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ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) continues to carry the lowest survival 
rates among all solid tumors. A marked resistance against available therapies, late 
clinical presentation and insufficient means for early diagnosis contribute to the 
dismal prognosis. Novel biomarkers are thus required to aid treatment decisions and 
improve patient outcomes.

We describe here a multi-omics molecular platform that allows for the first 
time to simultaneously analyze miRNA and mRNA expression patterns from minimal 
amounts of biopsy material on a single microfluidic TaqMan Array card. Expression 
profiles were generated from 113 prospectively collected fine needle aspiration 
biopsies (FNAB) from patients undergoing surgery for suspect masses in the 
pancreas. Molecular classifiers were constructed using support vector machines, 
and rigorously evaluated for diagnostic performance using 10x10fold cross 
validation. The final combined miRNA/mRNA classifier demonstrated a sensitivity 
of 91.7%, a specificity of 94.5%, and an overall diagnostic accuracy of 93.0% for the 
differentiation between PDAC and benign pancreatic masses, clearly outperfoming 
miRNA-only classifiers. The classification algorithm also performed very well in the 
diagnosis of other types of solid tumors (acinar cell carcinomas, ampullary cancer 
and distal bile duct carcinomas), but was less suited for the diagnostic analysis of 
cystic lesions.

We thus demonstrate that simultaneous analysis of miRNA and mRNA biomarkers 
from FNAB samples using multi-omics TaqMan Array cards is suitable to differentiate 
suspect solid pancreatic masses with high precision.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) exhibits 
the poorest prognosis of all solid tumours, with a median 
survival of 6 months and steadily increasing incidence rates 
in the industrialized world, and thus represents one of the 
major challenges in cancer medicine [1]. About 103,000 
new cases are diagnosed each year in Europe (see data 
of the European Cancer Observatory at http://eco.iarc.fr/
eucan/Default.aspx), and 44,000 in the USA [1]. Currently, 
by the time a definitive diagnosis is reached, most PDAC 
patients have locally advanced or metastasized disease, 
and are therefore not candidates for surgical resection 
[2]. Surgical resection of early-stage tumors is thus the 
only available potentially curative treatment option [2] 
[3], and there is an urgent need to develop early detection 
methods to increase the fraction of patients diagnosed in a 
curative stage to improve the overall outcomes of PDAC 
patients. Furthermore, although PDAC accounts for the 
majority of all malignant tumors in the pancreas [4], other 
neoplasms of the pancreatico-biliary system that display a 
wide range of biological behaviors and clinical outcomes 
are increasingly being recognized. Benign processes 
such as inflammatory masses developing in the course of 
chronic pancreatitis or autoimmune pancreatitis [5] [6] 
may cause the same signs and symptoms as malignant 
neoplasms. Both the timely detection and the accurate 
differential diagnosis of suspect masses in the pancreas 
are thus critical in order to avoid unnecessary delays in 
therapy decisions as well as potentially harmful over- or 
undertreatment of patients.

Presently, when the diagnosis of a suspect mass in 
the pancreas remains unclear, endoscopic ultrasonography-
fine needle aspiration (EUS-FNA) is considered as the 
standard to confirm or exclude malignancy. In centers 
providing special requirements such as highly trained 
endoscopists proficient in EUS-guided biopsy approaches, 
equipment and on-site cytology will reach specificity of up 
to 96% and sensitivity of up to 87% as reported by recent 
systematic meta-analyses [7], [8]. However, specificity 
for the diagnosis of malignancy reported in the literature 
ranges between 80 and 100%, while sensitivity is much 
more variable with an overall low and variable negative 
predictive value (33-85%) [9]. Many factors can impact 
the diagnostic yield of EUS-FNA including the experience 
of both the endosonographer and cytologist, availability 
of on-site cytology, and the inherent limitations of 
the procedure to identify cytomorphologic features 
characteristic of well-differentiated cancer, in particular in 
the setting of chronic pancreatitis (CP). Sensitivity can be 
also compromised by technical factors such as sampling 
errors, insufficient cellularity, and the presence of fibrosis 
or blood [10].

