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Abstract

Background: TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In
Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling
compartment of the cell (the rhabdomere), TRPL localization is regulated by light. TRPL channels translocate out of the
rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels
regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying
this trafficking of TRPL channels.

Methodology/Principal Findings: We first examine the involvement of de novo protein synthesis in TRPL translocation. We
feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find
that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to
the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye
preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of
stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of
the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.

Conclusions/Significance: Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein
transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different
strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the
cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be
regulated by release of a light-dependent anchor in the rhabdomere.
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Introduction

Transient Receptor Potential (TRP) channels constitute a

superfamily of cationic channels expressed in a diverse array of

cell types and systems. Many TRP channels function as key

mediators of a variety of sensory transduction pathways, including

pain, thermosensation, taste transduction, mechanosensation, and

vision [1,2]. The first TRP channel described, along with its

subsequently identified homolog, TRP-like (TRPL), function as

the primary light-activated channels in Drosophila phototrans-

duction [3–6]. TRP channels are statically anchored in the

rhabomere, a microvillar-rich compartment specialized for

phototransduction. In contrast, the localization of TRPL channels

has been shown to be dynamic, and regulated by light [7–9].

Translocation of TRPL channels out of the rhabdomere is thought

to make them unavailable for signaling, thereby regulating the

gain of the light response and contributing to mechanisms of

light-adaptation [7,10].

This signal-induced translocation of TRPL channels is a good

model for other TRP channels, and other ion channels, which

undergo subcellular trafficking as a means of regulating channel

availability. Several studies have provided evidence for the

stimulation-induced translocation of intracellular TRP channels

to the plasma membrane. For example, TRPV2, found mainly in

intracellular pools, translocates to the plasma membrane after

stimulation by insulin-like growth factor [11]. Translocation of a

complex consisting of RhoA, IP3R, and TRPC1 to the plasma

membrane is thought to occur after stimulation by thrombin [12].

Similarly, epidermal growth factor stimulation induces incorpora-

tion of mammalian TRPC5 into the plasma membrane [13].

In Drosophila photoreceptors, TRPL channels are localized to

the rhabdomere in the dark, and with illumination, they trans-

locate to the cell body [7–9]. Activation of the major light receptor

rhodopsin-1, the effector phospholipase-C (PLC), and the other

light activated channel TRP were all found to be required for

TRPL channel translocating to the cell body [7–9]. With more

detailed analyses, we found that TRPL translocation occurred in

two distinct stages [8]. TRPL channels first translocate to the

neighboring apical/stalk membrane (stage-1), and with longer

illumination, translocate to the basolateral membrane of the cell
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body (stage-2). These stages were also genetically separable since

stage-1 was independent of TRP, and stage-2 required the

activation of the entire phototransduction cascade and even an

eye-specific protein kinase-C (eye-PKC) [8]. Constitutive activa-

tion of TRP channels was sufficient to trigger stage-2 translocation

of TRPL [8], and consistently, translocation to the cell body was

also shown to be dependent on extracellular Ca2+ [9].

Much more headway has been made into understanding

mechanisms underlying the light-dependent translocations of the

G-protein and arrestin proteins in vertebrate and Drosophila

photoreceptors [14–19] . TRPL channels, however, are trans-

membrane proteins and have longer time-courses of translocation,

suggesting different cellular strategies. For example, with hours

(versus minutes) required for TRPL translocation to the second

stage, it is important to determine whether this change in

localization might be due instead to protein degradation/re-

synthesis. We investigate the involvement of protein synthesis, and

whether active and/or passive transport mechanisms are likely to

contribute to TRPL channel translocation, especially for stage-1.

We provide evidence that the actin cytoskeleton does not play a

major role in the first stage of TRPL translocation. We also show

that TRPL translocation to stage-1 is independent of ATP,

suggesting that simple diffusion may account for the rapid

redistribution of TRPL channels from the rhabdomere to the

apical/stalk membrane. Consistent with this hypothesis, we find

that increasing membrane sterol composition slows the rate of

stage-1 TRPL translocation.

Results

Determining if TRPL Channel Translocation Requires New
Protein Synthesis

TRPL channels undergo a progressive light-dependent change

in localization from the rhabdomere, in the dark, to the

neighboring apical membrane, within five minutes and up to four

hours of light-exposure (stage-1), and finally, to the basolateral

membrane after light-exposures over six hours (stage-2) [8].

Re-localization to the rhabdomere requires dark-incubation of

6 hours from stage-1 and 10 hours from stage-2. No reports,

however, have determined whether protein synthesis is involved

in either stage of this light-induced translocation, or the re-

localization of TRPL channels back to the rhabdomere with dark-

incubation. To address this question, we used an assay in which

protein synthesis is blocked in living flies. In this protocol, we feed

flies the protein synthesis inhibitor, cycloheximide (CHX), mixed

with green food-coloring. To determine if this method indeed

blocks protein synthesis, we tested the assay with transgenic flies

that express an inaD under the control of a heat-shock promoter

(now referred to as hs-inaD flies). Without heat-shock, hs-inaD flies

do not express INAD protein, while one hour of heat-shock at

37uC induces new INAD protein synthesis detectable by

immunoblot analysis (Figure 1A). hs-inaD flies fed CHX for at

least 30 minutes, and selected for a medium to dark green

abdomen, showed no heat-induced synthesis of INAD protein

(Figure 1A). Inhibition of protein synthesis was maintained for up

to 24 hours (data not shown).

