural processing speed across a whole waveform

or time window. Considering the challenges with peak identification in

younger children, this method may be more reliable and more robust

than traditional peak identification. In the current study, we use the

grand average as a reference waveform and examine the DTW direc-

tion between the reference waveform and the individual waveform

based on different numbers of trials. We calculated DTW direction for

checkerboard waveforms during the P1 timewindow (50–200ms) and

for face waveforms (collapsed, upright, and inverted faces) during the

N290 timewindow (190–350ms).

2.7 Statistical analyses

To assess the feasibility of the paradigm, we calculated the percent-

age of included participants for analyses focused on visual processing

and face processing relative to both the full recruited sample; and rel-

ative to the sample who had data from at least one EEG session. We

report both percentages for completeness to reflect retention rates

when including and excluding participants whose sessions had techni-

cal issues or where participants refused to wear the EEG cap.

Next, we tested the face processing condition effects in our sample

of toddlers with a first EEG session.We performed a paired t-test com-

paring ERP features between upright faces and inverted faces (N290

peak latency, peak amplitude, and mean amplitude, P400 mean ampli-

tude, and DTW direction during the N290 time window). We included

toddlers with 20 ormore artifact-free trials for each condition.

We assessed test–retest reliability of the ERP features using ICC

between measures at visit 1 and visit 2 as in Haartsen et al. (2020) and

vanderVelde et al. (2019).Weused the ICC(3,1) that is a two-way fixed

model ICC suitable to measure the consistency between single scores

(Salarian, 2016; Shrout & Fleiss, 1979; Weir, 2005). The ICC is calcu-

lated as:

ICC (3,1) =
MSR −MSE

MSR + (k − 1)MSE
.

In this formula, MSR is the variance between objects (here partici-

pants),MSE is the error variability (also mean squared error), while k is

the number of measurements per participant (here 2 as there are two

sessions). Values for the ICC typically range between 0 and 1, with val-

ues close to0 indicatingpoor test–retest reliability, and those close to1

indicating excellent reliability. We interpreted the ICC values in accor-

dancewith the following convention: ICCvalues below .40 as poor; ICC

values from .40 to .59 as fair, ICC values from .60 to .75 as good, and

ICCs above .75 as excellent (Haartsen et al., 2020; Hardmeier et al.,

2014; van der Velde et al., 2019). ICC values were calculated for ERP

features of waveforms for the checkerboards, faces (collapsed across

F IGURE 3 Flowchart of the subsamples. Numbers of participants
in the recruited, feasibility, included (test–retest), and highly attentive
sample and reasons for exclusion

condition to increase trial numbers), and the face inversion effects. For

the latter, we calculated the face inversion effect subtracting the ERP

features for faces inverted from the ERP features for the upright faces

at each visit. We then calculated the reliability of this inversion effect

between visit 1 and visit 2.

3 RESULTS

3.1 Feasibility of the paradigm

In total, 61 toddlers were invited to take part in the study consist-

ing of two sessions (hereafter named the recruited sample, also see

flowchart in Figure 3). Fifty-two toddlers provided data for their first

sessionwithout technical issues (e.g., computer issues—in this case, the
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TABLE 1 Percentages of included participants for different trial cutoffs

Visual processing—Checkerboards Face processing—Faces Face processing—Face inversion effect

Minimum

N trials

Percentage

included relative

to the recruited

sample

Percentage

included relative

to the feasibility

sample

Minimum

N trials

Percentage

included relative

to the recruited

sample

Percentage

included relative

to the feasibility

sample

Minimum

N trials for

both

conditions

Percentage

included relative

to the recruited

sample

Percentage

included relative

to the feasibility

sample

1 84% 98% 1 84% 98% 1 84% 98%

10 80% 94% 10 84% 98% 10 82% 96%

20 79% 92% 20 82% 96% 20 77% 90%

30 75% 88% 30 82% 96% 30 72% 85%

40 69% 80% 40 79% 92% 40 66% 77%

50 64% 75% 50 75% 88% 50 61% 71%

60 74% 87% 60 43% 50%

70 70% 83% 70 3% 4%

80 67% 79%

90 66% 77%

100 62% 73%

second session with the toddler was counted toward this total) (here-

after named the feasibility sample). We were not able to collect data

from a first session for nine toddlers (due to cap refusal at the first ses-

sion and not being invited back for a second session [N= 7] and techni-

cal issues at both sessions [N= 2]).

