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Abstract: African swine fever (ASF) has become the major threat to the global swine industry. Lack
of available commercial vaccines complicates the implementation of global control strategies. So
far, only live attenuated ASF viruses (ASFV) have demonstrated solid protection efficacy at the
experimental level. The implementation of molecular techniques has allowed the generation of a
collection of deletion mutants lacking ASFV-specific virulence factors, some of them with promising
potential as vaccine candidates against the pandemic genotype II ASFV strain currently circulating in
Africa, Europe, Asia and Oceania. Despite promising results, there is room for improvement, mainly
from the biosafety point of view. Aiming to improve the safety of BA71∆CD2, a cross-protective
recombinant live attenuated virus (LAV) lacking the ASFV CD2v gene (encoding β-glucuronidase as a
reporter gene) available in our laboratory, three new recombinants were generated using BA71∆CD2
as a template: the single mutant BA71∆CD2f, this time containing the fluorescent mCherry reporter
gene instead of CD2v, and two double recombinants lacking CD2v and either the lectin gene (EP153R)
or the uridine kinase (UK) gene (DP96R). Comparative in vivo experiments using BA71∆CD2f,
BA71∆CD2DP96R and BA71∆CD2EP153R recombinant viruses as immunogens, demonstrated that
deletion of either DP96R or EP153R from BA71∆CD2f decreases vaccine efficacy and does not
improve safety. Our results additionally confirm ASFV challenge as the only available method today
to evaluate the protective efficacy of any experimental vaccine. We believe that understanding the
fine equilibrium between attenuation and inducing protection in vivo deserves further study and
might contribute to more rational vaccine designs in the future.

Keywords: African swine fever (ASF); African swine fever virus (ASFV); live attenuated virus (LAV);
vaccine; virulence factor; double mutant; protection

1. Introduction

Lack of commercially available vaccines complicates the control of African swine
fever (ASF), today’s number one threat to the global swine industry [1]. The complexity
of African swine fever virus (ASFV), the causative agent of ASF, together with the limited
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resources historically invested in this disease, has delayed vaccine development. This
situation has dramatically changed with the last re-entrance of the virus in Europe in 2007
and the subsequent spread to the West, reaching the European Union in 2014, and to the
East, reaching China in 2018. It has been shown that classically inactivated vaccines for
ASF are ineffective, independent of the adjuvant tested [2]. To date, all subunit vaccines
that have been reported have failed at inducing solid protection against the pandemic
ASFV (Georgia2007/1), despite being the ideal choice in the long term if one becomes
available [3]. So far, only ASF live attenuated viruses (LAVs) have conferred solid pro-
tection against experimental challenge with homologous viruses, with both antibodies
and T cells, playing important roles in the protection afforded [4,5]. These studies have
been performed with either natural attenuated ASFV isolates or with recombinant LAVs
obtained by specific deletions of virulence-associated genes from the homologous virulent
virus [6–11]. Additionally, our previous studies have demonstrated the cross-protective
ability of BA71∆CD2, a deletion mutant lacking the CD2v (encoding β-glucuronidase
as a reporter gene) from the genotype I virulent BA71 ASFV strain, to confer protection
against both parental BA71 and genotype II Georgia2007/1 experimental challenges [12].
Despite its protective potential and the ability to grow in stable cell cultures (Cos-1 cells)
without genetic changes, a small percentage of BA71∆CD2-immunized pigs showed low,
but detectable, amounts of ASFV DNA in sera [12]. Aiming to reduce the residual viral
load observed with BA71∆CD2 and increase the safety of our vaccine prototype, three new
recombinant viruses were generated using the same methodology and substituting the
ASFV ORFs with fluorescent markers: the single mutant BA71∆CD2f, this time containing
the fluorescent mCherry marker instead of CD2v, and two double recombinants lacking
CD2v and a second virulence-associated gene, either DP96R, encoding the ASFV uridine
kinase gene [8], or EP153R, encoding the ASFV lectin [13]. Once generated, the two double
mutants, BA71∆CD2DP96R and BA71∆CD2EP153R, were used in a comparative in vivo
immunization study with their parental fluorescent counterpart, BA71∆CD2f, whereas the
control group of the whole experiment was immunized with PBS. Finally, all pigs were
challenged with the pandemic Georgia2007/1 strain. The specific antibody and T-cell re-
sponses induced, together with the presence of ASFV in pig sera before and after challenge,
determined that the additional deletion of DP96R or EP153R from BA71∆CD2f did not
improve the safety of the vaccine, but instead reduced the protective potential against
Georgia2007/1 challenge. These studies confirm previous results obtained with other
recombinant LAVs designed using genotype II and I ASFV strains as templates [14–18].
The lack of exact correlation between in vitro assays and protection in swine confirms ASFV
challenge as the only valid method to accurately evaluate the protective efficacy of any
experimental vaccine approach. Understanding the mechanisms governing the efficacy of
LAVs might become essential to design safer vaccine approaches against ASF in the future.