To test if either stage of light-induced TRPL channel

translocation from the rhabdomere is dependent on protein

synthesis, wild-type flies were fed CHX in the dark for at least

30 minutes, then light-exposed for either 30 minutes or 12 hours,

remaining on the CHX food throughout the experiment. We

found that even with CHX treatment, TRPL channels displayed

normal stage-1 and stage-2 translocation from the rhabdomere to

the apical and basolateral membranes, respectively (Figure 1B). To

determine if TRPL channel recovery to the rhabdomere from

stage-1 is dependent on protein synthesis, dark-raised wild-type

flies were fed CHX in the dark for at least 30 minutes to induce

protein inhibition, followed by light-exposure for 30 minutes to

promote stage-1 of translocation, and subsequent dark incubation

Figure 1. Testing the Requirement of Protein Synthesis for
TRPL Channel Translocation. (A) hs-inaD transgenic flies (in an inaD1

null background) express INAD protein only when heat-shocked at
37uC. One hour of heat-shock induces INAD expression that can be
easily detected by immunoblot analysis (see -CHX). Flies fed green-
colored cycloheximide (CHX) for 30 minutes were selected with for
abdomens with various degrees of greenness (degree green), heat-
shocked, and analyzed by immunoblot analysis (three heads per lane).
Degree greenness had an inverse relationship with inducible expression
of INAD, indicating that CHX treatment did indeed block protein
synthesis. Anti-syntaxin was used as a loading control. (B) Dark-raised
wild-type flies were fed +/2 CHX (colored green) in the dark for at least
30 minutes, then light-exposed for either 30 minutes (Stage-1) or
12 hours (Stage-2), while remaining on the +/2 CHX food throughout
the light-exposure. Only flies with dark-green abdomens were selected
for sectioning. Shown are representative retinal sections immuno-
stained for TRPL. TRPL channels translocated to both stage-1 and -2
with CHX treatment. Multiple tissue sections were taken from 11 eyes
from 8 flies (Dark), 8 eyes from 7 flies (Stage 1, -CHX), 9 eyes from 7 flies
(Stage 1, +CHX). (C) Left, Wild-type flies were fed +/2 CHX in the dark
for at least 30 minutes to inhibit protein synthesis, light-exposed for
30 minutes to induce stage-1 translocation, followed by 6 hours of dark
incubation. Only flies with dark-green abdomens were selected for
sectioning and immunostaining. TRPL channels relocalized to the
rhabdomeres in –CHX flies, but were unable to translocate back to the
rhabdomere in +CHX fed flies. Right, Wild-type flies were light-exposed
for 12 hours to induce stage-2 translocation, then transferred to +/2
CHX food in continuous light for 1 additional hour, followed by dark
incubation for 10 hours. Only flies with dark-green abdomens were
selected for sectioning and immunostaining. Representative sections
show that TRPL channels relocalized to the rhabdomere from stage-2 in
both +/2 CHX. Multiple sections were taken from 13 eyes from 9 flies
(Stage 1), 7 eyes from 5 flies (Dark 6 hrs, -CHX), 12 eyes from 9 flies
(Dark 6 hrs, +CHX), 13 eyes from 11 flies (Stage 2), 11 eyes from 9 flies
(Dark 10 hrs, -CHX), 16 eyes from 10 flies (Dark 10 hrs, +CHX).
doi:10.1371/journal.pone.0031622.g001
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for 6 hours, remaining on the CHX food for the duration of the

experiment. Interestingly, we found that TRPL channels were

unable to translocate back to the rhabdomere from stage-1,

remaining in the apical stalk membrane (Figure 1C, left). These

results suggest that re-localization from stage-1 is dependent on

protein synthesis. Similar experiments were performed for

examining relocalization from stage-2. Although redistribution

back to the rhabdomeres from stage-2 required at least 10 hours of

dark incubation, inhibition of protein synthesis had no effect on

this process (Figure 1C). To test whether inhibition of protein

synthesis by CHX was less effective during this lengthy experiment

(,22 total hours), we also shortened the amount of time the flies

were fed CHX to 11 hours. Wild-type flies were light-exposed for

12 hours to induce stage-2 translocation, and then transferred to

CHX food for 1 hour, followed by 10 hours of dark incubation,

while remaining on the CHX medium. TRPL channels still

underwent normal translocation back to the rhabdomere from

stage-2 (Figure 1C, right).

Altogether, our results suggest that both stages of light-induced

TRPL channel translocation are independent of protein synthesis,

and not likely to be due to a protein degradation/re-synthesis

mechanism. TRPL channel translocation back to the rhabdomere

from stage-2 also appears to be independent of protein synthesis.

In contrast, TRPL channel recovery to the rhabdomere from

stage-1 is dependent on protein synthesis, indicating that re-

localization from stage-2 occurs via a completely different pathway

from re-localization mechanisms from stage-1.

Stage-1 TRPL Translocation is Not Regulated by shibire-
Mediated Endocytosis

What are the molecular mechanisms underlying the light-

induced translocation of TRPL channels? One possibility is that

TRPL channels may be incorporated into vesicles at the base of the

rhabdomere, similar to rhodopsin-Arr-2 complexes that accumulate

in norpA and rdgC mutants [20–22], and transported to downstream

subcellular sites. We examined the role of endocytosis using the

temperature-sensitive mutant, shibire (shits1). shibire encodes the

GTPase, dynamin, required for ‘‘pinching off’’ of vesicles during

endocytosis [23]. At 25uC, shits1mutants are indistinguishable from

wild-type, but when the temperature is raised to 29–30uC, shits1

mutants display rapid paralysis as a result of disruption in

endocytosis [23,24]. Involvement of shibire-mediated endocytosis

was previously investigated for TRPL translocation [9], however

not specifically for stage-1 translocation. Thus, we examined the

immunolocalization of TRPL channels in dark-raised and 30-

minute light-exposed shits1 mutants incubated at the restrictive

temperature. To verify that endocytosis was blocked in shits1

mutants, we tested them first for paralysis at the restrictive

temperature before using them for immunolocalization studies.

We found that TRPL channels were localized to the rhabdomere in

dark-raised shits1 mutants, and light-exposure resulted in transloca-

tion to the stalk membrane, similar to wild-type at 30uC (Figure 2).

These results indicate that stage-1 TRPL translocation is indepen-

dent of shibire-mediated endocytosis. For stage-2, the lengthy

incubation at the restrictive temperature, unfortunately, resulted

in severe retinal degeneration and lethality, making the role of

endocytosis in stage-2 translocation inconclusive.