For the checkerboards, 84% of the toddlers in the recruited sample

and 98% of the feasibility sample had at least one trial with clean EEG

data (see Table 1). Of the recruited sample, 80% had a minimum of 10

artifact-free trials, and79%and75%hadaminimumof20and30 trials.

The highest dropout ratewas for a cutoff of 50 trialswhere only 64%of

the sample would be included. The inclusion percentages for the feasi-

bility sample were 94%, 92%, 88%, and 75%with a cutoff of 10, 20, 30,

and 50 trials, respectively.

For the faces, 84% of the recruited sample had at least 1 or 10

artifact-free EEG trials. Overall, 82% of the recruited toddlers would

be included with a cutoff of 20 or 30 trials. At a cutoff of 100 tri-

als, 62% of the recruited sample would be included in any main anal-

yses. The inclusion percentages for the feasibility sample were 98%,

96%, and 73% with a cutoff of 1 or 10, 20 or 30, and 100 trials,

respectively.

For the inversion effect in faces, 84% and 98% of the recruited and

feasibility sample, respectively, had more than one trial for both face

conditions, and 82% and 96% of the samples could be included with

a cutoff of 10 trials. For higher cutoffs of 20, 30, and 40 trials, the

inclusion percentages for the recruited sample were as 77%, 72%, and

66%, respectively, and for the feasibility sample these were 90%, 85%,

and 77%.

Inour feasibility sample, the face inversion revealedamaineffect for

P400mean amplitude (t(46)=−2.91, p= .006), where the P400 ampli-

tude was higher for inverted faces (mean = 4.46 µV, SD = 5.13) than

upright faces (mean = 2.92 µV, SD = 3.86). No face inversion effects

were observed for the other ERP features (range: .100≤ p’s≤ .282).

3.2 Reliability of ERP measures

For our reliability analyses, we included children with data at both test

and retest sessions. Our final included sample for the test–retest reli-

ability analyses consisted of 38 children with clean EEG trials at both

test and retest sessions. Of the 52 toddlers with data at either session,

we excluded 14 children for the following reasons (see flowchart in Fig-

ure 3): families did not return for a second visit due to logistical issues

(N = 5) or parental concern (N = 1), the child refused the cap at their

second visit only (N= 1), technical issues and equipment failure at one

visit (N= 6), and amedical condition (N= 1).

Overall, 23 of 38 children attended to 60% or more of the pre-

sented trials during both test and retest sessions. To explore whether

EEG metrics were more reliable within highly attentive children (most

likely to be included in previous studies with high attrition rates) we

ran the EEG reliability analyses on both the full included sample of 38

children and the highly attentive sample of 23 children. However, it

is important to note that there was no clear correlation between the

number of clean EEG trials at the test and the retest session in this

group (rcheckerboard = −.05, p = .822, and rfaces = −.06, p = .770), nor

in the included sample (rcheckerboard = −.16, p = .352, and rfaces = −.15,

p = .374). This indicates that general attentiveness or data quantity is

not likely to be a stable measure of individual differences in this age

range,making it less likely to confound the generalizability of reliability

metrics.

Demographics for the recruited, feasibility, included, and highly

attentive samples are displayed in Table 2. In the included sample, 25

of 38 children heard English at least 95% of the time at both home and

nursery, and two children had speech delays requiring speech therapy.