New molecular approaches offer the promise of 
accuracy, straight-forward distribution, and affordability 

that will be needed to deliver practical screening tools. 
We have previously demonstrated that multiple types 
of pancreatico-biliary tumors comprising ampullary 
cancers, solid pseudopapillary tumors, adenocarcinomas 
of the distal bile duct, and inflammatory masses 
developing in chronic pancreatitis can be accurately 
differentiated via their mRNA expression profile 
obtained from biopsy specimens using cDNA arrays 
[11]. Furthermore, next generation transcriptome 
sequencing approaches have revealed the existence 
of PDAC subtypes that are of prognostic, and most 
likely therapeutic, relevance ([12], [13], [14], [15]). In 
addition to mRNA profiles, microRNAs (miRNAs) have 
evolved as promising biomarker molecules for cancer 
detection. miRNAs are highly regulated in cancer, are 
very stable in tissue, plasma, stool, and other fluids and 
can be quantified in very small sample sizes. They have 
extensively been studied for their role as diagnostic, 
prognostic or predictive biomarkers in pancreatic 
cancer which has been reviewed elsewhere [16], [17], 
[18], [19], [20], [21], [22]). However, RNA or miRNA 
molecular diagnostics have so far neither entered routine 
clinical applications nor have been used in combination 
to enhance their diagnostic power. Here, we present a 
quantitative real-time PCR-based multi-omics molecular 
platform that combines the classification potential 
of mRNA and miRNA expression patterns for the 
differentiation of malignant and benign pancreatico-
biliary tumors in minimal amounts of biopsy material.

RESULTS

Generation of combined microRNA and mRNA 
biomarker microfluidic arrays

As mentioned above, we have previously reported 
that accurate molecular diagnostic classification of 
multiple pancreatico-biliary tumors by analysis of 
mRNA expression profiles from clinical samples is 
possible using custom cDNA arrays [11]. In order to 
transfer this diagnostic principle to a standardized and 
uniformly available technological platform, we established 
simultaneous analysis of mRNA and miRNA expression 
on a single TaqMan® Array microfluidic card ([23]; see 
Materials and Methods). mRNA markers to be included 
in the array were selected from our previous study [11]; 
9 miRNA markers (miR-1246, miR-135b, miR-196a, 
miR-210, miR217, miR-155, miR-203, miR-148a, miR-
375) were selected from our unpublished data as well as 
reports from the literature (summarized in [22], [19], [17], 
[18], [16], [24], [25], [26], [20]). The final composition of 
the mixed TaqMan Array comprised 79 mRNA markers, 
5 mRNA reference genes, 9 miRNA markers, and 2 small 
RNA reference genes (Table 1).

http://eco.iarc.fr/eucan/Default.aspx
http://eco.iarc.fr/eucan/Default.aspx
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Table 1: Composition of the mixed TaqMan® Array

Gene Name Role

ACTG1 Marker

AMFR Marker

ASNS Marker

ATP7B Marker

BAMBI Marker

BCL2L1 Marker

CASP6 Marker

CDC2 Marker

CDH1 Marker

CDH3 Marker

18S-rRNA Internal Control

CEACAM7 Marker

CLDN1 Marker

CLDN3 Marker

CLDN4 Marker

CLDN9 Marker

CLK1 Marker

CTGF Marker

CTSC Marker

CTSE Marker

CYB561 Marker

DUSP3 Marker

DUSP8 Marker

E2F1 Marker

EGFR Marker

ELA3A,ELA3B Marker

EPCAM Marker

F3 Marker

FGF2 Marker

GPR68 Marker

GRB10 Marker

GSTA2 Marker

HMGN2 Marker

HSF2 Marker

HSP90B1 Marker

IL6 Marker

(Continued )
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Gene Name Role

ILKAP Marker

INPPL1 Marker

KLRB1 Marker

KRT17 Marker

KRT7 Marker

LDHA Marker

MAD2L1 Marker

MAP2K4 Marker

MMP2 Marker

MUC3A,MUC3B Marker

MYC Marker

NFATC1 Marker

PHLDA1 Marker

PPP1R1A Marker

PPP2R5C Marker

PTGFR Marker

PVRL1 Marker

RAF1 Marker

RHOBTB3 Marker

SDC1 Marker

SERPIND1 Marker

SH3BP1 Marker

SLC19A1 Marker

SMARCA1 Marker

SPARC Marker

STC1 Marker

TF Marker

TGIF1 Marker

TJP3 Marker

TNC Marker

TNFAIP3 Marker

TP53 Marker

USP12 Marker

VIM Marker

ZNF91 Marker

TMPRSS4 Marker

MST1R Marker

(Continued )
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Evaluation of the mRNA/miRNA microfluidic 
array in surgical FNAB for the differentiation of 
ductal adenocarcinoma and chronic pancreatitis