Characterization of an Ex Vivo Retina Preparation
To further investigate the molecular mechanisms involved in

TRPL channel translocation, we characterized an ex vivo

preparation that would allow us to apply chemical inhibitors to

photoreceptors and then assay for effects on TRPL translocation;

we call this preparation the bisected head illumination (BHI)

preparation. Fly heads are bisected under dim red light and placed

in culture wells containing a bath solution, to which biochemical

inhibitors can be added and eyes can be light-exposed or dark-

incubated. After treatment, eyes are fixed, sectioned, and

immunostained. With bath solution alone, TRPL channels are

localized to the rhabdomeres of eyes incubated in the dark

(Figure 3A,C). Light-exposure (30 minutes) of eyes in the BHI

preparation induced translocation of TRPL channels to the

neighboring stalk membrane (stage-1; Figure 3A), similar to what

is observed in photoreceptors of light-exposed flies (Figure 1B). As

a control, we also examined the visual Gqa and the major

rhodopsin (Rh1). Previous in vivo studies have shown that Gqa, like

TRPL, undergoes light-induced translocation to the cell bodies of

photoreceptors [14,25], while Rh1 remains rhabdomeric regard-

less of light condition [8,14]. Indeed, in the BHI preparation, Gqa
was rhabdomeric when incubated in the dark, and redistributed to

the cell body with light-exposure, while Rh1 was localized to the

rhabdomere in both dark and light conditions (Figure 3A). These

results suggested that photoreceptors in the BHI preparation were

viable and displayed light-dependent localization and transloca-

tion of phototransduction proteins similar to studies in which live

flies were light/dark-treated.

We examined TRPL translocation in the BHI preparation in

more detail. Previously, we found that TRPL channels translocate

out of the rhabdomeres to stage-1 (neighboring apical membrane)

within 5 minutes of light-exposure and remain in stage-1 for about

four hours, then translocate to stage-2 (basolateral membrane)

after 6–10 hours of light-exposure [8]. In the BHI preparation,

we found that TRPL channels translocate a little more slowly,

requiring 10 minutes of light-exposure to reach stage-1 (Figure 3B).

With longer light-exposures, however, even up to 18 hours, TRPL

channels remained restricted to the apical membrane, and

were never observed to translocate to the basolateral membrane

(Figure 3B). One possibility is that viability of photoreceptors

in the BHI preparation is increasingly compromised over

time. Photoreceptor cells indeed appeared progressively more

degenerated, especially after 10 and 12 hours of light-exposure

(Figure 3B).

Figure 2. Stage-1 TRPL Translocation is Not Regulated by
shibire-Mediated Endocytosis. Shown are representative retinal
sections of single ommatidia from wild-type and shibirets1 mutants.
Dark-raised flies were first incubated at 30uC to block endocytosis in
shits1, indicated by paralysis. Flies continued to be incubated at 30uC
but either remained in the dark or were light-exposed for 2 hours.
Tissue sections were immunostained for TRPL. TRPL displayed normal
light-induced translocation from the rhabdomere to the neighboring
stalk membrane. Multiple tissue sections were taken from 14 eyes from
nine flies (wild-type, Dark), 10 eyes from 8 flies (wild-type, Light), 10
eyes from 7 flies (shibirets1, Dark), 15 eyes from 10 flies (shibirets1, Light).
doi:10.1371/journal.pone.0031622.g002
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Since live cells synthesize ATP as a means for providing cellular

energy, we measured ATP levels as a gauge for cell viability. Dark-

raised wild-type eyes were incubated in the bath solution for times

ranging from 30 minutes to 12 hours, and either remained in the

dark or were subsequently light-exposed for 30 minutes. Using a

luciferase-based reporter assay on homogenized eyes, we found

that levels of ATP progressively decreased, with a time-course

roughly corresponding to the photoreceptor cell degeneration

observed (Figure 3B). Because absolute ATP levels varied quite

drastically from experiment to experiment, control and experi-

mental samples were always quantified simultaneously and

averages were taken across multiple independent experiments.

At 12 hours, ATP concentration was decreased by more than 50%

compared to 30 minutes after head bisection (Figure 3C). One

possibility is that TRPL channels are not able to translocate to

stage-2 in the BHI assay due to insufficient ATP. We also noticed

that at all time points up to 6 hours after head bisection, ATP

levels were significantly increased with light-exposure (Figure 3C).

This light-induced rise in ATP is also a likely indicator of

photoreceptor viability. Thus, we have developed an ex vivo

preparation of fly eyes in which the first stage of light-induced

TRPL translocation can be studied on a time-course similar to that

observed from living flies. Unfortunately, photoreceptor degener-

ation was observed at the longer incubation times required to

examine the second stage of TRPL translocation. For subsequent

studies described here, we therefore focus on mechanisms

underlying stage-1 TRPL translocation.

Perturbation of the Actin Cytoskeleton Does Not Affect
Stage-1 TRPL Translocation

