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Gene expression profiling studies based on DNA microarrays have demonstrated their ability to define the interaction pathways
between neoplastic and nonmalignant stromal cells in cancer tissues. During the past ten years, a number of approaches including
microdissection have tried to resolve the variability in DNA microarray measurements stemming from cancer tissue sample
heterogeneity. Another approach, designated as virtual or in silico microdissection, avoids the laborious and time-consuming step
of anatomic microdissection. It consists of confronting the gene expression profiles of complex tissue samples to those of cell lines
representative of different cell lineages, different differentiation stages, or different signaling pathways. This strategy has been used
in recent studies aiming to analyze microenvironment alterations using gene expression profiling of nonmicrodissected classical
Hodgkin lymphoma tissues in order to generate new prognostic factors. These recent contributions are detailed and discussed in
the present paper.

1. Introduction

Classical Hodgkin lymphoma (cHL) is a disease of rel-
atively good prognosis with a current overall cure rate
of about 80%. However, few significant progresses have
been done during the last decades. Therapeutic decisions
remain largely based upon Ann Arbor staging (limited versus
advanced disease) and the International Prognostic Index,
IPI [1], which applies only to advanced stages. About 35%
of patients are refractory to initial treatment or relapse
after achieving complete remission. Furthermore, many
patients are overtreated with both radio- and chemotherapy
because of the lack of markers that could reliably pre-
dict long-term survival. In this context, the identification
of biologic markers that could help to more accurately
select cHL patients at high risk of treatment failure and
patients with low-risk disease remains a crucial challenge
[2].

Classical HL lesions are characterized by the presence of
a minority of malignant cells (usually <5%), designated as
Reed-Sternberg (RS) cells, which reside in a complex and
abundant mixture of reactive cells composed of T- and B-
cells, macrophages, plasma cells, and granulocytes [3]. The
frequency and distribution of these cell components differ
considerably between patients and between histological sub-
types of disease. Their different proportions likely explain the
lack of clinical applications of molecular analyses reported
during many years. However, advances in our understanding
of the cHL pathophysiology are emerging from the analysis
of this microenvironment. As suggested by the correlation
between the clinical course of cHL patients and the plasma
levels of particular cytokines [4], the severity of the disease
may result from cell signaling networks operating within
neoplastic tissues. Reactive cells are thought to favor the
proliferation of RS cells through cytokines and chemokines
acting as paracrine factors [5]. An aberrant immune response
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in the vicinity of RS cells is supposed to account for
the maintenance of an immunosuppressive environment.
It has been initially proposed that a local Th2 reaction
predominates, whereas Th1 cells, CD8 cytotoxic T-cells and
NK cells are lacking [6]. More recently, it was suggested
that T-reg cells and PD1+ T-cells also interact with RS cells,
which produce the T-reg attractant galectin and the PD-1
ligand, PDL-1 [7, 8]. On the other hand, the observation
of numerous CXCR3+ lymphocytes in some cHL tumors
has raised the possibility of an occasional Th1-predominant
immune response [9].

The functional role of the microenvironment in the
pathophysiology of cHL remains a matter of debate, spe-
cially regarding the role of Th2 and T-reg cells, which
bear a paradoxically favorable prognostic value [10–12].
An accumulating number of immunohistochemistry (IHC)
studies attempted to evaluate the composition and prog-
nostic significance of tumor-infiltrating lymphocytes (TILs)
subpopulations. More recently, gene expression profiling
studies based on DNA microarrays have demonstrated their
ability to more accurately define the interaction pathways
of RS cells with nonmalignant reactive and stromal cells in
lymphoma tissues. This is the scope of this paper.

2. DNA Microarray-Based Gene Expression
Profiling and Microdissection

So far, DNA microarrays represent the most developed and
used high-throughput molecular technique. They allow the
simultaneous analysis of mRNA expression level of tens-
of-thousands of genes in a single step, thus providing an
actual molecular portrait of biological sample [13]. Potential
applications are multiple, from a better understanding of
oncogenesis to the improvement of diagnostic and prognos-
tic classifications and the development of new anticancer
drugs. Breast cancer has been so far one of the most
extensively analyzed solid tumors with very promising results
[14, 15].