2. Methods
2.1. Cells and Viruses

Porcine alveolar macrophages (PAMs) were obtained by successive bronchoalveolar
lung lavages with PBS. Macrophage cell culture was performed with RPMI 1640 medium
(Life Technologies, Grand Island, NY, USA), supplemented with 10% fetal bovine serum
(HyClone, GE Healthcare, Chicago, IL, USA).

The recombinant viruses were purified by limited dilution on PAMs. The virulent
isolate Georgia2007/1, used for challenge purposes, was kindly provided by Dr. Linda
Dixon (The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK) and titrated in
porcine macrophages.

2.2. Generation of the Recombinant Deletion Mutants and Comparative In Vitro Growth Curves

For comparative purposes, we first generated a fluorescent BA71∆CD2f by homolo-
gous recombination (Figure 1A), following a similar procedure described before [19]. The
right and left genome arms of the CD2 locus (approximately 700–800 bp in length) were
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obtained by DNA synthesis at Epoch Life Sciences (Sugar Land, TX, USA) to construct
the p72mCherry∆CD2 transfer vector encoding the mCherry reporter gene under the
ASFV p72 late promotor. Macrophage cell cultures were infected with the parental virus
BA71∆CD2 (containing a β-glucuronidase, encoded by the GusA gene, as a reporter gene)
and transfected with the p72mCherry∆CD2 recombination transfer vector. By homologous
recombination, the GusA gene was exchanged by the mCherry reporter gene, generating
the recombinant BA71∆CD2f.
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Figure 1. Schematic representation of the recombinant parental virus BA71∆CD2f (A) and the
EP153R and DP96R gene regions deleted by homologous recombination in recombinant viruses
BA71∆CD2EP153R and BA71∆CD2DP96R (B). Dotted lines indicate the homologous regions between
the parental virus and the correspondent transfer plasmid.

Next, we generated the recombinants BA71∆CD2DP96R and BA71∆CD2EP153R,
using BA71∆CD2f as the parental virus and p72eGFP∆DP96R or p72eGFP∆EP153R as
transfer vectors, respectively (Figure 1B). Both transfer vectors harbor the green fluorescent
protein (eGFP) gene under the control of the ASFV p72 late gene promoter as a reporter
gene cassette, flanked by the left and right homologous arms of the deleted ORFs to allow
homologous recombination, following the same system described above.

The recombinant viruses were obtained after successive rounds of limit dilution
purification on macrophage cell cultures, followed by a full genome sequencing to ensure
the genome integrity and the designed deletions.

Comparative in vitro growth curves of BA71∆CD2f, BA71∆CD2DP96R and
BA71∆CD2EP153R were performed by infecting PAMs at a multiplicity of infection (MOI)
of 0.1. After 2 h of adsorption at 37 ◦C in 5% CO2, the inocula were removed and replaced
with fresh media. The supernatants were harvested at 16, 24 and 48 h post infection
(hpi). Virus loads in supernatants were quantified by qPCR following previously described



Viruses 2021, 13, 1678 4 of 13

methods [20] and the percentage of infected cells at each time point was followed by flow
cytometry, detecting the eGFP or mCherry reporter genes.