In the highly attentive sample, 15 of 23 children heard English at least

95% of the time at both home and nursery, and one child had speech

delays requiring speech therapy.
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TABLE 2 Descriptive data for (i) the whole recruited sample, (ii) the feasibility sample, (iii) the included sample, and (iv) the highly attentive
sample

Whole sample Feasibility sample Included sample Highly attentive sample

Number of participants (females) 61 (34) 52 (27) 38 (20) 23 (15)

Participant age at first visit (months) 38.36 (4.67),

30–49

38.19 (4.84),

30–49

37.71 (4.56),

30–49

38.22 (4.99),

32–49

Time between visits (days)a 10 (5),

7–28

10 (5),

7–28

10 (5),

7–28

10 (4),

7–21

Household incomeb

<£20,000 7% 6.00% 5.60% 4.50%

£20,000–£29,999 8.80% 10.00% 11.10% 13.60%

£30,000–£39,999 8.80% 8.00% 5.60% 0%

£40,000–£59,999 12.30% 12.00% 16.70% 13.60%

£60,000–£79,999 10.50% 12.00% 11.10% 9.10%

£80,000–£99,999 21.10% 22.00% 27.80% 40.90%

£100,000–£149,999 24.60% 24.00% 13.90% 4.50%

>£149,999 7% 6.00% 8.30% 13.60%

Note: Mean (SD), minimum–maximum.
aDatamissing for 10 participants in the whole sample.
bDatamissing for four participants in whole sample, two participants in the included sample, and for one participant in the highly attentive sample.

3.2.1 Test–retest reliability of ERPs during
low-level visual processing

The ICC values for measures during low-level visual processing of the

checkerboards for the included and highly attentive sample are dis-

played in Table 3. In the included sample, ICC values were within the

poor or fair range for P1measures. Valueswere fair for P1peak latency

and peak amplitude for across 20 and 30 trials (ICClatency = .51 and .41

for 20 and 30 trials, and ICCpeak amplitude = .46 and .44 for 20 and 30

trials), and even good for peak amplitude across 50 trials (ICC = .62).

Values for DTW during the P1 time window were good for 30 trials

(ICC = .64). The pattern of ICC values in the highly attentive sample

was very similar to the pattern in the included sample.

3.2.2 Test–retest reliability of ERPs during face
processing

The ICC values for the measures during the processing of upright

and inverted faces are presented in Table 4. For traditional mea-

sures around the N290 component in the included sample, reliabil-

ity values for peak latency across different numbers of trials were

low (.04 ≤ ICCs ≤ .43). ICC values for N290 peak amplitude reached

fair levels of reliability for 30, 50, 60, 80, and all available trials

(.42 ≤ ICCs ≤ .56), whereas values for N290 mean amplitude reached

fair levels at 50, 80, and all available trials (ICC = .56, .51, and .54,

respectively). For P400 mean amplitude the ICC values were fair or

higher from 40 trials and higher, with some values reaching good lev-

els of reliability (.48 ≤ ICCs ≤ .76). ICC values for the DTW measure

during the N290 time window were within the poor reliability range

(−.15≤ ICCs≤ .35).

For the highly attentive sample, ICC values for N290 peak latency

were mostly within the low range (.10 ≤ ICCs ≤ .48), similarly to the

included sample. Reliability for the N290 peak amplitude and mean

amplitude were more likely to be in the poor reliability ranges com-

pared to the included sample (.11 ≤ ICCs ≤ .44 for peak amplitude,

and−.05 ≤ ICCs ≤ .44 for mean amplitude). ICC values for P400 mean

amplitude in the highly attentive sample reached fair and good levels

of reliability from 40 trials and on (.50 ≤ ICCs ≤ .77), as in the included

sample. The values for the DTW during the N290 window were within

the poor range (−.31 ≤ ICCs ≤ .37), with the exception of DTW during

the N290window at 60 trials (ICC= .46).

