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A B S T R A C T   

Neuraminidase inhibitor (NAI) resistance levels globally are currently low. However, as antivirals are increas-
ingly being used, and even in the absence of selective pressure, resistance may increase or emerge. The neur-
aminidase (NA) genes from influenza viruses from the Irish 2018/2019 season were sequenced: 1/144 (0.7 %) A 
(H1N1)pdm09 sequences harboured a substitution associated with highly-reduced susceptibility to NAIs. The 
very low NAI resistance we describe supports current Irish NAI use recommendations. However, continued 
monitoring is essential. NA characterisation also identified substitutions associated with reduced antibody 
effectiveness, thereby highlighting the potential of NA sequence surveillance as an additional tool for investi-
gating influenza vaccine effectiveness (VE).   

1. Background 

In the most recent global analysis of human influenza viruses, the 
level of neuraminidase inhibitor (NAI) resistance was found to be 0.2 % 
[1]. The main amino acid substitutions associated with highly reduced 
or reduced susceptibility are H275Y and Y155H in influenza A(H1N1) 
pdm09, and E119V and R292K in influenza A(H3N2) viruses [2]. In 
spite of current low resistance levels, with antivirals increasingly being 
recommended for use, there is the prospect of emerging resistance. In 
Ireland, a national network of sentinel general practitioners, covering 6 
% of the population, monitors and swabs patients presenting with 
influenza-like illness. Influenza surveillance systems in Ireland also 
include the surveillance of: notified influenza cases; hospitalised and 
intensive care unit cases and deaths; general practitioner out-of-hours 
syndromic surveillance; sentinel hospital admissions; excess mortality; 
outbreaks; and influenza vaccine effectiveness (VE). Laboratory anti-
genic and genetic characterisation of both sentinel influenza like illness 
and non-sentinel respiratory clinical samples are carried out by the 
National Virus Reference Laboratory. During the 2018/2019 season 

there were 7943 notified influenza cases and 97 deaths reported in 
Ireland [3]. Influenza A(H1N1)pdm09 predominated, accounting for 73 
% of subtyped samples, followed by A(H3N2) at 27 % [3]. Routine 
molecular characterisation of neuraminidase (NA) antiviral resistance 
markers is carried out in Ireland but to a lesser extent than for hae-
magglutinin (HA) characterisation. 

2. Objectives 

The primary aim of this work was to investigate levels of NAI resis-
tance in influenza isolates for the 2018/2019 season in Ireland. A sec-
ondary aim was to investigate the presence of substitutions that may be 
associated with reduced antibody effectiveness [4,5]. 

3. Study design 

As a WHO National Influenza Centre, the National Virus Reference 
Laboratory is designated to carry out virus characterisation and antiviral 
susceptibility monitoring in Ireland. In this study, influenza A samples 
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from the 2018/2019 season, previously subtyped for the influenza HA 
gene A(H1N1)pdm09 (n = 171) and A(H3N2) (n = 55) were subject to 
whole genome PCR followed by Sanger sequencing with specific primers 
for A(H1N1)pdm09 and A(H3N2) NA genes [6]. Resulting sequences 
were assembled using Gap4 [7] and were aligned, translated, and ana-
lysed for the presence of amino acid substitutions associated with anti-
viral resistance as detailed by the WHO [8] using MEGA 7.0 [9]. Full 
length sequences were deposited in the GISAID database. Substitutions 
were verified using flusurver.bii.a-star.edu.sg. Only sequences with 
complete sequence coverage for all amino acid substitutions were ana-
lysed. Maximum likelihood phylogenies of full-length A(H1N1)pdm09 
and A(H3N2) NA sequences were constructed using 1000 bootstrap 
replicates in MEGA 7.0. 

4. Results 

Of the A(H1N1)pdm09 (n = 144) samples, one sample (0.7 %) har-
boured an amino acid substitution (Y155H) shown to be associated with 
highly reduced susceptibility to oseltamivir and zanamivir in A(H1N1) 
[10]. In the A(H3N2) (n = 32) sequences no antiviral resistance related 
substitutions were detected. There was 98.2%–99.1% nucleotide 
sequence identity between A(H1N1)pdm09 gene sequences and the 
A/Michigan/45/2015 vaccine strain gene (Fig. 1). All A(H1N1)pdm09 
NA full length sequences (n = 58) (which included n = 22 from the Irish 
influenza VE study) clustered within the A(H1N1)pdm09 6B.1 clade, 
which included the 2018/2019 vaccine strain A/Michigan/45/2015. 
There was 98.4 %–99.2 % nucleotide sequence identity between A 
(H3N2) gene sequences and the A/Singapore/INFIMH-16-0019/2016 
vaccine strain gene (Fig. 2). All A(H3N2) NA full length sequences (n 
= 22) (which included n = 18 from the Irish Influenza VE study) clus-
tered with either A(H3N2) 3C.3a (n = 5) or 3C.2a1b (n = 17) repre-
sentative strains, rather than the 3C.2a1 vaccine strain 
A/Singapore/INFIMH-16-0019/2016. All A(H3N2) NA sequences har-
boured the relatively recently emerged S245N/S247T and P468H sub-
stitutions shown experimentally to have reduced antibody binding and 
to induce lower antiserum titres [4]. The earliest Irish A(H3N2) NA 
sequence identified with this genotype was from December 2015 (data 
not shown, GISAID database). Similarly, all full length A(H1N1)pdm09 
sequences contained substitutions N248D and N369K and 57/58 con-
tained N449D, which has been associated with reduced reactivity to 
some human monoclonal antibodies specific to the A/California/7/2009 
(H1N1pdm09) vaccine strain [5]. 