Subcellular transport of proteins can occur via active and/or

passive mechanisms. Active transport in Drosophila photoreceptors

would likely involve the major cytoskeletal element, actin, which

composes the microvilli of the rhabdomeres. We therefore set out

to disrupt the actin cytoskeleton and examine whether TRPL

translocation would be affected. Assembly and maintenance of the

actin cytoskeleton is regulated by continuous cycles of actin

polymerization and depolymerization. We used cytochalasin D

Figure 3. Bisected Head Illumination (BHI) Preparation for Examining Stage-1 TRPL Translocation. (A) Dark-raised wild-type fly heads
were removed and bisected under dim red light, then placed in wells of a tissue culture plate containing a buffered bath solution. The plates
containing the eyes were light-exposed for 30 minutes or remained in the dark. Eyes were then fixed, sectioned and immunostained for the indicated
phototransduction proteins. Note that TRPL and Gqa displayed normal light-induced translocation, while Rh1 displayed static rhabdomeric
localization, as expected. (B) Shown are wild-type retinal sections from eyes in the BHI preparation exposed to light of increasing duration, as
indicated. The top panels show TRPL immunostaining and the bottom panels show the corresponding phase-contrast image. Dark-incubated eyes
show rhabdomeric TRPL localization. After 10 minutes of light-exposure, TRPL translocates to the stalk membrane, signifying stage-1 translocation.
With additional light-exposure, TRPL was never observed to translocate to stage-2, even after 18 hours of light-exposure. TRPL signal was dim after
this lengthy 18-hour light-exposure and the photoreceptors appeared slightly degenerated from 10 to 18 hours. Multiple retinal sections were taken
from 12 eyes from 9 eyes (Dark), 10 eyes from 5 flies (1 min), 8 eyes from 5 flies (5 min), 7 eyes from 4 flies (10 min), 12 eyes from 7 flies (4 hours), 5
eyes from 4 flies (10 hours), 5 eyes from 3 flies (18 hours). (C) ATP content of eyes at various times incubated in the BHI preparation was quantitated.
For each time point, 12 eyes were incubated at room temperature for the indicated times in the dark (black bars; DARK), or dark followed by
30 minutes of light-exposure (grey bars; LIGHT). ATP was quantified from 6 eyes homogenized for each condition; means 6 SD from 5 independent
experiments are shown. A significant difference (p,0.05, [*]; students t-test) between dark and light conditions was observed from time points from
30 minutes to 6 hours.
doi:10.1371/journal.pone.0031622.g003
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(CytD), a membrane permeable mycotoxin known to inhibit actin

polymerization [26,27]. Using the BHI preparation, we were able

to treat photoreceptors with CytD. Although phalloidin staining

can be used to monitor the actin cytoskeleton, especially after drug

treatment, severe disruption has been difficult to attain in insect

retinas due to the dense packing of microvilli that make up

rhabdoms and rhabdomeres of photoreceptor cells [28,29]. With

this in mind, we increased CytD and DMSO concentrations as

much as possible while avoiding significant cell degeneration. We

found that one hour CytD treatment at 10 mg/ml in 1% DMSO

resulted in bright phalloidin-labeled actin aggregates directly at the

base of the rhabdomeres, which were not present in control retinas

(Figure 4); similar results were seen with up to 20 mg/ml cytD in

4% DMSO (data not shown). Previous studies in both honeybee

retinas and cultured vertebrate cells have demonstrated that

phalloidin-staining following CytD treatment results in the

appearance of these punctate, actin aggregates or ‘‘asters’’,

composed of densely packed, short actin filaments [28,29]. We

tested for the light-dependent translocation of TRPL with CytD

treatment, and observed normal redistribution of TRPL from the

rhabdomere to the apical plasma membrane (Figure 4). These

results suggest that the actin cytoskeleton is not likely to play a

major role in stage-1 TRPL translocation.

TRPL Channel Localization in the Dark is ATP-Dependent,
and Stage-1 Translocation is ATP-Independent

To determine whether the light-regulated redistribution of

TRPL channels requires energy, we planned to use the BHI

preparation to deplete ATP from photoreceptor cells, and then

examine whether TRPL channels would translocate to stage-1. To

deplete ATP, wild-type eyes were incubated in a glucose-free bath

solution supplemented with 2-D-deoxyglucose (DOG) and potas-

sium cyanide (KCN). DOG, a glucose analogue, prevents

glycolysis [30], while KCN inhibits mitochondrial cytochrome

oxidase, thereby blocking oxidative phosphorylation [31,32].

Together, these inhibitors have been used to deplete ATP in

other cells [33]. First, wild-type eyes were incubated in the dark in

either the control bath solution, or bath solution supplemented

with DOG and KCN, for one hour. Eyes were homogenized and

ATP was quantified using a luciferase-based reporter assay.

Indeed, ATP was significantly depleted from retinas with DOG

and KCN treatment (Figure 5A).

Next, we performed immunolocalization studies for TRPL in

control and ATP-depleted retinas. We found that in ATP depleted

conditions, TRPL channels were already localized throughout the

apical plasma membrane, even without light-exposure (Figure 5B).

In fact, the distribution of TRPL was identical to its localization

after stage-1 translocation induced by light, indicating that ATP

depletion alone had triggered translocation. Other phototransduc-

tion proteins, including the other light-activated channel TRP, Gqa,

and Rh1, displayed normal rhabdomeric localization with ATP

depletion (Figure 5B). These results were not so surprising since

ATP depletion has been shown to activate TRP channels [34,35],

and indeed, constitutively activated TRP channels (TrpP365) have

been shown to induce TRPL translocation [8]. Thus, it is likely that

Ca2+ influx through activated TRP channels drives TRPL channel

translocation. One possibility is that Ca2+ somehow releases an

anchor that retains TRPL channels in the rhabdomere.

Increasing Membrane Sterol Composition Slows the Rate
of TRPL Translocation

Our studies thus far suggested that mobilization of TRPL

channels to stage-1 was independent of shibire-mediated endocy-

tosis, unaffected by perturbation of the actin cytoskeleton, and

independent of ATP. One possibility is that TRPL channels, once

released from the rhabdomeres, translocate to the neighboring

apical/stalk membrane by simple lateral diffusion within the

plasma membrane; adherens junctions would then restrict TRPL

channels to the apical membrane. Live imaging studies used to

examine diffusion directly were not feasible due to the orientation

and geometry of the rhabdomeric and apical membranes involved.

We therefore investigated whether perturbations of membrane

composition would affect the rate of TRPL translocation. In

mammalian cells, membrane fluidity is greatly affected by

cholesterol content. In Drosophila, the major sterol present is

ergosterol [36,37], which serves a similar role to cholesterol in

mammalian cells. Therefore, altering ergosterol content of

membranes is expected to affect membrane fluidity. Drosophila

obtain sterols exclusively from their diet, laboratory-raised flies

obtain their ergosterol from the yeast in their food. Yeast, which

also have ergosterol as the major sterol present in membranes, in

contrast, rely on their own biosynthesis of ergosterol [38,39]. We

previously showed that we could alter ergosterol content of live

flies by limiting the ergosterol in their diet [40]. To manipulate the

ergosterol intake of flies, we fed flies a specially prepared food

made with either wild-type yeast, or a mutant yeast strain with

known defects in ergosterol biosynthesis.