3.2.3 Test–retest reliability of face inversion
effects

Table 5 displays the ICC values for the face inversion effects between

the two visits across different numbers of trials included in the ERPs

in the included sample and the highly attentive sample (see Table S1

for significance and direction of the face inversion effects). ICC values

for the condition effects in the reliability sample were overall within

the poor reliability range. For N290 peak latency and peak amplitude,

ICC values ranged from −.24 to .32 and only the latter reached signif-

icance (for peak amplitude across 10 trials). ICCs for mean amplitude

measureswere alsowithin the poor range (−.33≤ ICCs≤ .36), with the

exceptions of themeasures across 60 trialswith ICC= .55 for theN290

mean amplitude, and ICC= .49 for the P400mean amplitude in the fair
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TABLE 3 ICC values for EEG keymetrics during low-level visual processing

Included sample

P1 peak latency P1 peak amplitude DTWduring P1window
Individual

ERP based

onN trials

Number of

subjects ICC LB UB p-Value ICC LB UB p-Value ICC LB UB p-Value

10 31 .38 .03 .64 .016 .36 .01 .63 .022 .31 −.05 .59 .044

20 29 .51 .18 .73 .002 .46 .12 .70 .005 .16 −.21 .49 .201

30 27 .41 .05 .68 .015 .44 .08 .70 .009 .64 .35 .82 .000

40 26 .33 −.05 .63 .044 .35 −.04 .64 .037 .46 .09 .71 .008

50 21 .42 .00 .72 .026 .62 .26 .82 .001 .51 .11 .77 .008

all 36 .23 −.10 .51 .087 .57 .30 .75 .000 .29 −.03 .56 .039

Highly attentive sample

P1 peak latency P1 peak amplitude DTWduring P1window
Individual

ERP based

onN trials

Number of

subjects ICC LB UB p-Value ICC LB UB p-Value ICC LB UB p-Value

10 21 .38 −.05 .69 .039 .44 .03 .73 .019 .43 .01 .72 .022

20 19 .36 −.10 .69 .058 .34 −.13 .68 .074 .15 −.32 .55 .269

30 19 .48 .04 .76 .017 .54 .13 .80 .007 .63 .26 .84 .001

40 18 .34 −.14 .69 .080 .39 −.08 .72 .049 .49 .04 .77 .017

50 16 .36 −.14 .72 .076 .65 .24 .86 .002 .47 −.02 .78 .029

all 23 .29 −.13 .62 .082 .55 .18 .78 .003 .27 −.15 .61 .104

Note: Colors represent the category of ICC: red for ICC values within the poor range, yellow for values within the fair range, and green for values in the good

and excellent range. ICC and p-values are printed in bold if they reach significance (p-value< .05).

Abbreviations: ICC, intraclass correlation; LB, lower bound; UB, upper bound of the 95% confidence intervals of the ICC.

range. The same pattern was observed in the highly attentive sample

where ICC values were within the poor range.

3.3 Internal consistency of ERP measures

The test–retest reliability analyses (conducted across sessions 1–

2 weeks apart) revealed ICC values that were mostly modest. We fur-

ther examined the internal consistency of the ERP measures within

each session by randomly drawing different numbers of clean trials

from the datasets and splitting alternating trials into two datasets

(A and B) for both the test and retest sessions separately. We then

extracted each ERP component measure and calculated the internal

consistency using the ICC between datasets A and B within sessions.

The results for EEG key metrics during low-level visual processing of

checkerboards are presented in Table S2, and during face processing

(faces upright and inverted collapsed) in Table S3.

The internal consistency for the checkerboards varied from poor to

excellent (.03≤ ICCs≤ .97) at both test and retest in the included sam-

ple, with a similar pattern in the highly attentive sample. Consistencies

were good or excellent for P1 peak latency andDTW from10 trials and

above during the test session (.66 ≤ ICCs ≤ .97), but internal consis-

tencies during retest session were fair and good from 20 trials or more

(.53 ≤ ICCs ≤ .89). ICC values for P1 peak amplitude within sessions

were fair from 20 trials during the test session (ICCs ≥ .40), but during

the retest session these values were good at 30 trials (ICC = .64) and

fair for all trials (ICC = .53). ICC values were within the poor range for

lower trial numbers.

