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Simple Summary: In this paper, the authors show that artificial intelligence (AI) and machine
learning (ML) are useful approaches to integrate multifactorial data and helpful for personalized
prediction. In detail, compared to PD-L1 for advanced non-small cell lung cancer (NSCLC), ML tools
predicted better responder (R) and non-responder (NR) patients to immunotherapy (IO). It was also
able to indirectly foresee OS and PFS of R and NR patients. Given the high incidence of NSCLC,
and the absence of reliable biomarkers to predict the response to IO other than PD-L1, the authors
believe this research may be of great interest to anyone involved in thoracic oncology. Furthermore,
given the growing interest from the scientific community in AI and ML, the authors believe that
this manuscript could represent a fascinating topic to anyone who needs to exploit the enormous
potential of these tools in the treatment of cancer.

Abstract: (1) Background: In advanced non-small cell lung cancer (aNSCLC), programmed death
ligand 1 (PD-L1) remains the only biomarker for candidate patients to immunotherapy (IO). This
study aimed at using artificial intelligence (AI) and machine learning (ML) tools to improve response
and efficacy predictions in aNSCLC patients treated with IO. (2) Methods: Real world data and the
blood microRNA signature classifier (MSC) were used. Patients were divided into responders (R)
and non-responders (NR) to determine if the overall survival of the patients was likely to be shorter
or longer than 24 months from baseline IO. (3) Results: One-hundred sixty-four out of 200 patients
(i.e., only those ones with PD-L1 data available) were considered in the model, 73 (44.5%) were R and
91 (55.5%) NR. Overall, the best model was the linear regression (RL) and included 5 features. The
model predicting R/NR of patients achieved accuracy ACC = 0.756, F1 score F1 = 0.722, and area
under the ROC curve AUC = 0.82. LR was also the best-performing model in predicting patients with
long survival (24 months OS), achieving ACC = 0.839, F1 = 0.908, and AUC = 0.87. (4) Conclusions:
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The results suggest that the integration of multifactorial data provided by ML techniques is a useful
tool to select NSCLC patients as candidates for IO.

Keywords: non-small cell lung cancer; immunotherapy; biomarker; artificial intelligence;
machine learning

1. Introduction

Lung cancer is the leading cancer-related death worldwide with around 470,000 new cases
and 390,000 deaths in Europe. Non-small cell lung cancer (NSCLC) is the most common
histology for around 85% [1]. Until 2015, the median OS of patients with metastatic NSCLC
was around 12 months [2]. The advent of immunotherapy (IO) has radically changed the
treatment paradigm of many cancers including NSCLC, prolonging survival of metastatic
patients from 12 to a median of around 24 months [2]. Some patients that better respond
to IO reached longer survival of up to or more than 5 years [3]. However, only 30–50% of
patients will benefit from IO in the long term [4–6].

Currently in clinical practice, programmed death-ligand 1 (PD-L1) is the only biomarker
used to predict IO response. However, its predictive performance is not satisfactory (around
30–50%) [7]. Beyond PD-L1, several other biomarkers have been identified and used to
profile patient prediction, including tumor mutational burden (TMB) [8], tumor microen-
vironment (TME) [9], microRNA (miRNA) [10], immune gene signatures [11], gut micro-
biome [12], radiomics [13], and baseline clinical features or their combination in different
scores [14,15].

Indeed, it is implausible that a single biomarker is able to profile prediction or prog-
nosis with high accuracy, since the immune system displays dynamic complexity when
interacting with its TME. To handle the density of the available data, artificial intelligence
(AI) frameworks and, more specifically, machine learning (ML) techniques, provide effi-
cient, pioneering, and theoretically sound approaches to construct decision-making tools
providing individualized prediction [16].

Among molecular biomarkers, the plasma microRNA signature classifier (MSC),
reflecting an immunosuppressive host status, was here considered [10]. It was previously
trained in lung cancer screening cohorts to evaluate the individual risk to develop the
aggressive form of the disease [17,18]. More recently, the MSC prognostic value was
also validated in advanced NSCLC patients treated with single agent IO [19], and its
combination with different clinical scores confirmed its independence from other prognostic
features in this setting [20].