During the past ten years, a number of approaches have
tried to resolve the variability in DNA microarray measure-
ments stemming from cancer tissue sample heterogeneity.
This heterogeneity due to the surrounding reactive cell types
can lead to the identification of differentially expressed
genes that may be unrelated to any biological question
regarding neoplastic cells. Anatomic microdissection is one
possibility, which allows the procurement of pure cell
subpopulations from frozen, fresh, or fixed tissues. This can
be achieved for example by laser microdissection [16, 17]
or by mechanical dispersion followed by flow cytometry.
This later was successfully applied in colorectal cancers for
characterization of the tumor-infiltrating immune cells by
gene expression profiling [18]. Another approach designated
as virtual or in silico microdissection [19] avoids the labori-
ous and time-consuming step of anatomic microdissection.
It consists in confronting the gene expression profiles of
complex tissue samples to those of cell lines representative
of different cell lineages, different differentiation stages,
or different signaling pathways. This strategy was initially

applied to derivate biologically relevant subtypes of tumors
with different survival in breast cancer [20] and in B-
cell non-Hodgkin lymphomas [21–24]. To date, numerous
gene expression signatures of immune cells are available in
databases like Signature DB [25, 26], and statistical methods,
such as GSEA (Gene Set Enrichment Analysis) [27], can
define whether any of them is differentially expressed in a
subgroup of samples. Classical HL, with abundant stromal
component, appears specially adapted to this approach. For
instance, we have identified a “Reed Sternberg cell” cluster
of 97 probe sets characterized by overexpression of genes
like TNFRSF8 (CD30), CCL17 (TARC), CCL22 (MDC),
MAGEA4, and TNFRSF11A (RANK) [28]. As expected, this
cluster was strongly expressed in HL cell lines but was not
expressed in non-Hodgkin’s cell lines and tissues. This cluster
and other clusters associated with biological processes and
other cell types are shown in Figure 1. Figure 1(a) shows
the Hierarchical clustering of 63 cHL tissue samples based
on 6.229 probe sets with significant variation in mRNA
expression levels across these samples. Each row represents
a gene and each column represents a sample. The two
separated color matrixes on the right side correspond to
the expression profiles of control tissue samples (5 benign
lymphadenitis, 5 H/TCRBCL samples, and 5 cell lines from
left to right, resp.). Since these control samples are not
considered in the clustering of cHL samples, genes are in the
same order than in the major left matrix. The expression
level of each gene in a single sample is relative to its
median abundance across the 63 cHL tissue samples and
is depicted according to a color scale (log2 scale) shown
at the bottom. Red and green indicate expression levels,
respectively, above and below the median. The magnitude
of deviation from the median is represented by the color
saturation. The dendrogram of cHL tissue samples (above
matrix) represent overall similarities in gene expression
profiles, whereas colored bars on the right side indicate
the locations of 11 gene clusters of interest. Figure 1(b) is
a Zoomed view of panel (a), highlighting the dendrogram
and gene clusters. In the dendrogram (top) of cHL tissue
samples, two large groups are evidenced by clustering and
delimited by an orange vertical line. The control samples are
color coded: green for lymphadenitis, orange for H/TCRBCL
samples. The 5 cell lines are Huvec (endothelial cells),
HFFB (fibroblastic cells), L-428, KM-H2, and L-1236 (Reed-
Sternberg cells) (from left to right, resp.). Expanded view
of selected gene clusters corresponding to relevant cell
types/function are named from top to bottom: “Reed Stern-
berg cells” (dark blue bar), “interferon pathway and antiviral
response (1)” (orange bar), “apoptosis” (two clusters; light
grey and black bars), “cell cycle” (dark grey bar), “B-
cells” (pink bar), “interferon pathway and antiviral response
(2)” (red bar), “plasma cells” (green bar), “extra cellular
matrix” (light blue bar), “histiocytes/T-cells/innate immune
response” (brown bar). The “cell metabolism” cluster (yellow
bar in Figure 1(a)) is not zoomed in Figure 1(b). The
most relevant genes included in these clusters are indicated
on the right by their EntrezGene symbol, adapted from
[28].
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Figure 1: Global gene expression profiling of cHL samples and control samples.
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Table 1: Gene expression profiling studies of nonmicrodissected cHL and survival.