The first goal of the study was to allow an accurate 
molecular differentiation between PDAC and CP using 
fine needle aspiration biopsy samples obtained directly 
from tumor masses during surgery. These “surgical FNAB” 
(sFNAB) samples ensure both accurate targeting of the 
tumor mass and subsequent histological confirmation 
of the diagnosis in the same bioptic tissue specimen. At 
the same time, sFNAB closely resemble “real” FNAB 
samples obtained during routine diagnostic procedures in 
both cellular composition and overall yield of diagnostic 
material. A total of 113 samples from patients undergoing 
surgery for pancreatic masses were prospectively collected 
at the participating centers, including 41 from PDAC and 
33 from CP patients, and subsequently subjected to gene 
expression analysis using the mixed TaqMan® Array 
(Figure 1).

In the first step of the analyses, we concentrated on 
the differentiation between PDAC and CP, since this is the 
clinically most relevant differential diagnosis. Since the 
selected miRNA markers had previously been reported to 
have high diagnostic potential on their own, we first sought 
to determine whether miRNA marker analysis alone would 
be sufficient to accurately discriminate between PDAC 
and CP. To this end, all possible combinations of the 9 
miRNA markers (single markers, double combinations, 
triple combinations, and so on up to combination of all 
nine markers) were used to construct molecular classifiers 
by generating multivariate decision rules using support 
vector machines (SVM). Decision boundaries (= high 
dimensional hyperplanes) separating the two diagnostic 
classes were defined such that the margins between the 
samples of the diagnostic classes were maximized. In 
order to avoid overfitting of the resulting classifiers to the 
specific data set and to obtain an estimate of the general 
performance of each classifier, we performed 10x10-fold 
cross validation analyses. The data set was thus repeatedly 

Gene Name Role

NT5E Marker

RALB Marker

TRIO Marker

EZH2 Marker

MELK Marker

PAK4 Marker

RRAS Marker

RPLP0 Reference

PPIA Reference

RPL37A Reference

RPL30 Reference

RPS17 Reference

hsa-mir-1246 Marker

hsa-mir-135b Marker

hsa-mir-196a Marker

hsa-mir-210 Marker

hsa-miR-217 Marker

hsa-miR-155 Marker

hsa-miR-203 Marker

hsa-miR-148a Marker

hsa-miR-375 Marker

RNU44 Reference

RNU48 Reference
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Figure 1: Study design.

Figure 2: Schematic representation of 10x10 cross validation procedure. The original dataset is split into ten subsets of 
approximately equal size. Nine of these subsets are used for training the classification model (SVM). The tenth subset is used as an 
independent subset for evaluating the performance of the trained classifier. This procedure is repeated for each subset and an overall 
accuracy is calculated as the mean accuracy over ten permutations of the original dataset.
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randomly divided into independent training and test sets, 
each time training the classifier with 90% of the data and 
testing the diagnostic performance on the remaining 10% 
of samples, respectively, thereby creating a total of 100 
different combinations of independent training and test 
sets for each candidate classifier. In the 100 independent 
test runs, the predicted diagnoses for all samples of the test 
sets were recorded and compared to their true diagnoses 
(using histopathological diagnosis as gold standard), 
resulting in a total of 740 data points for each 10x10-fold 
cross validation run (schematically outlined in Figure 2). 
Using this very stringent evaluation procedure, the best-
performing classifier achieved an overall accuracy of 
differential diagnosis of 75% (Figure 3).

We next analysed the complete set of combined 
miRNA and mRNA expression data for its ability 
to differentiate between PDAC and CP samples. 
Unsupervised hierarchical clustering of the mRNA 
and miRNA gene expression data already showed a 
strong tendency for the samples to separate into two 
large clusters of PDAC and CP cases, with 13 out of 
75 samples being placed on the “wrong” side of the 
cluster tree using this very simple analysis (Figure 4). 
In order to optimize classification, we again constructed 
SVM models as described above. However, exhaustive 
search of all possible combinations of the total set of 
88 markers was not feasible due to the high number 
(=3,09*1026) of possible combinations. The individual 
markers were therefore ranked according to the 
sensitivity and specificity of univariate single threshold 
classifiers (TNoMcw-score), and a series of multivariate 

SVM classifiers was constructed by including increasing 
numbers of markers (1 to 88 markers, starting with 
the highest TNoMcw-score). The construction and 
training of classifiers is schematically outlined in 
Figure 5. To obtain a conservative estimate of the 
general performance of the classification system, we 
again performed 10x10-fold cross validation analyses 
as described above. This very rigorous evaluation 
procedure, which created conditions that were even more 
demanding than would be expected in a routine clinical 
scenario, revealed very good diagnostic accuracies (≥ 
90.0%) for a number of classifiers comprising 74 to 
85 individual markers. The highest score was recorded 
for a combination of 77 individual markers, with a 
sensitivity for the detection of PDAC of 91.7%, a 
specificity of 94.5%, and an overall diagnostic accuracy 
of 93.0% in the 10x10-fold cross validation (Figure 6). 
This classifier was thus chosen as the final diagnostic 
algorithm to be used in future clinical application.