2.3. Animals, Hosting and Welfare

Six-to-eight-week-old male (Large White × Landrace) pigs, ranging from 15 to 30 kg,
were housed in the BSL-3 facilities of Institut de Recerca i Tecnologia Agroalimentària
(IRTA)-CReSA (Bellaterra, Spain). Animal experiments were conducted according to
animal welfare ethics and protocols approved by the Ethics Commission in Animal Experi-
mentation of the Generalitat de Catalunya (code CEA-OH/9212/2, in accordance to the
European (Directive 2010/63/EU) and Spanish (Real Decreto 53/2013) regulations under
the supervision of the IRTA’s Ethical and Animal Welfare Committee.

2.4. In Vivo Experimental Approach

Twenty-four pigs were divided into four groups of six pigs each, without any contact
between the groups. After one week of acclimation, each pig was intramuscularly immu-
nized once with 1 mL of either PBS (control) or 106 plaque-forming units (PFU) of either
BA71∆CD2f, BA71∆CD2EP153R or BA71∆CD2DP96R.

Twenty-four days later, all pigs were intramuscularly challenged with 103 gene equiv-
alent copies (GEC) of the Georgia2007/1 ASFV virulent strain, equivalent to 103 hemad-
sorbing units (HAU). Pigs were bled at days 0, 4, 7, 14 and 24 after immunization (dpi) and
after Georgia2007/1 challenge (dpc) to follow both the kinetics of virus load by qPCR and
the ASFV-specific antibody and T-cell responses. Rectal temperature and clinical signs were
recorded daily, following guides previously published [21]. Post-mortem examinations
were carried out to confirm or discard the presence of ASF-compatible pathological lesions.

2.5. Analytical Methods

Experimental immunization, clinical observations, immunological assays and virus
titration methods were previously described [12,21] and performed as briefly described below.

2.5.1. Antibody Detection by ELISA

Antibodies in pig sera were quantified by the OIE-approved indirect ELISA, based
on soluble ASFV-infected cell-extract-coated plates, generously provided by Dr. Carmina
Gallardo (EU ASF reference laboratory, CISA-INIA, Madrid, Spain). The presence of
positive sera was detected using a peroxidase-conjugated anti-pig immunoglobulin G
(IgG) at 1:20,000 dilution (Sigma-Aldrich, St. Louis, MO, USA) as secondary antibody
and soluble 3,3′,5,5′-tetramethylbenzidine (TMB) as specific peroxidase substrate (Sigma-
Aldrich). Reactions were stopped with 1 N H2SO4 (Sigma-Aldrich), and the ELISA plates
were read at an optical density of 450 nm (OD450).

2.5.2. T-Cell Response by ELISPOT Assay

The frequency of ASFV-specific interferon gamma-secreting cells (IFNγ-SC) in periph-
eral blood mononuclear cells (PBMCs) was analyzed by an enzyme-linked immunosorbent
spot (ELISPOT) assay using commercial monoclonal antibody tandems (swine IFNγ; Cy-
toset). Briefly, PBMCs were isolated from whole blood by density-gradient centrifugation
with Histopaque 1077 (Sigma-Aldrich). For PBMC cultures, RPMI 1640 medium supple-
mented with 10% fetal bovine serum (HyClone, GE HealthCare), 50,000 IU penicillin/L
(Invitrogen), and 50 mg streptomycin/L (Invitrogen) was used. Trypan blue was used to as-
sess cell viability. PBMCs were specifically stimulated for 20 h in vitro with different ASFV
isolates at a MOI of 0.2. RPMI, and 10 µg/mL of phytohemaglutinin (PHA, Sigma-Aldrich)
was used as the control of the technique. Any sample scoring ≥300 spots/500,000 PBMCs
received a score of 300, which was considered the limit of our assay resolution.
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2.5.3. Virus Quantification