Reference cHL tumor
samples

Microarray
platform N◦

of genes
Control samples

Gene signature
associated with

Validation set Multivariate analysis

[29]
21 samples limited
and advanced
stages

Home-made
cDNA ∼ 1000
genes

Cell lines
(RS and non RS)
tissues (adenitis,
lymphomas)

Sustained complete
remission

No No

[30] 29 samples
advanced stages

Home-made
(CNIO)
cDNA ∼ 9.348
genes

Cell lines
(RS and non RS)
tissues (adenitis)

Sustained complete
remission

250 samples
IHC TMA

No

[28]
63 samples limited
and advanced
stages

Affymetrix
Oligonucleotides ∼
16.000 genes

Cell lines
(RS and non RS)
tissues (adenitis,
lymphomas)

Sustained complete
remission

146 samples
IHC TMA

EFS OS

[31]
130 samples
limited and
advanced stages

Affymetrix
Oligonucleotides ∼
25.000 genes

No
Absence of
progression or
relapse

166 samples
IHC TMA

PFS DSS

cHL: classical Hodgkin lymphoma; RS: Reed Sternberg; IHC: immunohistochemistry; TMA: tissue microarray; EFS: event-free survival; OS: overall survival;
PFS: progression-free survival; DSS: disease-specific survival.

A few recent studies, described in the following section,
have demonstrated the feasibility of analyzing microen-
vironment alterations using gene expression profiling of
nonmicrodissected cHL tissues in order to generate new
prognostic factors.

3. Gene Expression Profiling of
Nonmicrodissected cHL Tissues

To date, only four studies of gene expression profiling of
cHL tissue samples have been published [28–31]. They have
been reported by three teams, including ours. All used frozen
nonmicrodissected pretreatment samples obtained from
patients with cHL during diagnostic lymph-node biopsy. The
number of profiled samples was relatively small, but the last
three studies combined tissue microarray (TMA) analysis
to validate the prognostic value of microenvironment alter-
ations in large and independent series [28, 30, 31]. Different
control samples were included through these studies: cell
lines representing cell types found in the microenvironment
(normal B- and T-cells, normal fibroblastic and endothelial
cells), and RS cells, as well as tissue samples (adenitis, B- and
T-cell lymphomas). The main characteristics of these studies
are described in Table 1.

The first study was reported by our group in 2002 [29].
For the first time, it showed the feasibility of profiling cHL
tissue samples with DNA microarrays, the transcriptional
heterogeneity of samples, and already, it suggested the
existence of correlations between gene expression profiles,
notably genes of the microenvironment, and prognosis [29].
However, the number of genes was relatively small, the
number of cases (n = 21) was too limited to draw a final
conclusion, and no validation set was available.

The second study was published by the Spanish Hodgkin
Lymphoma Study Group in 2006 [30]. Authors profiled 29

advanced stage cHL (14 patients with favorable outcome
and 15 with unfavorable outcome), and found a 145-
gene signature linked to poor response to treatment. These
genes were grouped into four clusters representing genes
expressed by either the tumor cells (regulation of mitosis
and cell growth/apoptosis) or the tumor microenvironment.
Importantly, the link with survival was validated for 8 genes
by IHC in an independent validation set of 235 cHL samples
spotted onto TMA. Finally, the authors validated at the
functional level alterations in the regulation of the mitotic
checkpoint in RS cells. Relative limitations of this study
included the small number of cHL profiled using DNA
microarrays, the selection of advanced stages only, and the
number of genes (n = 9, 348).

Recently, we profiled cHL tissue samples collected from
63 patients with either localized or advanced cHL using
whole-genome U133 A 2.0 Affymetrix microarrays [28].
Whole-genome clustering confirmed the molecular het-
erogeneity of cHL samples. By comparing the expression
profiles of 31 cases with favorable outcome and 21 with
unfavorable outcome, we identified a 450-gene list associated
with survival. Genes related to B cells and apoptosis were
related to good prognosis, whereas genes associated with
stroma remodeling were related to poor prognosis. An
independent set of 146 cHL samples was analyzed using IHC.
We also reported a gene signature associated with the EBV
status of samples (18 EBV+ versus 35 EBV−), which was
characteristic of Th1 antiviral immune response. Finally, a
614-gene signature was generated by comparison of cHL
samples (n = 63) and H/TCRBCL samples (n = 5). For
both signatures, validation was obtained by IHC for some
physiologically relevant genes.