Evaluation of the established mRNA/miRNA 
classifier for identification of malignant tumors 
other than PDAC

During the prospective collection of samples for 
this study, all patients presenting with suspect masses 
in the pancreas were enrolled (Figure 1). A total of 39 
sFNAB samples from patients for whom histopathological 
evaluation revealed a final diagnosis other than PDAC or 
chronic pancreatitis were thus also collected. The finalized 
diagnostic algorithm was subsequently also applied to 

Figure 3: Exhaustive evaluation of all miRNA marker combinations. All possible combinations of miRNA markers, from single 
miRNAs to the combination of all 9 markers (29-1 = 511 possible combinations), were tested for their diagnostic performances on the set of 
PDAC and CP samples. Each combination was evaluated by a linear SVM and sensitivity, specificity and diagnostic accuracy determined 
by 10x10-fold cross validation. Results are plotted in decreasing order according to accuracy. Note that none of the resulting classifiers 
exceeded a diagnostic accuracy of 75%, with the best-performing combination achieving a sensitivity of 58.5% and a specificity of 88.3%. 
“CP” = chronic pancreatitis; “PDAC” = pancreatic ductal adenocarcinoma; “Acc” = accuracy; “Sens” = sensitivity; “Spec” = specificity.
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Figure 5: Training of mixed miRNA / mRNA classifiers. Combined profiles of miRNA and mRNA markers (Panel i) were analyzed 
in a sequence of marker selection and classification experiment. First, a subset of candidate markers was selected via the univariate TNoMcw 
score (Panel ii). The reduced marker profiles were then used to train a multivariate SVM (Panel iii). The final decision can be projected to 
univariate space (Panel iv).

Figure 4: Unsupervised clustering of expression profiles from PDAC and CP biopsies. Individual samples are shown in 
columns; genes are shown in rows. Both the samples and the genes were hierarchically clustered (complete linkage clustering) using 
uncentered Pearson correlation as the similarity measure. Red cells indicate high expression, black intermediate expression, and green low 
expression of a gene in the respective group. Clusters of CP (blue bars) and PDAC samples (yellow bars) are readily apparent. “CP” = 
chronic pancreatitis; “PDAC” = pancreatic ductal adenocarcinoma.
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analyze these samples. The results demonstrated that 3 of 
3 ampullary carcinomas, 3 of 3 acinar cell carcinomas, 
and 5 of 5 biliary tract carcinomas were assigned to the 
“PDAC” class, thus being classified as malignant with 
100% accuracy (Figure 7). In contrast, cystadenomas and 
IPMNs (regardless of benign or malignant status) were 
evenly distributed between both groups, while 3 of 3 solid 
pseudopapillary tumor cases were assigned to the benign 
(“CP”) class, indicating that the marker combination 
and diagnostic algorithm is less suited for the diagnostic 
analysis of cystic lesions.

DISCUSSION

Currently, two major aspects are thought to 
contribute to the failure of diagnosis and treatment of 
PDAC: 1) The Genome Project has revealed that PDAC 
is the tumor with the highest degree of intertumoral 
genetic heterogeneity [14, 27], suggesting that no single 
molecular biomarker and no single molecular targeted 
therapy will work for diagnosis and treatment of all PDAC 
patients. 2) PDAC is an extremely stroma-rich tumor and 
up to 90% is made up of a highly complex assembly of 
activated fibroblasts, immune cells, blood vessels, neural 

cells and a variety of matricellular proteins [28] which 
contributes to therapy resistance and hinders cytological 
or histological diagnoses of PDAC in EUS-FNA. Accurate 
molecular differentiation of pancreatic cancers will thus 
likely require a high degree of multiplexing of markers to 
account for these variabilities.