Figure 4. Perturbation of the Actin Cytoskeleton by Cytocha-
lasin-D Does Not Affect Stage-1 TRPL Translocation. Shown are
representative retinal sections from dark-raised wild-type eyes from the
BHI preparation, incubated in a control bath solution containing 1%
DMSO (control) or treated bath solution containing 10 mg/ml of
cytochalasin D in 1% DMSO (+CytD). Eyes were incubated in these
solutions, in the dark for 1 hour and then either remained in the dark
(DARK), or were light-exposed for 10 minutes (LIGHT). Eyes were fixed,
sectioned and double-labeled with TRPL and FITC-conjugated phalloi-
din, which binds F-actin. We observed bright phalloidin-labeled actin-
aggregates (arrowheads) near the base of +CytD rhabdomeres that
were not present in control eyes. TRPL channels were still able to
undergo light-dependent translocation to stage-1 in both conditions.
Multiple retinal sections were taken from 9 eyes from 5 flies (Dark
control), 8 eyes from 5 flies (Light control), 10 eyes from 6 flies (Dark,
+CytD), 6 eyes from 4 flies (Light, +CytD).
doi:10.1371/journal.pone.0031622.g004
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For this study, we prepared a more defined diet with yeast from

either the mot3D mutant yeast strain or a control strain with a similar

genetic background (wt-yeast). mot3 encodes a transcriptional

repressor of the ERG2, ERG6, and ERG9 genes, which encode

enzymes in the biosynthetic pathway of ergosterol, and as expected,

mot3D yeast displays increased ergosterol levels [41]. Wild-type flies

were fed a medium containing either wt-yeast or mot3D mutant

yeast for up to 30 days. We compared the ergosterol content of flies

raised on these two diets (referred to as wt-food and mot3D-food) by

extracting sterols from whole fly homogenates and subjecting them

to ultraviolet spectrophotometric analysis. Ergosterol was identified

based on its absorbance profile from 250 to 300 nm similar to

previous studies [40,42]. Spectral profiles were compared for flies

fed wt-food and mot3D-food for 10, 15, 20, and 30 days. Indeed, flies

fed mot3D-food displayed increased absorbance compared to flies

fed wt-food at all time points, and this difference increased with

longer feeding periods (Figure 6A). By 30 days, flies displayed an

increase in ergosterol content of ,.055 mg per fly.

We then performed immunolocalization studies on flies fed wt-

food and mot3D-food for 25 days to test whether increased

ergosterol content resulted in altered rates of stage-1 TRPL

translocation. In the dark, TRPL was localized to the rhabdomere

in flies fed wt-food or mot3D-food (Figure 6B). A five minute light-

exposure of flies raised on either the wt-food or mot3D-food,

however, failed to induce the robust stage-1 TRPL translocation

seen in flies fed our standard laboratory food (data not shown).

This difference indicated that the time-course of TRPL translo-

cation was slowed when flies were raised on this minimal diet.

When we assayed for rhodopsin-1 (Rh1) levels in these flies by

immunoblot analysis, we found that flies raised on either of the

minimal diets displayed lower levels of Rh1 than flies raised on our

standard fly food (Figure S1). With lower Rh1 levels, it is not

surprising that TRPL translocation was slowed. We, therefore,

used longer light-exposures to compare TRPL translocation in flies

fed wt-food and mot3D-food. We quantified the relative TRPL

channel signal remaining in the rhabdomere after 17 and

30 minutes of light-exposure. We found that TRPL channel

translocation at both 17 and 30 minutes was indeed significantly

slower in flies fed mot3D-food, compared to those fed wt-food

(Figure 6B). Thus, increasing the sterol content of membranes

resulted in slower rates of TRPL translocation, supporting the

model that TRPL channels diffuse through the apical membrane

during stage-1 translocation.

Discussion

In this study, we provide further insight into the molecular

mechanisms underlying TRPL channel translocation, beginning

Figure 5. TRPL Channels Translocate to Stage-1 in the Dark
with ATP-Depletion. (A) Eyes were incubated at room temperature in
the dark for 1 hour in control bath solution (Control), or bath solution

supplemented with 2 mM deoxyglucose and 5 mM KCN to deplete ATP
(-ATP). To determine ATP levels, 6 eyes from each condition were
homogenized, and ATP in the extract was measured using a Luciferase-
based reporter assay. Untreated eyes contained 0.09 mM ATP, while
eyes treated with deoxyglucose and KCN contained 0.01 mM ATP
(Student’s t-test, p,0.05). Means 6 SD shown are from 3 independent
experiments. (B) Shown are representative retinal sections of eyes in
control and ATP-depleted conditions described in (A), immunostained
for TRPL, TRP, Gqa, and Rh1. Note that all experiments were conducted
in the dark. In ATP-depleted eyes, TRPL is mislocalized to the apical
plasma membrane, identical to stage-1 localization, while other
phototransduction proteins remained rhabdomeric, as expected in
the dark. Multiple retinal sections were taken from 12 eyes from 12 flies
(control: TRPL and Rh1 double-labeled), 12 eyes from 12 flies (-ATP:
TRPL and Rh1 double-labeled), 6 eyes from 6 flies (control: TRP and Ga),
6 eyes from 6 flies (-ATP: TRP and Ga).
doi:10.1371/journal.pone.0031622.g005
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with the involvement of protein synthesis and then examining

factors that could contribute to stage-1 translocation. Given that

the second stage of TRPL translocation, as well as its re-

localization to the rhabdomere, has been reported to take hours,

an open question has been whether these events are indeed due to

TRPL protein transport, or degradation and re-synthesis of new

TRPL channels. Although protein turnover rates have been

examined for TRPL in the blowfly Calliphora [7], a direct test of

whether protein synthesis is required for the light-dependent

redistribution of TRPL channels has not previously been

performed. We found that we could feed flies CHX and reliably

block new protein synthesis. Our results show that both stages of

TRPL channel translocation out of the rhabdomere, even the

second stage which takes over 10 hours, do not require protein

synthesis, supporting the idea that rhabdomeric TRPL channels

are indeed transported out of the rhabdomeres with light-

exposure.