The most recent study, published by the British
Columbian Cancer Agency on March 2011, is the greatest
one in terms of number of samples and genes tested [31].
Expression profiles of cHL samples from 130 patients of
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all stages were obtained with the use of whole-genome U133
Plus 2.0 Affymetrix microarrays. The authors defined a gene
signature of tumor-associated macrophages associated with
primary treatment outcome. They validated the correlation
in an independent cohort of 166 patients by IHC and TMA
with a single marker of normal macrophages, CD68.

Although these four studies reported prognostic signa-
tures related to microenvironment cells, it is noteworthy that
there is only limited overlap between the genes of the signa-
tures, as observed for example in breast cancer [14]. Method-
ological and more conceptual reasons explain this discrep-
ancy. There are many methodological differences between
the four studies, related to patients and technologies used.
In our studies and the American study, patients presented
either localized or advanced disease, whereas all patients
enrolled in the Spanish study presented with advanced
disease [30]. Treatments and followup are also different.
Different platforms of DNA microarrays were used, with
different types of probes (cDNA clones, or oligonucleotides),
with different RNA labeling methods (radioactivity, or
fluorescence), and with different gene sets. Our last study and
the American one [28, 31] used Affymetrix oligonucleotide
microarrays containing, respectively, ∼16,000 and ∼25,000
genes, whereas the Spanish study used spotted microarrays
(OncoChip.v2 cDNA microarrays produced at the CNIO)
containing 11,675 human clones representing 9,348 genes
selected on the basis of their proven or putative involvement
in cancer [30]. Methods of data analysis are also different.
More conceptually, cHL is a heterogeneous disease, and lists
of discriminator genes are unstable, notably when they are
generated from small sets of tumors and/or when the cor-
relations between gene expression and outcome are limited.
Another explanation is that discriminator genes, even if
different among studies, are involved in the same pathways
or cell processes. A classical example is breast cancer, for
which different signatures carry similar information with
regards to prognostication [32] because in fact driven by
a common force, the cell proliferation [33]. The four cHL
studies shared some signatures associated to similar cell
types. Importantly, an independent validation of clinico-
genomic correlations was present in the last three studies
[28, 30, 31]. Authors reported the prognostic value of single
promising markers by IHC analysis, which could be more
easily used in clinical routine than DNA microarrays. Finally,
multivariate analysis, which was performed only in the
two last studies [28, 31], demonstrated the independent
prognostic value of markers (BCL11A and CD68, resp.),
which outperformed the conventional prognostic features.

4. Influence of B Cells

An unexpected finding stressed out by the 2 Affymetrix
studies is the favorable role of reactive B cells within cHL
tissues. We observed that many probe sets of a “B-cell”
cluster, such as those encoding for BCL11A, BANK1, STAP1
(BRDG1), BLNK, FCER2, CD24, and CCL21, were associ-
ated with favorable outcome [28]. This led us to assess and
confirm the prognostic influence of B cells using IHC with

CD20 and BCL11A antibodies in a series of 146 patients. In
multivariate analysis adjusted for classical prognostic factors,
CD20 and BCL11A remained as informative parameters
for overall survival (OS). Multivariate analysis of event-free
survival (EFS) led to a final model including only BCL11A
and leucocyte count [28]. BCL11A is a transcription factor
expressed in normal pDCs and B cells, and in primary
mediastinal B-cell lymphoma cells [34]. When we analyzed
separately the pDC and B-cell populations using antibodies
against BDCA2 and CD20, the amount of CD20+ reactive
cells was correlated with better outcome, although less
significantly than BCL11A, whereas the number of BDCA2+
pDCs showed no significance.

Our findings were validated by the American study,
which found that an increased number of CD20+ small B
cells was associated with prolonged progression-free survival
(PFS) and disease-specific survival (DSS) in univariate
analysis [31]. However, the number of CD20+ small B cells
strongly correlated with advanced stage disease and did not
maintain any prognostic value in multivariate analysis.

Of note, the role of B cells was much less evident in the
2 other studies, although both noticed that the signature
overexpressed by the favorable outcome group included
molecules expressed by specific populations of B cells like
IRTA2, VDR [30], and CD22 [29].