This study aimed to integrate real-world data and the MSC test to develop a machine
learning algorithm to predict response to and efficacy of IO in NSCLC patients. The study
also investigated the role of the MSC test and its added value to the algorithm prediction
capability, given that this latter test is costly and still not included in standard clinical
practice as a predictive/prognostic biomarker.

2. Materials and Methods
2.1. Study Population

From July 2015 to November 2020, we conducted a prospective observational study
(Apollo, INT 22_15) enrolling 200 consecutive aNSCLC patients receiving single-agent
anti-PD-(L)-1 inhibitors in first- (n = 70) or second- and further-line therapy (n = 130).
Complete real-world data and whole blood samples were collected as per clinical practice.
The MSC test was prospectively assessed in plasma samples collected at baseline IO.

Inclusion criteria were the following: cytological/histological diagnosis of advanced
NSCLC, patients (relapsed or stage IIIB to IV) that had received at least one infusion of
first- or further-line single-agent IO. Patients without baseline IO MSC test information
were excluded from the study.
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This prospective study was conducted at Fondazione IRCCS Istituto Nazionale Tumori
of Milan in Italy in collaboration with Politecnico di Milano, for the data analytics. This
study was approved by the ethical committee of Fondazione IRCCS Istituto Nazionale
Tumori of Milan, and all included patients signed informed consent prior to plasma and
data collection in accordance with the Declaration of Helsinki, Good Clinical Practice and
local ethical guidelines.

2.2. Real World Data Collection: Clinical, Blood, and Tissue Data

For this study, demographic, medical history, tumor stage, PD-L1 (PD-L1 testing
was mostly carried out using the PD-L1 IHC 22C3), molecular and radiological data,
concomitant medications, treatment responses, and survival follow-up were collected and
integrated to develop e new predictive model of IO response and efficacy in NSCLC.

2.3. Omic Collection: MSC Blood Test

Whole blood was collected in 10 mL K2EDTA Vacutainer tubes, and the plasma
separated by two centrifugation steps. Total RNA was extracted from 200 µL plasma
samples. MicroRNA expression was determined by quantitative reverse transcription PCR
(RT-qPCR) as previously described [19,21].

The MSC algorithm using 24 miRNAs defined four different classes of risk: low (L)
intermediate (I) and high (H) risk [18] and highly hemolyzed (E). The fourth category
E, thus not analyzable plasma samples, due to the unspecific release of miRNAs in the
presence of blood cell lyses, was included [10] (Figure 1). The 24 miRNAs were hsa-miR-
101-3p, hsa-miR-106a-5p, hsa-miR-126-3p, hsa-miR-133a-3p, hsa-miR-140-3p, hsa-miR-140-
5p, hsa-miR-142-3p, hsa-miR-145-5p, hsa-miR-148b-3p, hsa-miR-15b-5p, hsa-miR-16-5p,
hsa-miR-17-5p, hsa-miR-197-3p, hsa-miR-19b-3p, hsa-miR-21-5p, hsa-miR-221-3p, hsa-
miR-28-3p, hsa-miR-30b-5p, hsa-miR-30c-5p, hsa-miR-320a, hsa-miR-451a, hsa-miR-486-5p,
hsa-miR-660-5p, and hsa-miR-92a-3p. Patients with this category were previously observed
to have an intermediate prognosis between patients with H and I risk [20].
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2.4. Treatment Administration

IO was administered intravenously (IV) as monotherapy. Nivolumab was adminis-
tered initially at a dose of 3 mg/kg and later, from May 2018 in Italy, at a fixed dose of
240 mg every 2 weeks (w). Pembrolizumab was administered at a fixed dose of 200 mg
as first line and at a dose of 2 mg/kg every 3 weeks in second or third-line setting. Ate-
zolizumab was administered at a fixed dose of 1200 mg every 3 weeks, and durvalumab at
a dose of 10 mg/kg every 2 weeks.

Therapy was continued until progressive disease (PD), intolerable toxicity, withdrawal
or death from any cause. Treatment beyond PD was allowed if there was a clinical benefit
according to clinician’s decision.