At present, EUS FNA/FNAB of a pancreatic mass 
that is deemed resectable is not routinely performed 
[29], [30], [8], since a negative result cannot exclude the 
presence of PDAC due to the variable and low negative 
predictive values and will thus still lead to resection of 
the mass. Furthermore, there is always concern to induce 
tumor spreading along the biopsy channel. Tumor seeding 
with EUS-FNA has been reported, but the risk appears 
to be as small as 0,003-0,009% [31], and preoperative 
EUS-FNA has not been reported to be associated with 
adverse perioperative or long-term outcomes in patients 
undergoing resections for solid neoplasms of the 
pancreas [32]. Furthermore, neoadjuvant treatments for 
resectable or borderline resectable tumors or induction 
chemotherapies for downstaging of locally advanced non-
resectable cases ([2], [33], [34], [35], [36], [37]) offer the 
promise of improving the outcome of PDAC patients. 
In such situations confirmation of the PDAC-diagnosis 

Figure 6: Evaluation of the combined miRNA/mRNA marker profiles. Accuracy, sensitivity and specificity gained in the 10x10 
cross validation experiments with the combined miRNA/mRNA marker profiles. Classification models vary in the number of markers that 
were selected during their training phases. Results are given in increasing order from 1 to 88 selected biomarkers. Accuracies ≥ 90% are 
marked in yellow. “CP” = chronic pancreatitis; “PDAC” = pancreatic ductal adenocarcinoma.
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is mandatory before initiating neoadjuvant treatment. 
Thus, while currently not recommended, EUS-FNA of 
resectable pancreatic tumors in operable patients is likely 
to be invaluable for future molecular diagnosis and patient 
stratification if diagnostic accuracy can be substantially 
improved.

Multiple studies have previously been performed to 
evaluate the diagnostic performance of mRNA and miRNA 
biomarkers in PDAC. However, most of these studies were 
either not done in FNA material (using FFPE material 
instead), or did not have histopathology of all cases 
available to validate the biomarker results (e.g. [22], [20], 
[19]). We report here for the first time the simultaneous 
qRT-PCR-based analysis of miRNA and mRNA markers 
on a single microfluidic platform, interrogating FNAB 
samples for which detailed histopathological evaluation 
as gold standard is available.

Suitability of the mRNA/miRNA multi-omics 
platform for the diagnosis of malignancy in 
various pancreatic-biliary tumors

In addition to the high sensitivity of marker 
detection inherent to the qRT-PCR-based technology, 
TaqMan Array cards are highly standardized and require 
limited hands-on time, making them a suitable platform 

for point-of-care diagnostic tests to be used in clinical 
routine. Our results confirm that this technology and the 
combined set of selected miRNA and mRNA markers 
is suitable to accurately distinguish between malignant 
and benign processes affecting the pancreas based on 
molecular analysis of FNAB samples. In the initial 
analysis of the total set of 74 PDAC and CP biopsy 
samples using a defined set of classifiers, we achieved a 
diagnostic accuracy of 100%, confirming the suitability 
of the multi-omics platform. The generalization 
ability of the support vector machine-based diagnostic 
algorithm, i.e., the question how accurately the 
algorithm would classify novel samples not previously 
used for training of the classifier, was addressed by 
performing a very rigorous 10×10-fold cross-validation 
procedure. This method provides a conservative estimate 
of the diagnostic performance that can be expected in a 
routine clinical setting, since 100 different combinations 
of independent training and test sets are interrogated, 
and every single misclassification event contributes to 
lowering of the accuracy score. In these analyses, our 
diagnostic system proved to be very robust, particularly 
in the two-class diagnostic scenario (malignant vs. 
benign pancreatic tumor), achieving a sensitivity of 
91.7%, a specificity of 94.5%, and a diagnostic accuracy 
of 93.0%.

Figure 7: Performance of the final classifier in identifying malignancy on biopsy samples from pancreatobiliary 
tumors other than PDAC. Retraining of the optimal model (77 markers) on all available samples. Prediction of PDAC and CP samples 
and categorization of all remaining tissue-types is given. “CP” = chronic pancreatitis; “PDAC” = pancreatic ductal adenocarcinoma; “CA” 
= carcinoma; “IPMN” = intraductal papillary mucinous neoplasm; “SPT” = solid pseudopapillary neoplasia.
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Moreover, our analyses revealed that combined 
classifiers comprising mRNA and miRNA markers 
were highly superior to classifiers based exclusively on 
previously reported miRNA markers. Our results for the 
miRNA-only classifier (75% accuracy of differentiation 
between PDAC and CP in 10x10fold cross validation) are 
in line with previous studies. Frampton and coworkers 
demonstrated a sensitivity of 81.5% and a specificity 
of 85.7% (AUC 0.930) for a 2-miRNA classifier (miR-
21 + miR-155) in distinguishing benign from malignant 
pancreatic lesions in EUS-FNAs [22]. Brand et al. reported 
that a 5-miRNA classifier (miR24, miR130B, miR135B, 
miR148A, and miR196) combined with standard cytology 
was able to improve the detection of PDAC to 90.8% 
[21]. Neither study, however, employed 10x10fold cross 
validation to assess the generalization ability of their 
classifiers.