Internal consistency for the faces in the included sample also var-

ied with most values being within the poor or moderate range, and a

few reaching excellent reliability (−.08 ≤ ICCs ≤ .92). Internal consis-

tency at the test session for N290 peak latency was moderate only

for 60 trials and all trials (ICCs = .52 and .56, respectively), while val-

ues for N290 peak amplitude were moderate from 40 trials and above

(ICCs ≥ .48). At the retest session, ICC values were higher with the

moderate range for 30 and 50 trial for N290 peak latency, and from

20 trials and above for N290 peak amplitude (.41 ≤ ICCs ≤ .58), and

even good at 60 for both N290 peak measures (ICCs = .64 and .92 for

latency and amplitude, respectively). For N290 mean amplitude, inter-

nal consistency during the test session was poor across all trial num-

bers (ICCs ≤ .39), whereas at the retest session values were moderate

from20 trials and above (ICCs≥ .48) and excellent values for 30 and60

trials (ICCs = .67 and .90, respectively). Internal consistency for P400

mean amplitude was good for 40 and 50 trials during the test session

(ICCs = .73 and .74) and excellent for 60 trials during the retest ses-

sion (ICC= .80). Finally, internal consistency forDTWvalues during the

N290windowwas poor for all trial numbers at both test and retest ses-

sion (−.08 ≤ ICCs ≤ .36), with the exception of internal consistency for

30 trials and60 trials during the retest session (ICCs= .41 and .43). ICC

values were within the poor range for all other trial numbers.

The highly attentive sample displayed slightly higher internal

consistency values compared to the included sample during face
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processing. Several ICC values within the poor range for the included

sample were within the fair range for the highly attentive sample:

during the test session, for N290 peak latency across 10 and 20 tri-

als at the test, for N290 mean amplitude across 40 and 60 trials, for

P400 mean amplitude across 10 and 60 trials, and for DTW during the

N290 time window across 40 trials (.41 ≤ ICCs ≤ .57); and during the

retest session, for DTW during the N290 time window across all trials

(ICC = .50). Other values moved from the fair range into the good and

excellent range for the highly attentive sample: during the test session,

for N290 peak amplitude across 40 and 60 trials; and during the retest

session, for N290 peak amplitude across 30 and all trials, for N290

mean amplitude across all trials, for P400 mean amplitude across 30

and all trials, and DTW during the N290 time window across 30 trials

(.60 ≤ ICCs ≤ .82). Finally, one ICC value in the highly attentive sample

waswithin a lower range compared to the included sample: N290 peak

latency across 30 trials (from ICC= .41 to .37). This suggests that mea-

sures of face processingmay bemore reliable in childrenwho aremore

attentive to the screen.

4 DISCUSSION

This study set out to test the feasibility and reliability of an auto-

mated toolbox that included a gaze-contingent stimulus presentation

paradigm and an automated low-density EEG processing pipeline for

measuring event-related responses to visual stimuli in toddlers.

4.1 Feasibility

We invited 61 children to take part in the study. Seven children (11%)

refused to wear the EEG cap at the first session. This percentage is

consistent with other reports where 11% of 5-year-old participants

refused to wear the cap (Brooker et al., 2019). During the sessions,

acceptability toward wearing the cap varied between toddlers. Some

toddlers required more explanation and demonstration before agree-

ing to wear the cap, for example, parents or researchers themselves

demonstrating how towear the cap. It may be helpful to supply a video

or storyboard demonstrating the capping procedure in a child-friendly

way to the families that they could watch prior to the visit. In addition,

using age-appropriate language and comparisons to everyday objects

and actions may help children accept the cap more readily, for exam-

ple: “the EEG gel is similar to daddy’s hair gel,” “the EEG cap is like a

hat,” and “you can do magic with your eyes and make the next picture

appear on the screen.” It is good practice in development EEG research

to take variability in EEG cap acceptance into account when designing

and setting up an ERP study in preschoolers, particularly data loss due

to cap refusal and flexibility in explaining the paradigm to the partici-

pants themselves.

Our reliability findings for visual processing of checkerboards

suggest moderate reliability for the P1 component features when

extracted from an ERP averaged across 20 trials or more. Based on

this cutoff, we would be able to include 79% of the recruited partici-

pants in analyses on P1 peak latency and peak amplitude. We would

be able to include 75% of the participants for the DTWmeasure in the

P1 time window, using a cutoff of 30 trials with good reliability values.