2.5. Radiological Response Evaluation

Baseline radiological evaluations included a baseline total body computed tomog-
raphy (TB-CT) scan, subsequently performed every 3–4 cycles or every 9–12 weeks as
per standard of care, or whenever progression was clinically suspected. Six categories of
radiological response were taken into consideration in this study to assess tumor response.
Four of them (standard categories) were included in Response Evaluation Criteria in Solid
Tumors (RECIST1.1): complete response (CR), partial response (PR), stable disease (SD),
and progressive disease (PD). Two additional categories were included: hyper progression
disease (HPD), an atypical pattern of response to single-agent IO (an acceleration of pro-
gression compared to the natural history of the disease) as defined by Ferrara et al. [22] and
Lo Russo et al. [23], and eventually, not evaluable (NE) as the sixth category, comprising
those patients who died due to PD before the first radiological evaluation.

3. Statistics and AI Methodology

Figure 2 reports an outline of all the methodologies applied for data analyses.
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3.1. Statistical Analysis

Out of the 200 patients included in the present study having available PD-L1 expres-
sion data, 164 patients were used as the dataset for the ML algorithms, since PD-L1 was
the only predictor used in clinical practice. Conversely, all 200 patients were included in
the survival analysis. The first endpoint of the study was prediction of responder (R) and
non-responder (NR) patients. The R group included patients who obtained a CR, PR, or
SD as per RECIST 1.1, while the NR group included those patients who obtained a PD per
RECIST1.1., or an HPD or NE response (as described above).

Other endpoints were at 24-months overall survival (OS), median progression-free
survival (mPFS), and median OS (mOS). mOS was measured from the starting date of IO
therapy until death, or last follow-up. mPFS was calculated from the starting date of IO
until PD or death due to any cause, or last follow-up visit for alive patients without PD.
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Kaplan–Meier was used to calculate mPFS and mOS with their 95% confidence interval,
and to generate survival curves. Cox’s proportional hazards model was used to calculate
the hazard ratio (HR) between R and NR groups according to OS and PFS.

3.2. Machine Learning Methods

After data collection, descriptive analysis and data processing were performed. A first
step consisted of the selection of a set of 21 features determined to be the most relevant based
on the published literature on NSCLC patients treated with IO and clinician experience.
Finally, in the case where a pair of features showed a linear correlation higher than 0.8, we
removed one of them, as customary in ML studies. The result was the set of M = 15 most
relevant features, provided in Table 1.

Table 1. Features selected based on literature review and clinician experience, and keeping only one
of the variables in a pair showing linear correlation >0.8.

Feature Classes Features

Clinical features Age, sex, smoker/non-smoker, packs per year, ECOG

Laboratory exams NLR * NLR4, LDH

Tumor features PD-L1, histology (adenocarcinoma, squamous, other)

Radiological Metastatic sites (liver, brain, bone)

Treatment features IO line (first or further line)

Omic features MSC test
* NLR was used both as a continuous variable or binary variable with cut-off 4.

The problem of predicting R and NR was modelled as a binary classification problem,
where we wanted to learn an approximation f (̂x_i) of the real relationship y = (x_i) between
the i-th patient’s feature vector x_i and the response y_i ∈ {0,1}, where a patient has y_i = 0
for NR, and y_i = 1 for R. The same modelling was applied to the problem of estimating
survival at 24 months, i.e., a patient has y_i = 0 for those patients with OS less than
24 months and y_i = 1 for those with more than 24 months. Data corresponding to the
40 alive patients with less than 24 months were excluded from this second analysis.

A set of appropriate techniques from the ML literature were selected to perform
the above-mentioned classification task. More specifically, feedforward neural network
(FFNN), logistic regression (LR), K-nearest neighbors (K-NN), support vector machines
(SVM), and random forest (RF) were tested. A feature selection approach to select the
proper subset of the original M features appropriate for each method were applied. More
specifically, a forward feature selection using the AIC criterion as metric to select the most
appropriate set of features for each method and the best method were used. The 5-fold
cross-validation ACC and F1 scores for the analyzed methods, as well as the leave one out
AUC, with the corresponding 95% confidence intervals were computed using the bootstrap
approach (in brackets).