The association of high intratumoral B-cell counts with
better outcome is in accordance with the excellent prognosis
of the particular variant of cHL referred to as “nodular,
lymphocyte-rich cHL” (NLRHL), which contains important
B-cell amounts [35]. Since the histological type of our B-cell
rich cHL cases was not NLRHL but either MC or NS, these
cases could correspond to intermediate points on a putative
spectrum spanning from NLRHL to NS or MC, depending
on the B-cell content of lesions.

Of note, the correlation between the number of CD20+
B cells and survival in cHL patients appears paradoxical in
the light of clinical studies showing encouraging results with
the use of rituximab or anti-CD20 radio immunoconjugates
[36, 37]. This paradox may be only apparent since the
mechanism of rituximab activity is probably complex and
may be related to the existence of circulating clonotypic B-
cells potentially responsible for the generation of RS cells
[38].

5. Influence of Macrophages

The first hint of the macrophage influence was given
by the Spanish study [30]. Authors reported a signa-
ture overexpressed in the unfavorable outcome group of
patients, which mainly included genes expressed by specific
subpopulations of macrophages like ALDH1A1, LYZ, and
STAT1. However, the clinical value of tumor-associated
macrophages was not tested by IHC. Recently, Steidl et al.
[31] confirmed that the overexpression of a macrophage
signature was associated with the failure of primary treat-
ment. Moreover, they validated this data using IHC. They
found that an increased number of CD68+ cells in the
diagnostic sample was associated with a poorer outcome in
an independent set of 166 samples. An increased number of
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CD68+ macrophages correlated with a shortened PFS and
with an increased likelihood of relapse after secondary treat-
ment, notably autologous hematopoietic stem-cell trans-
plantation, resulting in shortened DSS. In multivariate
analysis, this adverse prognostic factor outperformed the
IPS for DSS, but nor for PFS. The absence of an elevated
number of CD68+ cells in patients with limited-stage disease
defined a subgroup of patients with a long-term disease-
specific survival of 100% with the use of current treatment
strategies [31].

These results are in accordance with observations sug-
gesting that a high number of macrophages correlates with
inferior survival in follicular B-NHLs and in some epithelial
cancers [39, 40]. To the extent that they have been inves-
tigated, tumor-associated macrophages have a phenotype
and function similar to M2 macrophages, including poor
cytotoxicity for tumor cells and promotion of tumor-cell
proliferation induced by Th2 cytokines such as interleukin
4 (IL-4), IL-13, and IL-10 [41].

6. Influence of Inhibitory T-Cell Subsets

In our last gene profiling study of cHL, H/TCRBCL samples
were included as controls because they represent the only
lymphoma type that harbors an equivalent amount of
reactive T cells and macrophages as found in HL [3].
Thus, the differences evidenced by gene expression profiling
were expected to be mainly due to stromal components,
rather than to the nature of neoplastic cells. This led to
the identification of stromal markers that could differen-
tiate cHL and H/TCRBCL samples. Genes overexpressed
in H/TCRBCL belonged to functional categories including
genes related to macrophages (STAT1, LAMP1) and Th1
response (IFNG, CCR5) [28]. One of the most significantly
overrepresented genes in H/TCRBCL was PDCD1/PD-1,
which codes for a lymphocyte inhibitory receptor expressed
in specific lymphoma subtypes [42]. PD-1 protein expression
was validated using IHC in 130 cHL and 13 H/TCRBCL. We
showed that the majority of reactive T cells in H/TCRBCL
expressed the PD-1 inhibitory receptor, whereas such PD-
1+ T-cells were sparser in cHL. This implies that PD1
immunodetection on paraffin sections can be helpful for
the differential diagnosis of H/TCRBCL versus HL, which
may be sometimes difficult [43]. Sustained PD1 expression
in H/TCRBCL may be induced by IFNG, whose transcripts
were also more abundant in H/TCRBCL than in cHL tissues
[28].

7. Influence of Other Stromal Components

In our pioneering study [29], we first reported that most
genes overexpressed in the unfavorable cHL subset were
also highly expressed in the HFF fibroblastic cell line,
thereby suggesting a fibroblastic signature. These genes
were related to fibroblast activation or function (PDGFRB,
Collagen), but also to angiogenesis (Endostatin) or extra
cellular matrix remodeling (MFAP2, MMP2, MMP3, TIMP1)
[29]. More recently, we found in an independent set of

cHL patients that genes of the “extra cellular matrix” such
as collagen genes (COL1A1/4A1/4A2/5A1/18A1), THBS1/2,
FN1, EDNRA, ITGB5, and LAMA4 were associated with
unfavorable outcome [28]. Of note, Steidl et al. reported
MMP11, which encodes a matrix metallopeptidase, as associ-
ated with poor survival, both at the mRNA and protein levels
[31].