In addition to being superior to “single omics” 
diagnostics in differentiating malignant from benign 
pancreatic masses, combining mRNA and miRNA 
biomarkers in a single mullti-omics molecular diagnostic 
platform offers additional advantages. Next generation 
sequencing approaches of the PDAC transcriptome 
have revealed prognostic and predictive subtypes that 
will most likely be of clinical relevance in the near 
future ([12], [13], [14], [15]). Most recently, Bailey et 
al. using NGS expression analysis defined 4 subtypes 
comprising: (1) squamous; (2) pancreatic progenitor; (3) 
immunogenic; and (4) aberrantly differentiated endocrine 
exocrine (ADEX) that correlate with histopathological 
characteristics [14]. In the same way, miRNA clusters 
have been associated with chemosensitivity of PDAC 
stem cells [38]. It appears feasible that transcriptomic 
analysis of gene panels in EUS FNA may be used for 
molecular stratification of pancreatic tumors as the basis 
to personalize therapeutic decisions, e.g. in a neoadjuvant 
treatment situation.

mRNA/miRNA diagnostics is not suited for cyst 
fluid analysis of cystic tumors

Pancreatic cysts detected by imaging in 
asymptomatic patients may correspond to a variety of 
pathologies ranging from benign cysts (pseudocysts, 
serous cystic adenomas (SCA), true cysts) and 
premalignant or malignant cystic neoplasias (mucinous 
cystic neoplasms (MCNs), intraductal papillary mucinous 
neoplasms (IPMNs), solid pseudopapillary neoplasias 
(SPN), cystic pancreatic neuroendocrine neoplasias 
(cpNEN), serous cystadenocarcinomas). However, since 
up to 50-60% of the incidental pancreatic cysts detected by 
imaging show connections to pancreatic duct, they most 
likely represent IPMNs. One drawback of our study is 
that the complete set of data obtained from the combined 
mRNA/miRNA array did not allow to reliably identify 
cystic pancreatic neoplasias. Previous studies have 

reported that miRNA's, and in particular miR-21, miR-
155, miR-196a and miR-210, were able to differentiate 
malignant from non-malignant cystic lesion and in 
particular IPMNs ([22]; also see ([22] for an overview). 
Matthaei and coworkers [39] have used high-throughput 
miRNA analysis, followed by qRT-PCR in the same FFPE 
and pancreatic cyst fluid specimens, to develop a logistic 
regression model comprising 9 miRNAs, and correctly 
separated high risk from low risk pancreatic cysts with 
a sensitivity of 89% and a specificity of 100%. Wang et 
al. [40] used Next-Generation Sequencing (NGS) to study 
miRNA expression in a small number of EUS-FNAs from 
low-risk cysts (n = 6), high-risk cysts (n = 8), and PDACs 
(n = 3). Overall they found 13 up- and 2 downregulated 
miRNAs that, however, could not be all confirmed in 
validation experiments in the same and other studies 
(e.g.[22]). Frampton et al. in the most recently published 
trial reported that none of the miRNAs that were evaluated 
in EUS-FNA were able to separate benign non-mucinous 
(i.e. SCA and inflammatory/pseudocysts) from mucinous 
pancreatic cysts (i.e. MCN and IPMN) [22].

To summarize, our results and the results reported 
by other groups indicate that at present miRNA/mRNA 
diagnostics alone may be too variable to be reliably used 
in the clinical routine for the differentiation of pancreatic 
cysts. This may perhaps be resolved by introducing 
another genomic level in our multi-omic diagnostic 
platform. In a recent multi-center, retrospective study of 
130 patients with resected pancreatic cystic neoplasms, 
cyst fluid was analyzed to identify mutations in genes 
known to be mutated in pancreatic cystic neoplasms 
(BRAF, CDKN2A, CTNNB1, GNAS, KRAS, NRAS, 
PIK3CA, RNF43, SMAD4, TP53, and VHL) [41]. With 
this combined analyses, the authors identified molecular 
markers and clinical features that classified cyst type with 
90%-100% sensitivity and 92%-98% specificity. The 
molecular marker panel correctly identified 67 of the 74 
patients who did not require surgery and thereby reduced 
the number of unnecessary operations by 91%.