We also tested the return of TRPL localization to the

rhabdomere with dark-incubation following stage-1 and stage-2

translocation, which require six and ten hours, respectively [8,9].

We were surprised to find that protein synthesis was required for

return from stage-1, but not stage-2. This suggests that the route of

re-localization from stage-2 is also likely to be by actual transport

of TRPL channels. Furthermore, this pathway from the

basolateral membrane to the rhabdomere is distinct from, and

does not involve, the path of re-localizing TRPL channels from

stage-1. Re-localization from the apical/stalk membrane neigh-

boring the rhabdomere involves protein synthesis. This could

imply degradation of these TRPL channels in stage-1 and

targeting of newly synthesized TRPL channels to the rhabdomere.

Alternatively, transport of TRPL channels from stage-1 to the

rhabdomere may require the synthesis of some other protein

needed for their mobilization.

In order to use biochemical agents that might be useful in

determining mechanisms underlying TRPL translocation, we

characterized an ex vivo preparation, similar to one previously

described [9], amenable to the application of chemical inhibitors.

This BHI preparation allows a window of about six hours for

Figure 6. Increased Dietary Ergosterol Slowed the Rate of TRPL Translocation. (A) Wild-type flies were fed a defined medium containing
either wild-type or mot3D mutant yeast for 10, 15, 20 or 30 days in the dark. Sterols were extracted from whole fly membranes and then scanned
spectrophotometrically. Left, shown are representative spectral profiles (250–300 nm) of sterols from flies raised for 30 days on food made with wild-
type yeast (wt-fed) or mot3D mutant yeast (mot3D-fed). This four-peaked profile is characteristic of ergosterol, the major sterol present in Drosophila.
mot3D-fed flies consistently displayed an increased absorption spectrum, compared to wt-fed flies. Right, quantification of ergosterol increase in flies
fed mot3D-food, relative to wt-food, for 10, 15, 20, and 30 days. (B) Left, shown are representative retinal sections immunostained for TRPL from wt-
fed or mot3D-fed flies. Dark-raised flies showed rhabdomeric localization of TRPL. With 17 minutes of light-exposure, wt-fed flies displayed a more
evident stage-1 TRPL translocation, while flies fed mot3D-based food displayed a more rhabdomeric-like TRPL localization. After 30 minutes of light-
exposure, both wt-fed and mot3D-fed flies appeared to display stage-1 translocation. Right, Box-and-Whisker-Plots showing the relative rhabdomeric
TRPL signal between wt-fed and mot3D-fed flies when exposed to 17 and 30 min of light. Multiple tissue sections were taken from multiple eyes/flies
(across different experiments), as follows. For wild-type, 5 eyes from 4 flies (Dark), 10 eyes from 5 flies (LEX, 17 min), 2 eyes from 2 flies (LEX, 30 min);
for mot3D: 5 eyes from 4 flies (dark), 7 eyes from 5 flies (LEX, 17 min), 3 eyes from 3 flies (LEX, 30 min). ** t-test analysis indicates a significant
difference (P,0.01).
doi:10.1371/journal.pone.0031622.g006

Mechanisms of TRPL Channel Translocation

PLoS ONE | www.plosone.org 7 February 2012 | Volume 7 | Issue 2 | e31622



retina viability, determined by examining photoreceptor morphol-

ogy for degeneration, measuring ATP levels in retinas, and noting

a light-induced rise in ATP. In this window of viability, we were

able to examine mechanisms underlying stage-1 TRPL transloca-

tion. To gain insight into whether active or passive transport was

likely to be involved, we used inhibitors that would affect ATP

levels and the actin cytoskeleton.

When we depleted ATP from retinas, our aim was to see if the

loss of ATP affected the light-induced translocation of TRPL

channels. Depletion of ATP alone, however, consistently resulted

in TRPL channels in the apical/stalk membrane neighboring the

rhabdomere, indicating that ATP is required for maintaining

channels in the rhabdomere. ATP depletion has previously been

shown to activate TRP and TRPL channels [34,35], and in a

further study, these authors suggest that an ATP-dependent

process is required to keep the channels closed in the dark [43]. In

these studies, the authors propose the following possibilities: 1)

ATP binds to destabilize the open state of the channel, similar to

ATP-sensitive potassium (KATP) channels [44], 2) constitutive

phosphorylation by a protein kinase leads to closure of channels in

the dark, 3) an ATP-dependent process is needed to maintain a

low concentration of cellular ions, such as Ca2+, and 4) ATP

depletion results in failure of DAG kinase and/or PI/PIP kinases,

leading to accumulation of DAG and/or PIP2 depletion and

subsequent channel activation [34,43]. Since constitutive activa-

tion of TRP channels induces TRPL translocation [8], it is likely

that activation of TRP/TRPL channels by ATP depletion

similarly drives translocation in the dark.

Interestingly, after ATP depletion, TRPL channels are found at

the base of the rhabdomeres, as well as throughout the apical/stalk

membrane neighboring the rhabdomeres, giving a ‘‘ring’’-like

pattern identical to the pattern seen after light-induced stage-1

translocation. These results suggest that after release from the

rhabomeres, TRPL channels translocate to the apical stalk

membrane by a passive mechanism, such as lateral diffusion

through the membrane. Release of TRPL from the rhabdomeres

may involve a Ca2+-dependent event triggered with Ca2+ influx

through TRP channels; anchoring may depend on the N- or C-

terminus of TRPL, which have recently been shown to be required

for translocation [45]. Lateral diffusion during stage-1 transloca-

tion is consistent with the recent finding that stage-1 translocation

is independent of Rab5 and RabX4, which mediate vesicular

transport of TRPL during stage-2 translocation [46].