Titrating ASFV by hemadsorption is not always possible when working with non-
hemadsorbing strains, such as BA71∆CD2. Aiming to adopt a reliable comparative method
for ASFV titration of multiple samples, pig sera, collected at different time points during the
experiment, were used to quantify the ASFV virus DNA by real-time qPCR [20]. Due to the
fact that our qPCR technique had previously shown more reproducible results in sera than
in whole blood, virus in sera and no viremia was measured, being aware that the amount
of virus present in blood after challenge with Georgia2007/1 would be around 1 log higher
in magnitude. Briefly, the viral genomic DNA was obtained from 200 µL of sera using the
Nucleospin Blood kit (Macherey-Nagel, Düren, Germany) and then used as template to
amplify an 85 bp-long fragment from the ASFV serine protein kinase gene (R298L). PCR
amplifications were performed in duplicate using the corresponding standards for absolute
quantification. Results are expressed as log10 GEC per mL of sera. The detection limit of
the technique was set at 103 GEC/mL.

3. Results and Discussion
3.1. Replication of Recombinant Viruses in Swine Macrophage Cultures

PAMs infected with either BA71∆CD2f and BA71∆CD2EP153R followed indistin-
guishable kinetics of infection (Figure 2). As expected, more than 95% of the PAMs were
infected by 72 h (hpi) (Figure 2A), showing also similar maximum titers of ASFV-DNA
in their supernatant (Figure 2B). Conversely, at the same multiplicity of infection (MOI),
BA71∆CD2DP96R showed a delay in the infection kinetics, with only half of the PAMs
becoming infected at 72 hpi and showing a maximum titer one log below of those achieved
by BA71∆CD2f and BA71∆CD2EP153R.
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Figure 2. Comparative infection kinetics of the three recombinant viruses, BA71∆CD2f, BA71∆CD2EP153R and
BA71∆CD2DP96R, in PAMs. (A) Percentage of infected cells analyzed by flow cytometry and (B) ASFV DNA amount found
in the supernatant of infected PAMs at different time points after infection.

3.2. Comparative Protective Efficacy Induced by BA71∆CD2EP153R and BA71∆CD2DP96R
Recombinant Viruses

Aiming to confirm if the deletion of DP96R or EP153R reduced the residual viral
load previously observed after immunization with BA71∆CD2 [12], the amount of ASFV
DNA of each recombinant virus was followed directly after inoculation until the day of
the Georgia2007/1 challenge (Figure 3). No clinical signs were observed following the
immunization. The virus titers of BA71∆CD2f -immunized animals before challenge, as
well as the protection afforded, yielded similar results to our previous studies [12], with
the exception of pig number 66, euthanized at 6dpc (Figure 5), which responded poorly to
the vaccine (Figures 7A and 8) and was Unfortunately, two out of the six pigs immunized
with either BA71∆CD2EP153R or BA71∆CD2DP96R showed low albeit detectable copy
numbers of virus genome in sera, confirming that these new prototypes do not improve
the safety of BA71∆CD2.
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Figure 3. Rectal temperature and ASFV DNA amount found in sera after immunization with BA71∆CD2f (A,B)
BA71∆CD2EP153R (C,D) or BA71∆CD2DP96R (E,F) in each individual animal. Average and standard deviation val-
ues from control pigs immunized with PBS are shown. ASFV DNA amounts are plotted on a logarithmic scale as GEC per
milliliter of serum, 103 GEC/mL being the limit of detection of the assay.

Twenty-four days after immunization, all pigs were intramuscularly challenged with
a lethal dose of 103 GEC of the highly pathogenic Georgia2007/1 isolate.

Control pigs were euthanized by day 8 post-challenge, while only one out of the six
pigs vaccinated with BA71∆CD2f (animal 66) died after Georgia2007/1 challenge (Figure 4).
One and two out of the six pigs inoculated with BA71∆CD2DP96R and BA71∆CD2EP153R,
respectively, did not survive the lethal ASFV challenge (Figure 4).
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Figure 4. Survival rates after Georgia2007/1 challenge. Pigs were immunized with either BA71∆CD2f,
BA71∆CD2DP96R or BA71∆CD2EP153R and then challenged 24 days later with a lethal dose of
Georgia 2007/1.