Our reliability findings for face processing indicatemoderate reliability

for the N290 peak amplitude measure can be reached with a minimum

number of 30 trials per session. This would allow us to include 82%

of the recruited participants. For N290 mean amplitude, we reached

moderate reliability for 50 trials that would lead to the inclusion of

75% of our sample. Finally, reliability was moderate with a minimum

of 40 trials for the P400 mean amplitude. This cutoff would leave 79%

of the participants in the recruited sample being included in analyses.

Taken together, these results suggest we can include 75%–82% of the

recruited sample (or 88%–92% of the children with data at the first

session without technical issues) depending on our research interests.

These inclusion rates of 75%–82% from our study are higher than in

previous research in toddlers (e.g., 50% in typically developing 18- to

30-month olds (Webb et al., 2011)). These previous studies used a cut-

off of 10 trials and did not focus on test–retest reliability, however.

Inclusion rates in these studies may be even lower when they would

focus on reliability. Overall, this indicates that our gaze-controlled

stimulus presentation paradigm with simultaneous low-density, low-

cost EEG recordingwas successful in reducing dropout rate in toddlers.

In addition to dropout rates, we also examined the condition effects

of face orientation during the face processing task. Our 2.5- to 4-year

olds did not display any differences in N290 ERP features between

inverted and upright faces during early processing. These findings are

consistent with studies reporting a lack of face inversion effects for

the N170/N290 latency and amplitude in response to photographs of

adult faces in 3-year olds (Peykarjou et al., 2013) and schematic faces

in 4-year olds (Henderson et al., 2003). During later face processing,

the P400mean amplitude was larger for inverted than upright faces in

the current study. A similar patternwas found in 3-year olds (Peykarjou

et al., 2013). The reliability of the face inversion effect for P400 mean

amplitude reached modest values at 60 trials or more, suggesting 43%

of the recruited sample may be included if one wants to examine indi-

vidual differences in face inversion effects in this age group. It is pos-

sible that the pattern of face inversion effects for the N290 and P400

measures observed at this age is related to the pattern of reliability for

thesemeasures as discussed in the next section.

4.2 Reliability

The results of the test–retest reliability analyses revealed that relia-

bility of the ERP components was overall moderate and was gener-

ally lower for latency than amplitude measures. For the P1 response

to checkerboards, peak latency and amplitude showed fair reliability

from 20 and 30 trials. Further, the DTW measure computed during

the P1 time window (an alternative approach to determining latency)

showed good reliability for 30 trials. For faces, reliability of N290

latency was poor across most numbers of trials, and DTW measures

for faces showed poor reliability. This is unlikely due to the size of the

time window as we visually inspected the peaks identified after the
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analyses and noticed peaks were correctly identified if their waveform

had a clear shape. However, reliability for faceswas fair for peak ampli-

tude from 30 trials and for mean amplitude from 50 trials. Reliability

for P400 mean amplitude was fair from 40 trials and good for higher

numbers of trials. Thus, amplitudemeasuresmay bemore reliable than

latency measures of face processing in this age range. Furthermore,

reliability of condition differences (face inversion effects) was gener-

ally within the poor range. Small or lack of face inversion effects at this

age (Peykarjou et al., 2013) and the fact that face inversion measures

are second-order measures derived from first-order measures of two

conditions (Deuker et al., 2009) may contribute to the low reliability

observed.

Overall, test–retest ICC values in our toddler sample were mod-

erate. Few studies however have examined test–retest reliability

in young children (Brooker et al., 2019) and none have examined

how reliability varies for different numbers of trials included in the

individual averages. One study in 10-month-old infants found ICC

values of .76 for N290 mean amplitude (mean across a time window

of 200–325 ms) and .56 for P400 mean amplitude (mean across a time

window of 325–600 ms) for test–retest comparisons with a 2-week

interval and when all trials were included with a cutoff of 10 trials

(Munsters et al., 2019). Reliability of the N290 peak latency was not

tested in the study by Munsters et al. as not all infants showed a clear

peak. Another study in 6-11-year-old typically developing children

revealed ICC = .80 for P1 amplitude and ICC = .66 for N170 latency

for test–retest measures with a 6-week interval (Webb et al., 2020).