Another test for passive versus active transport was the

involvement of the cytoskeleton. Actin is the likely component

given that the rhabdomeres are made up of microvilli. Disruption

of the actin cytoskeleton, however, proved difficult because of the

extremely high concentration of actin present. As in previous

studies with other rhabdom-based photoreceptors, we found that

cytD exposure could be seen to affect the cytoskeleton by the

presence of actin asters formed. In these conditions, no change

was seen in TRPL translocation. Together with our ATP-

depeletion studies, we hypothesized that TRPL channels were

translocating by lateral diffusion through the apical membrane.

Testing this directly, however, is not easy. Other membrane-

protein diffusion studies have measured rates of mobilization at

different temperatures, or used GFP-tagged proteins and applied

fluorescence recovery after photobleaching (FRAP) techniques.

Temperature manipulation, however, would impact not only

diffusion of proteins in the membrane, but also enzyme kinetics.

Since stage-1 TRPL channel translocation has been shown to

require activation of nearly the entire phototransduction cascade

[8], multiple enzyme activities would be affected, and results

would be difficult to interpret. FRAP-like studies have been

impeded by the cellular anatomy, and membrane orientation

within ommatidia.

Thus, with a less ideal approach, we aimed to alter membrane

composition by increasing the sterol content of membranes, then

test for effects on rates of TRPL translocation. We increased sterol

content of fly membranes by feeding flies food made from wild-

type versus a mutant yeast strain that has increased ergosterol

levels. As a result, we found that rates of stage-1 TRPL

translocation were indeed slowed. While these results support a

model in which TRPL channels, once released from the

rhabdomeres, translocate by lateral diffusion throughout the

apical membrane, and remain restricted by adherens junctions

separating apical and basolateral membranes, this remains to be

directly tested with a quantitative evaluation of membrane fluidity

and direct measurement of TRPL channel mobility in the

membrane. Identification of a light-dependent anchor for TRPL

channels in the rhabdomere will also be critical for validating and

understanding the proposed diffusion-based translocation.

Materials and Methods

Fly Stocks
All fly stocks were raised in the dark at 25uC and were fed

standard fly food consisting of cornmeal, yeast, molasses and agar,

unless otherwise noted. cn bw and w1118 lines were used as wild-

type. Transgenic inaD1 null line expressing inaD under the control

of the heat-shock promoter were generated previously, described

in [47]. The shibirets1 mutant line was obtained from the

Bloomington Drosophila Stock Center.

Light-Exposure of Flies
For light-exposure, dark-raised flies less than one week old were

placed in vials containing standard fly food, unless otherwise

noted, and covered with clear plastic wrap. Holes were punctured

in plastic wrap using forceps to provide adequate ventilation. Flies

were placed 15 cm from a white light source (Lambda LS 175W

Xenon-arc lamp with 400–700 nm bandpass filter, Sutter

Instruments, Novato, CA, or equivalent) for given times. Light

intensity was measured by an EXTECH 403125 digital light-

meter. All experiments were conducted at room temperature.

Light intensities used for inducing stage-1 and stage-2 TRPL

translocation were ,2297 and ,244 lux, respectively, unless

otherwise noted. Light intensities are within a physiological range;

as a reference, room light is ,500–1000 lux, a sunny day in the

shade is ,4500 lux, and a sunny day in direct sun is

,546103 lux.

Cryosectioning and Immunostaining Retinal Sections
After illumination, fly heads were skewered onto stainless steel

minutien pins (Fine Science Tools, Foster City, CA) and fixed in

3% paraformaldehyde and 5 mM ethylenediaminetetraacetic acid

(EDTA) in phosphate buffered saline (PBS), washed with PBS, and

infiltrated with 2.3 M sucrose in PBS overnight at 4uC. Dark-

raised flies were fixed under a dim red light before sectioning.

Heads were bisected, eyes oriented to face upward on an

ultramicrotomy pin (Ted Pella, Redding, CA), and frozen in

liquid nitrogen. 1–1.5 mm thick sections were cut from retinas

using a Leica Ultracut with EM FCS cryo unit at 281uC (Leica

Microscopy and Scientific Instruments Group, Heerbrugg,

Switzerland). Sections were blocked, then incubated with primary

antibody overnight at 4uC. Slides were washed with 0.1%

sapponin in PBS. An FITC or rhodamine-conjugated secondary

antibody (Jackson ImmunoResearch, West Grove, PA) diluted

1:200 in blocking solution was used for 1 hour at room
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temperature in the dark. Slides were washed again and mounted

with 90% glycerol, 10% 1 M Tris (pH 8.5) and 0.1% p-

phenylenediamine (Sigma Aldrich, St. Louis, MO). Images were

taken with an Olympus MagnaFire 2.0 camera S99806, and

processed in Adobe Photoshop for illustration.

Quantification of TRPL Signal in Retinal Sections
Rhabdomeric TRPL signal was measured and quantitated

from images of 1 mm thick retinal sections immunostained for

TRPL. Using ImageJ, TRPL fluorescent signal within each

rhabdomere was quantified by measuring the total signal within a

circle of fixed diameter (approximate area a single rhabdomere)

placed on each rhabdomere using a corresponding phase-

contrast image. Five ommatidia were selected from each tissue

section, and signal from three rhabdomeres in each ommatidium

were measured. Three similar measurements were taken outside

of the ommatidia to calculate an average background value for

each section; this background value was subtracted from every

TRPL signal measurement. For statistical purposes, the average

TRPL signal from any given ommatidium was considered an

independent measurement. TRPL signal from light-exposed

samples were normalized to the TRPL signal intensity from

dark-raised flies in the same experiment. A three-standard

deviation limit was used to remove outliers. Data sets from

17 min and 30 min light-exposed flies passed a normal dis-

tribution test, enabling us to apply the student’s t-test to identify

statistical differences.