5. Conclusions 

Vaccination is the primary public health measure used to prevent, 
reduce, and interrupt the transmission of influenza infection. However, 
antivirals are also used for prophylaxis as well as treatment of influenza, 
and are of particular importance during influenza A(H3N2) predomi-
nant seasons when lower influenza VE in older people may occur [11]. 
Antivirals reduce the risk of severe complications such as hospitalisation 
and death, as well as the duration of illness, and are recommended to be 
used as early as possible in the infection [12]. Current Irish guidelines 
for the use of antivirals recommend antivirals for the treatment of un-
complicated influenza in at-risk groups i.e. those ≥65 years of age, 
pregnant women, residential care facilities residents, immunosup-
pressed individuals, individuals with chronic medical conditions and for 
treatment of clinically complicated influenza [14]. Targeted use of an-
tivirals for post-exposure prophylaxis is also recommended for those in 
these at-risk groups. 

The risk of widespread antiviral use is that resistance will increase. 
However, resistant strains can still emerge even in the absence of se-
lective pressure from widespread antiviral use. This occurred during the 
2007/2008 season when oseltamivir resistant A(H1N1) harbouring the 
H275Y substitution emerged with an average prevalence in Europe of 20 
% [13]. Mirroring the bacterial antimicrobial resistance ‘One Health’ 

Fig. 1. Maximum likelihood phylogeny of full length A(H1N1)pdm09 neur-
aminidase nucleotide sequences (n = 58). Irish 2018/2019 samples with H1 
prefix and vaccine strain indciated with ‘vaccine’. *sequence with Y155H 
substitution. HA group indicated. 
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Fig. 2. Maximum likelihood phylogeny of full length A(H3N2) neuraminidase nucleotide sequences (n = 22). Irish 2018/2019 samples with ‘H3’ prefix and vaccine 
strain indicated with ‘vaccine’. HA group indicated. 
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framework that has been adopted to tackle it, a multidisciplinary 
approach has been put forward as a means to detect, contain and prevent 
the spread of influenza antiviral resistance [14]. Studies have shown the 
potential for the amplification of antiviral resistance in influenza in 
natural bird reservoirs upon their ingestion of incompletely degraded 
antivirals from the environment [15,16]. 

Seasonal influenza vaccines provide immunity primarily by inducing 
antibodies that target the protective epitopes on HA. Thus, VE studies 
primarily concentrate on HA genetic variation: however many factors 
influence VE, including genetic and antigenic variability, egg adaptation 
during manufacturing, host related factors (such as age and underlying 
medical conditions), previous vaccination, and an individual’s first 
influenza infection and subsequent immune response [17]. In Ireland, 
for the 2018/2019 season, moderate VE against all influenza viruses, 
and high VE against the predominant A(H1N1)pdm09 subtype [18] was 
observed, similar to other parts of Europe [19]. However, there was very 
low VE across Europe against the A(H3N2) subtype 3C.3a clade and 
amongst the 1964–1983 birth cohort of adults in the 2018/2019 season 
leading to the suggestion of immune imprinting having a negative 
impact on VE [20,21]. 

As a major protein on the influenza membrane surface inducing an 
independent immune response to that of HA, NA may also play a role in 
VE. Compared to HA there is a relative lack of characterisation of NA 
immunogenic epitopes and NA characteristics are not standardised 
during vaccine production [22]. A recent study demonstrated that a 
reduction or removal of antibody binding and reduced protection 
against A(H3N2) strains was due to mutations in the NA gene [4]. These 
mutations appear to have spread globally and were present in the 
2018/2019 A(H3N2) Irish sequences and also in the vaccine strain 
A/Singapore/INFIMH-16-0019/2016. In addition to potential birth 
cohort effects, NA mutations may also partly explain the reduced VE 
observed against influenza A(H3N2) for the 2018/2019 season in 
Europe. Inclusion of NA genetic characterisation as part of the influenza 
VE monitoring programme in Ireland therefore will also facilitate 
identifying potential factors contributing to sub-optimal VE. 

The very low levels of NAI resistance identified in our study support 
the current Irish recommendations for the use of NAIs. However, 
continued monitoring is essential and must be flexible and timely with 
the release of new NAIs and other influenza antivirals on to global 
markets. Influenza surveillance systems, vaccination programmes and 
control measures need to be strengthened in order to reduce the burden 
of seasonal influenza on the population, healthcare system and economy 
and avoid overwhelming health systems with the possible co-circulation 
of COVID-19 and influenza. 
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