It can thus be anticipated that a multi-omics 
diagnostic platforms as the one described here, 
combining mRNA, miRNA and mutational analyses 
with conventional diagnostic tests, such as cyst fluid 
CEA and cytology, will have the highest accuracy for 
the differentiation of the various types of benign and 
malignant pancreatic cysts.

Limitations and outlook

Despite our promising results we recognize that 
our study has limitations. Our multi-omics platform 
comprises miRNAs from previously published studies 
selected for being specific for PDAC, and not for allowing 
to differentiate between other types of inflammatory, 
benign and malignant bilio-pancreatic masses. Our study 
is certainly underpowered concerning the various different 
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types of bilio-pancreatic tumors, since these tumors are 
rare and FNA-material is difficult to obtain. This small 
sample size in some of the groups may have led to non-
significant results due to a type II error. Furthermore, it 
may be argued that surgical FNAs may not be completely 
identical to the clinical situation, but we feel that this is 
a strength of our study, since histopathologically verified 
diagnoses for every single case are available as gold 
standard.

Our study provides evidence that a multi-omics 
platform assessing both, mRNA and miRNA biomarkers, 
is suitable for a molecular differentiation of suspect solid 
pancreatic masses. Further refinement of the selection 
of mRNA/miRNA markers will be done to allow the 
diagnosis of prognostic and predictive molecular PDAC 
subclasses such as those recently reported by Bailey 
and coworkers [14], that may have the potential to 
individualize the choice of neoadjuvant treatment. The 
limitations encountered in differentiating malignant and 
benign pancreatic cystic neoplasias was not completely 
unexpected based on the variable results reported by other 
groups. We are presently further developing the multi-
omics platform to allow additional mutational analyses 
of the genes that are known to differentiate pancreatic 
cystic neoplasias ([41], [42]) on the same platform in a 
single experimental step. We expect that this multi-omics 
platform will form an invaluable addition to the diagnostic 
workup of EUS-FNA biopsies of suspect solid and cystic 
pancreatic lesions.

MATERIALS AND METHODS

Tissue and biopsy samples

Since histological confirmation of diagnosis was 
an indispensable requirement for the validation of the 
performance of the diagnostic array, we focused on 
patients who received surgical resection of pancreatico-
biliary masses for the purposes of this study. A total of 143 
“surgical FNAB” (sFNAB) samples were performed from 
tumor masses immediately after resection using an 18G 
needle attached to a 20ml syringe, as previously described 
[11]. Biopsy material was expelled into 500 μl of RLT 
buffer (Qiagen) and the needle flushed again with the 
same volume of RLT buffer. Samples were stored at -80°C 
until processing. These sFNAB provided both accurate 
sampling of the tumor mass and subsequent histological 
evaluation of the very same tissue specimen.

Samples were provided by the surgery departments 
at the Ruprecht Karls University Heidelberg, Technical 
University Munich, and Philipps-University Marburg. 
Informed consent was obtained from all patients prior to 
using tissue or biopsy samples. The study was approved 
by the local ethics committees at the Universities of 
Marburg (Germany), Munich (Germany), and Heidelberg 
(Germany).

RNA isolation, mixed TaqMan arrays and qRT-
PCR analyses

Total RNA was isolated using the mirVana 
PARIS Kit (Thermo Fisher Scientific). We have 
previously developed protocols for simultaneous reverse 
transcription and pre-amplification of mRNA and miRNA 
targets as well as simultaneous analysis of mRNA and 
miRNA targets on a single TaqMan Array microfluidic 
card [23]. In short, 4 μL of RNA (20-200 ng) were reverse 
transcribed by combining a custom MicroRNA RT Primer 
Mix and a gene-specific pooled mRNA preamp Primer 
Mix (Thermo Fisher Scientific) using the TaqMan® 
microRNA Reverse Transcription Kit (Thermo Fisher 
Scientific). 5 μL of the reverse transcription product 
were used for pre-amplification using a custom gene-
specific preamp mRNA/miRNA Primer Mix (Thermo 
Fisher Scientific) and the TaqMan® PreAmp Master 
Mix (Thermo Fisher Scientific). For qRT-PCR, the pre-
amplified product was mixed with “TaqMan® Universal 
PCR Master Mix, No AmpErase UNG” (Thermo Fisher 
Scientific) and the appropriate amount of H2O, and 
subsequently loaded into the ports of the TaqMan array 
cards (2 loading ports to cover the total of 96 reaction 
chambers). RealTime PCR was performed on a 7900HT 
Fast Real-Time PCR System (with TaqMan® Array Block) 
(Thermo Fisher Scientific), using universal cycling 
conditions (95°C/10 min, then [95°C/15 sec, 60°C/60sec] 
for 40 cycles).