The ICC values in the current study are comparable with those for the

P400 in the infant study but lower compared to the values in the study

in older children. The lower values are possibly a result of lower signal

to noise ratios in younger age groups compared to older age groups

as found in studies focusing on ERPs during performance monitoring

across childhood and adulthood (Hämmerer et al., 2013). Another

possibility may be less stability in neural processing in younger age

groups. Processes may stabilize more when they get more mature

and intraindividual variability may decrease (Hämmerer et al., 2013).

Indeed, our internal consistency analyses revealed higher ICC values

for P1 measures than N290 and P400 measures suggesting higher

signal to noise ratio and possibly morematured early-stage perceptual

processing compared to later-stage face processing.

A range of factors may explain the differences in ICC values

between measures and components in the current findings. First, the

P1 peak is often more clearly detectable in individual ERPs than the

N290peak, as P1 peaks are sharper peakswith larger amplitudeswhile

N290 peaks are often of wider with smaller amplitudes and may not

be detectable in some individuals (Munsters et al., 2019). If selecting a

measure to examine individual differences in the speed of early neural

responses, P1 latency may be more reliable than the N290 latency

and automated measures like DTW could provide a robust means of

latency comparison. Second, mean amplitudes may be more reliable

than peak amplitudes, which in turn may be more reliable than peak

latencies. This is because noise overlaid on the signal will tend to be

maximal at the peak, so averaging procedures across a time window

will averageout noisemakingmeanamplitudesmore reliable thanpeak

amplitudes (Clayson et al., 2013). Third, differences in developmental

stages may result in differences in reliability across neural responses

during low-level sensory processing and face processing. Low-level

sensory processing develops at a rapid pace during early postnatal

development; the functional brain networks for visual processing

show similar topographies to adult networks in neonates, whereas

networks for higher order processing show similar topographies to

adults during later postnatal periods at 1 or 2 years of age (Grayson

& Fair, 2017; Keunen et al., 2017). Face processing in contrast has

a protracted developmental trajectory that continues until the end

of adolescence (Cohen Kadosh et al., 2013; Kilford et al., 2016). It is

possible that individual differences in measures of low-level visual

processing are more stable compared to measures of face processing

across the 2-week interval during toddlerhood, as is also supported

by our findings of higher internal consistency for low-level visual

processingmeasures than face processingmeasures within sessions.

Reliability values forDTWdirectionwere overall lower than the val-

ues for the traditional ERP measures, for example, peak latency, peak

amplitude, and mean amplitude. We included DTW in our measures

because it has been proposed as a more robust measure of neural pro-

cessing speed than peak latency (Zoumpoulaki et al., 2015). Here, we

found that this measure might be more reliable for the P1 component

during visual processing where there is a clearly detectable peak, but

not for the N290 component where there is a less clearly detectable

peak. Thus, DTWdirection is less dependent on peak identification but

requires a strong waveform morphology to function as a reliable and

robust measure.

Our findings further suggested that sustained attention through-

out the session did not affect reliability of low-level processing mea-

suresbecause reliability values forP1measureswere similar across the

included and highly attentive sample. In contrast, reliabilities for the

N290 measures in the highly attentive sample were lower compared

to those in the included sample but similar or even higher in the highly

attentive than included sample for the P400 measure. Lack of differ-

ences between the included and highly attentive sample indicates that

reliability does notworsenwhen including less attentive participants in

general.