Pigs that succumbed to Georgia2007/1 challenge (six controls and four immunized
with recombinant LAVs) showed clinical signs compatible with acute ASF (Figure 5),
including fever, loss of appetite, depression, apathy and a tendency to huddling, as well
as erythema and cyanosis. Conversely, surviving pigs did not show severe clinical signs
after ASFV challenge (Figure 5). Three out of the six pigs immunized with BA71∆CD2f
remained clinically normal, while the other two showed only a transient rise in rectal
temperature. Thus, pig number 63 showed febricula (~40 ◦C) from day 8 to 14 pc, while
pig number 62 had fever only at day 8 post challenge (rectal temperature < 40.5 ◦C).

Furthermore, the clinical signs observed after Georgia2007/1 challenge were more evi-
dent and prolonged in pigs vaccinated with the double recombinants than with BA71∆CD2f
(Figure 5), albeit that one out of the six pigs inoculated with BA71∆CD2EP153R (pig number
77) or BA71∆CD2DP96R (pig number 84) never showed any clinical signs.



Viruses 2021, 13, 1678 8 of 13
Viruses 2021, 13, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. ASF compatible clinical signs observed after challenge. Color palette indicates normal 
(green), mild (yellow) and high (>41 °C; orange) rectal temperature, while euthanized animals are 
indicated in red. Clinical scores are indicated with numbers; 1 being low-grade fever (<41 °C) as the 
only clinical observation. 

Rectal temperature almost perfectly matched the amount of ASFV DNA detected in 
serum (Figure 6) after challenge. All control pigs immunized with PBS were euthanized 
by day 6–8 after the lethal challenge showing significant fever and high amounts of ASFV 
DNA in sera. As expected, surviving pigs showed significantly lower amounts of ASFV 
DNA than control pigs (Figure 6). The massive release of immature and defective ASFV 
particles from lysed infected macrophages at the last stage of the ASFV infection, before 
the death of the animals, explains the non-linear correlation between GECs (1010 GEC/mL) 
and HAU (~108 HAU/mL) in these samples (not shown). Independently of this, the level 
of virus in sera of surviving pigs vaccinated with BA71∆CD2f (Figure 6A,B) was always 
4–5 logarithms below that found in control animals. Furthermore, ASFV presence never 
lasted more than one week, becoming free of virus by the time of sacrifice, with pig num-
ber 65 not showing any detectable ASFV genome in its serum throughout the experiment. 
The level of virus in sera from pigs immunized with either BA71∆CD2EP153R (Figure 
6C,D) or BA71∆CD2DP96R (Figure 6E,F) was also remarkably decreased compared to 
control animals. Nevertheless, the reduction in virus titers in sera from these animals was 
slightly lower than that found in the animals immunized with the single mutant 
BA71∆CD2f, and several pigs showed detectable virus by the end of the experiment.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

62 1
63 1 1 1 1 1 1 1
64
65
66 1 5
67

74 1 1 1 1 1 1 1 2
75 1 1 5
76 1 3 1
77
78 1
79 1 1 1 1 1

80 1 1 1 1
81 1 1
82 2 1 1 1 1 1 1 1 1 1
83 1
84
85 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

68 1 1 2 2 8
69 1 3 3 7
70 1 1 2 2 5
71 1 2 3 8
72 1 2 2 8
73 1 1 2

Days post Georgia2007/1 challenge

BA
71

∆C
D

2f
BA

71
∆C

D
2E

P1
53

R
BA

71
∆C

D
2D

P9
6R

PB
S

Figure 5. ASF compatible clinical signs observed after challenge. Color palette indicates normal
(green), mild (yellow) and high (>41 ◦C; orange) rectal temperature, while euthanized animals are
indicated in red. Clinical scores are indicated with numbers; 1 being low-grade fever (<41 ◦C) as the
only clinical observation.