Cycloheximide Feeding Protocol
Five day old wild-type flies were starved, given only water on a

moistened cotton ball for 24 hours. The control group was

subsequently fed 3% sucrose while the experimental group was fed

35 mM cycloheximide (CHX) (synonym: actidione, Sigma Al-

drich, St. Louis, MO) in 3% sucrose. Both solutions were dyed

with green food coloring and mixed in equal amounts with instant

fly food (Carolina, Burlington, NC). Flies were fed +/2 CHX for

at least 30 minutes in either dark or light conditions, then

subsequently dark incubated or light-exposed. Flies remained on

the +/2 CHX food throughout the duration of the dark

incubation or light exposure. Only dark-green flies were selected

for analysis.

Bisected Head Illumination (BHI) Preparation
Fly heads were removed and bisected under dim red lighting.

Eyes were incubated in a 24-well plate containing 650–750 ml per

well of a bath solution (in mM: 120 NaCl, 5 KCl, 10 TES Buffer

(N-Tris (hydroxymethyl)-methyl-2-amino-ethanesulphonic acid,

pH 7.15), 4 MgSO4, 1.5 CaCl2, supplemented with 5 sucrose,

and 5 trehalose). The eyes floated in mixed orientations in the

bath. A maximum of 10 eyes per well were incubated in the bath

solution. For light exposure, the 24-well plate was placed on a

nutating mixer and rocked 28 cm from the white light source

(Lambda LS 175W Xenon-arc lamp, 400–700 nm bandpass filter,

Sutter Instruments, Novato, CA, or equivalent) for the indicated

times. Light intensity was measured by an EXTECH 403125

digital light-meter. Plates containing dark-raised samples were

wrapped in red plastic wrap and aluminum foil and simultaneously

rocked on the nutator. After illumination, the bath solution was

gently removed from the well with a pipette. The eyes remained in

the same well and were fixed with 3% paraformaldehyde and

5 mM EDTA in PBS for 30–60 minutes, rinsed with PBS,

infiltrated with 2.3 M sucrose in PBS overnight at 4uC, then

cryosectioned and immunostained as described above.

ATP Depletion and Quantification
Dark-raised wild-type eyes were incubated in bath solution

without sucrose and trehalose, supplemented with 10 mM

potassium cyanide (KCN) and 5 mM 2-deoxy-D-glucose for

60 minutes, in the dark at room temperature and placed on the

nutating mixer. Eyes were fixed, rinsed and infiltrated with

sucrose. To measure the ATP concentration in the eyes, 6 eyes

were homogenized in 50 ml of deionized water and the ATP

content of the homogenized sample was determined using an ATP

Determination Kit (Molecular Probes, Eugene, OR) according to

the provided protocol.

Mutant Yeast Fly Food
For specialized yeast fly foods, the mot3D (FY2071 [41]) mutant

strain and an appropriate wild-type background strain FY86

(similar to FY2066 [41]) were used. YPD medium (2% Glucose,

1% Yeast extract, 2% Peptone) was autoclaved for 15 minutes to

culture the mutant strains. Single mutant colonies for all strains

were selected from plates and added to 50 ml of YPD medium and

cultured on an orbital shake at 200 rpm, overnight at 30uC.

Cultures were centrifuged at 10006g for 10 minutes. Yeast pellets

were washed once with 100 ml of water, and centrifuged again at

10006g for 10 minutes. To cook mutant yeast fly food, 1 g agar,

5 g glucose, and 50 ml water were heated together to 80uC. Six

grams of mutant yeast (pellets) was subsequently added and mixed

until the mixture was homogeneous. After the food cooled to

70uC, 500 ml of methyl-4-hydroxybenzoate (stock solution of

106.6 g/1 L ethanol; Sigma Aldrich, St. Louis, MO) was added to

the food to prevent mold growth.

Sterol Extraction
For each sample, 15–50 flies were homogenized in 160 ml of

water. The homogenate was centrifuged at 6000 rpm for

4 minutes at room temperature in a microcentrifuge to remove

chitin and the supernatant was collected. The pellet was

resuspended in 80 ml of water and spun again. The supernatants

were collected; 20 ml were used to perform a Bradford Protein

Assay to quantitate total protein concentration. Volumes of

supernatant samples were normalized for protein concentration

and transferred to glass tubes. 3 ml of 25% alcoholic potassium

hydroxide solution was added to each sample, followed by

1 minute of vortexing. Sample was incubated at 80uC for 1 hour,

and allowed to cool to room temperature. Sterols were extracted

by adding 1 ml of water and 3 ml of n-heptane, followed by

vigorous mixing/vortexing. The solution was allowed 5 minutes to

settle after which a clear interface between layers was visible.

2.7 mls of the upper n-heptane layer was carefully removed and

transferred to a new glass tube. Samples were dried under a steady

stream of nitrogen gas to slow down the quick oxidation of

ergosterol while warmed at 48uC (,20–30 minutes). Dried

samples were resuspended in 120 ml of 100% ice-cold ethanol.

100 ml of each sample was immediately analyzed for absorbance

between 250 and 300 nm. Expected ergosterol peaks are at

260 nm, 270 nm, 282 nm, and 294 nm. The extinction coefficient

for ergosterol in alcohol at l282 is 10,500 M21 cm21, which was

used for quantifying ergosterol differences between samples.

Supporting Information

Figure S1 Rhodopsin-1 Levels are Lower in Flies Fed
Defined Diet. Representative immunoblot of fly head homog-

enates from wild-type flies fed either a defined diet containing

wild-type yeast (wt-fed) or mot3D mutant yeast (mot3D-fed), or

standard laboratory fly food (std-fed). Immunoblots were probed
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using antibodies against rhodopsin-1 (Rh1), or syntaxin (syn) as a

loading control (3 heads/lane).
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