Raw Ct values were normalized separately for 
mRNA and miRNA genes, respectively. To this end, Ct 
values of the reference genes (RPLP0, PPIA, RPL37A, 
RPL30, RPS17 for mRNA genes; RNU44 and RNU48 
for miRNAs) were averaged and subtracted from the Ct 
values of the individual marker genes. The resulting ΔCt 
values were then used for biomarker selection and sample 
classification.

Details of the array composition are provided in 
Table 1; raw data can be accessed at http://www.staff.uni-
marburg.de/~buchhol3/DiagArray/

Biomarker selection

In our experiments, we applied a biomarker selection 
process as a preprocessing step to the multivariate training 
of the classification model. The biomarkers that were 
discarded by the selection process were considered neither 
for the training nor for the application of the classification 
model [43, 44].

For the standalone evaluation of miRNA-markers, 
we exhaustively screened through all 29-1 = 511 marker 
combinations, which was not applicable for the higher 
dimensional profiles of combined mRNA and miRNA 
markers.

For the combined analysis, the mRNA and miRNA 
markers were ranked according to the modified version 

http://www.staff.uni-marburg.de/~buchhol3/DiagArray/
http://www.staff.uni-marburg.de/~buchhol3/DiagArray/
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of Threshold Number of Misclassification (TNoM) score 
[46]. The markers that achieved the highest scores on 
the training data were passed to the classification model. 
We conducted experiments with top lists of 1 up to 88 
markers.

The basic version of the TNoM score calculates 
the accuracy of an univariate single threshold classifier 
for each individual marker [45]. For our experiments, we 
utilized a slightly modified version of the TNoM, which 
also takes into account the class-wise number of samples 
(TNoMcw) [46]. The TNoMcw score can be seen as the mean 
sensitivity and specificity of a single threshold classifier.

Classification model

We utilized a linear support vector machine 
(SVM) as multivariate classification model [47]. The 
decision boundary of a linear SVM can be seen as a 
linear hyperplane that separates feature space in two 
decision regions (e.g. PDAC/CP) (Figure 5iii). The 
SVM is designed as a large margin classifier, which 
maximizes the margin between the training samples 
and the decision boundary. The cost parameter of the 
SVM was fixed to a value of one. In our experiments, 
the input of the SVM is restricted to the biomarkers 
(mRNA/miRNA levels) selected by the biomarker 
selection process.

Validation strategy

All marker selection experiments are conducted 
as 10x10 cross-validation experiments [48]. The 10x10 
cross-validation procedure splits the available set of 
samples into 10 subsets (folds) of approximately equal 
size (Figure 2). The folds are repetitively grouped into 
independent training and validation sets. Nine folds are 
used for marker selection and training a classification 
model. The remaining fold is used for the validation of 
the used classifier. The procedure is repeated for each 
individual fold. In order to reduce sampling effects, the 
cross-validation is calculated for ten permutations (runs) 
of the overall dataset leading to 10x10 individual training/
test splits. The mean accuracy, sensitivity and specificity 
are reported. All experiments have been conducted in the 
TunePareto framework [49].

Calculation of sensitivity, specificity and 
diagnostic accuracy

Histopathological evaluation of tumor tissue 
was used as the gold standard for diagnosis. For each 
diagnostic class, sensitivity of the molecular diagnostic 
procedure was calculated by dividing the number of true 
positive (TP) calls by the sum of the numbers of true 

positive and false negative (FN) calls: 
TP

TP + FN( )

Specificity was defined as the number of true 
negative (TN) calls divided by the sum of the numbers 

of true negative and false positive (FP) calls:
 

TN
TN + FP( )

Diagnostic accuracy was defined as the total number 
of samples correctly assigned to their respective classes 
divided by the number of all classification calls made in 
the analysis.
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