By contrast, the Spanish study found that a set of genes
overexpressed by the favorable outcome group was involved
in adhesion and remodeling of the extra cellular matrix
(TIMP4, SPON1, LAMB1) and in fibroblast function and
chemotaxis (TACR1, CCL26) [30]. It is therefore possible
that a subtle imbalance, rather than a mere increase, in the
complex process of matrix remodeling plays a role in the
aggressive behavior of HL tumors.

8. Influence of EBV on HL Microenvironment

EBV is present in RS cells of 40%–60% of cHL lesions
and contributes to their pathogenesis [44, 45]. Immunologic
reactions against EBV can occur in the peripheral blood of
some cHL patients [44]. The intratumoral immunological
alterations induced by EBV+ RS cells remain unclear. Before
the use of gene profiling, only a few differences had been
found between the microenvironment of EBV+ and EBV−
RS cells, such as an increased expression of IP10/CXCL10
[9]. However, no comprehensive characterization had been
reported.

Gene profiling in search of EBV-induced alterations was
first used in a series of 23 cHL cases [46]. Among these cases,
EBNA1 was shown to up regulate the expression of CCL20 in
EBV+ HL cells that in turn led to an increased chemotaxis of
Tregs [46]. This mechanism might enable the escape of EBV-
infected HL cells from the virus-specific CTL response.

We recently demonstrated that EBV+ and EBV− cHL
tissues can be clearly separated from each other by a robust
gene signature involving innate immunity and antiviral
responses in EBV+ tumors [28]. In fact, the EBV+ cHL sub-
set overexpressed antiviral genes like IVNS1ABP (NS1BP),
PLSCR1, and OAS; together with the pattern recognition
receptor TLR8 and the MDA5 helicase, which are both
involved in the recognition of viruses of various structures
[47]. Signaling through TLRs and helicases is known to
converge toward induction of interferons, which are the
principal cytokines mediating innate immunity against
viral infection. The molecular profile of EBV+ tumors
(simultaneous overexpression of IFNG, CXCL9, CXCL10,
and CXCL11/ITAC) also provides evidence of intratumoral
Th1 activity in EBV+ cHL [28]. This Th1 reaction could
be orchestrated by IFNG, which is capable of inducing
expression of not only CXCL10, but also CXCL9/MIG and
CXCL11/ITAC, both known as CXCR3 ligands and potential
chemoattractants of Th1 lymphocytes. Of note, CXCL9 and
CXCL10 were also predominantly expressed in EBV+ cHL
samples in the other gene profiling study, but without any
evidence of Th1 or antiviral reaction [46]. This discrepancy
may be due to the fact that the latter study was focused
on cHL samples of the NS type only. It is noteworthy that
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our patients with EBV+ cHL did not have a better outcome,
thereby suggesting that the described intratumoral immune
reaction is inadequate to eliminate tumor cells. Nonetheless,
these data raise the possibility that it could be further
stimulated to design future therapies.

9. Conclusion

Despite the low number of gene profiling cHL studies
available, they have led to dramatic results as regards the
important influence of B cells and macrophages on patients’
outcome. The resulting prognostic status can be evaluated in
the routine diagnosis of cHL patients using IHC. Another
interesting, although preliminary, attempt to translate gene
profiling results into routine practice is to design a real-
time PCR-based low-density array that includes the most
relevant genes and that could be applied to formalin-fixed
paraffin-embedded samples, as recently reported by the
Spanish group [48, 49]. Besides, gene profiling turned out
to be helpful in understanding the ability of EBV to either
disable the CTL response or to trigger a Th1 reaction in
the cHL microenvironment. This could be critical to the
development of adoptive T-cell therapies that target the virus
or different cell components of HL microenvironment. All
these results are clinically promising. There is no doubt that
their integration with results generated by other modern
high-throughput molecular analyses [50–52] will further
improve our understanding of disease, and likely the patients’
management.
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