Rectal temperature almost perfectly matched the amount of ASFV DNA detected in
serum (Figure 6) after challenge. All control pigs immunized with PBS were euthanized
by day 6–8 after the lethal challenge showing significant fever and high amounts of ASFV
DNA in sera. As expected, surviving pigs showed significantly lower amounts of ASFV
DNA than control pigs (Figure 6). The massive release of immature and defective ASFV
particles from lysed infected macrophages at the last stage of the ASFV infection, before
the death of the animals, explains the non-linear correlation between GECs (1010 GEC/mL)
and HAU (~108 HAU/mL) in these samples (not shown). Independently of this, the level
of virus in sera of surviving pigs vaccinated with BA71∆CD2f (Figure 6A,B) was always
4–5 logarithms below that found in control animals. Furthermore, ASFV presence never
lasted more than one week, becoming free of virus by the time of sacrifice, with pig number
65 not showing any detectable ASFV genome in its serum throughout the experiment. The
level of virus in sera from pigs immunized with either BA71∆CD2EP153R (Figure 6C,D)
or BA71∆CD2DP96R (Figure 6E,F) was also remarkably decreased compared to control
animals. Nevertheless, the reduction in virus titers in sera from these animals was slightly
lower than that found in the animals immunized with the single mutant BA71∆CD2f, and
several pigs showed detectable virus by the end of the experiment.
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controls and BA71∆CD2f immunized pigs [12], with the only exception being pig number 
66, which showed significant lower ODs than the rest of the animals within the group 
(Figure 7A). The fact that this pig also showed the lowest ASFV-specific T-cell response 
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Figure 6. Rectal temperatures measured and ASFV DNA amount found in sera of immunized and control pigs after Geor-
gia2007/1 challenge. Data plotted correspond to individual animals showing rectal temperatures (A,C,E) and virus loads in
serum (B,D,F). Upper panels show data corresponding to BA71∆CD2f immunized pigs, middle panels to BA71∆CD2EP153R
and lower panels to BA71∆CD2DP96R. Average and standard deviation values obtained from control animals are also
depicted. Virus titers are plotted on a logarithmic scale as GEC per milliliter of serum, 103 GEC/mL serum being the limit
of detection of the assay. * Day of the death of the animals. Last data recorded for pig 75 correspond to day 6pc (death date).

3.3. Evaluation of the Immune Response Induced by BA71∆CD2EP153R and BA71∆CD2DP96R

The antibody kinetics observed before and after challenge were as expected for both
controls and BA71∆CD2f immunized pigs [12], with the only exception being pig number
66, which showed significant lower ODs than the rest of the animals within the group
(Figure 7A). The fact that this pig also showed the lowest ASFV-specific T-cell response
(Figure 8) may suggest the possibility of a human/mechanical failure during vaccination,
although a simple vaccine failure cannot be ruled out. The severity of the clinical signs
observed after challenge (highest score of 12 recorded by day 6, forcing a humane endpoint)
might be explained by either an exacerbation effect due to suboptimal immunization
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as has been described before [2,22] and/or some concomitant health affection. Despite
the importance of the ELISA as an indicator of successful immunization, there is not a
total correlation between the level of ASFV-specific antibodies measured by ELISA and
protection. Thus, pigs 74 and 75 immunized with BA71∆CD2EP153R and pig 81 immunized
with BA71∆CD2DP96R died after challenge, despite showing similar antibody levels to
surviving pigs at the time of Georgia2007/1 challenge. Conversely, pigs 80 and 82 survived
the lethal challenge, despite showing slightly lower ODs.
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Figure 7. ASFV-specific antibodies detected in serum of pigs immunized with BA71∆CD2f (A),
BA71∆CD2EP153R (B) and BA71∆CD2DP96R (C), before and after Georgia2007/1 challenge. Indi-
vidual ELISA optical density (OD) values are shown for each immunization group. Average and
standard deviation OD values obtained from the control group are also shown in each figure panel.
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The ELISPOT data (Figure 8) confirmed the successful immunization of most of the
animals, albeit that again, no correlation was observed between the number of ASFV-
specific T cells present in blood and protection (confirming previous results). Thus, pigs 74,
75 and 81 were good responders and died after Georgia2007/1 challenge, while several
survivors showed low responses at the time of challenge.

In conclusion, deletion mutants of the attenuated recombinant ASF virus, BA71∆CD2,
decrease vaccine efficacy and do not increase its safety. The fine equilibrium existing
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