The characteristics of the FastERP task may further contribute to

the reliability observed. The images of the checkerboard and four

female faces were repeated throughout the paradigm. One possibility

is that N290 features may be more reliable across trials with identical

face stimuli. In the current analyses, we averaged across all artifact-

free face trials; thus, the number of trials included for each of the four

female faces likely varies across analyses. Future work could examine

whether responses may be more stable when only one face stimulus

is included in the paradigm. Alternatively, one could argue that identi-

cal face stimuli may lead to habituation effects that may affect N290

and P400 responses (Itier & Taylor, 2004a; Jacques et al., 2007; Nordt

et al., 2016; Schweinberger & Neumann, 2016); the reliability of N290

responses evoked from trial-unique faces (Jones et al., 2016) is another

option that could be explored in future work.

Analyses of the data have shown that the proposed gaze-controlled

paradigmprovidesmoderately stable estimatesof event-relatedneural
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responses to checkerboards and faces during early development, com-

parable to those previously reported for infants (Munsters et al., 2019).

As previouslymentioned, use of videos or storyboards prior to the visit

may improve acceptability of wearing the EEG cap among the young

participants.We noticed in the lab that toddlers were able to complete

the sessions due to the flexibility of the paradigm that allowed them

to take brief, frequent and self-determined breaks without the loss of

data. The use of the wireless and mobile EEG system further facili-

tated this as toddlers could take a longer break away from the screenor

even the room if needed anddata collectionwould be paused (although

this was rarely the case). Furthermore, real-time analysis of the EEG

data during the sessionmay help ensure good data quality and prevent

dropout due to artifacts. These suggested improvements may enable

even greater flexibility for the participants and lower dropout rates in

future developmental studies.

This study has important implications for the developmental field.

First, the moderate reliability values suggest the gaze-controlled

paradigm and low-density EEG processing pipeline may be suitable for

developmental research. Second, the current findings are promising as

low-level and low-density EEG systems aremore scalable for use in the

clinic and field (Lau-Zhuet al., 2019). Further researchwill beneeded to

establish the suitability of the toolbox in LMIC populations and other

age groups, for example, in toddlers in India or infants in The Gam-

bia (http://braintools.bbk.ac.uk/), or childrenwith neurodevelopmental

disorders.

4.3 Limitations

Wenote that our paradigmhasmoderate test–retest reliability. Future

work needs to explorewhether other EEG features or other paradigms

could achieve higher levels of reliability. Furthermore, this paradigm

was designed for low-density EEG systems. The advantages of these

low-density systemsare their relatively lowcost, scalability, portability,

and potential for use outside of lab environment (Lau-Zhu et al., 2019).

Lab-based EEG studies in developmental research have commonly

used high-density (HD) EEG systems with 32, 64, or 128 channels (e.g.,

in Munsters et al., 2019; Webb et al., 2020). Recording at a high num-

ber of EEG channels allows additional analyses such as connectivity

(Bullmore & Sporns, 2009; vanWijk et al., 2010) or source localization

of the brain signals measured in the developmental studies (Johnson

et al., 2001). Future work may examine whether other recording sys-

tems may record signals achieving higher reliability. Future develop-

ment of low-cost, scalable HD systems will enable these measures to

be brought into global EEG research.

5 CONCLUSION

In summary, we developed a novel toolbox with gaze-controlled stimu-

lus presentation and an automated preprocessing pipeline suitable for

low-density EEG systems that can be applied in large-scale samples in

field settings. We showed that the toolbox is feasible for use in visual

processing research in toddlers, with inclusion rates of 79% for low-

level visual processing and 82% for face processing domains. Relevant

to measures of individual differences, test–retest reliability over a 1-

to 2-week interval was moderate for a minimum of 20 and 30 trials for

low-level visual and face processing, respectively. Test–retest reliabil-

ity and internal consistency of latency measures were higher for low-

level visual processing compared to face processing,whereas reliability

and internal consistency for amplitude measures were similar or bet-

ter during face processing compared to the low-level visual processing.

This suggests the speed and amplitude of low-level visual processing

andamplitudemeasuresduring faceprocessing are relativelymore sta-

ble over time, and thusmaybemore suitablemeasures of individual dif-

ferences in visual perception/cognition in toddlerhood. The feasibility

of automated and standardized solutions for data collection and analy-

seswith low-density EEG systemsholds promise for large-scale studies

and application in global health.
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