The procedure was implemented in Matlab, and the code performing all of the ML
procedures is available at https://trovo.faculty.polimi.it/downloads.html (accessed on
10 October 2021) [24].

4. Results
4.1. Patients’ Characteristics

Two hundred NSCLC patients treated with anti-PD-(L)-1 in first or further-line therapy
were included in the survival analysis. Most patients were male (65%) and smokers (79.5%),
median age was 67 years (range 60–74 years), and 38% of patients were older than 70 years.
PD-L1 was ≥50% in 53 (26.5%), 1–49% in 59 (29.5%), <1% in 52 (26%) and unknown in
36 (18%) patients. Median ECOG-PS was 1 (range 0–1) with an ECOG PS 2 in 14.5% of
patients. All patients had a histological diagnosis of NSCLC (77% non-squamous and 23%

https://trovo.faculty.polimi.it/downloads.html
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squamous) and were epidermal growth factor receptor (EGFR) non-mutated and anaplastic
lymphoma kinase gene (ALK) non-translocated. At baseline IO, liver metastases were
present in 35 (17.5%) of patients. More than one-third of patients (35%) received IO in first
line, while the remaining patients received anti-PD-(L)-1 therapy in further lines. Overall,
40 (20%) patients were H, 65 (32.5%) were I, and 54 (27%) were L according to MSC risk
level. On the other hand, 41 (20.5%) patients were E and thus not analyzable.

One-hundred sixty-four patients were enrolled in this study, and patients were divided
into two major groups: 73 belonged to the R group (CR, PR, or SD), and 91 to the NR group
(PD, HPD, or NE).

4.2. Predicting Responder and Non-Responder Patients

Table 2 presents the results of the feature selection procedure. The best model turned
out to be the logistic regression, which included 5 features: ECOG performance status, IO
line of therapy, the neutrophil-to-lymphocyte ratio (NLR), the MSC test, and PD-L1. The
importance of the variables was provided directly by the magnitude (absolute value) of
the coefficient obtained by the logistic regression. More specifically, in order of importance
for the LR, the parameter vectors learned by LR were w = 1.058 (NLR), 0.71 (IO line),
0.692 (ECOG), 0.566 (MSC), and −0.471 (PD-L1 > 50%). This showed how an increase
in one of the first four features was negatively correlated with patients’ response, and
conversely, how the increase in the PD-L1 value correlated positively with response (the
only negative coefficient).

Table 2. Features selected for the different models and corresponding performances.

ML Model Selected Features AIC ACC F1 AUC

LR ECOG, IOLine, NLR,
MSC, PD-L1 132.5 0.756 0.722 0.83

(0.76–0.88)

FFNN NLR, IOLine, MSC,
LDH, ECOG, PackYear 137.2 0.732 0.686 0.80

(0.73–0.86)

K-NN NLR, IOLine, ECOG,
MSC, NLR4 137.4 0.726 0.667 0.81

(0.74–0.87)

SVM ECOG, IOLine, NLR,
MSC, PD-L1 134.5 0.738 0.703 0.83

(0.75–0.88)

RF NLR, IOLine, ECOG,
Age, MSC 135.5 0.701 0.657 0.82

(0.73–0.87)

For each model, the confusion matrix is presented in Figure 3 to show their perfor-
mances in terms of true/false positives/negatives.

Logistic regression as the best model achieved an ACC = 0.756, F1 = 0.722, and
AUC = 0.83. PD-L1 alone had an ACC = 0.655 (whose performances are illustrated by the
red circle in Figure 4). We also evaluated the accuracy of the LR models excluding PD-L1,
MSC, and both PD-L1 and MSC from the models, i.e., considering only clinical features.
Moreover, we excluded the ECOG, being the only physician-dependent feature. The results
of these models are shown in Table 3, and the ROC curves are provided in Figure A1.
Removing PD-L1, the accuracy of the corresponding model decreased to ACC = 0.726,
confirming the high importance of this feature, as reported in the literature. Removing the
MSC from the feature decreased the accuracy to ACC = 0.750, suggesting that the predictive
power of this index was less impactful than PD-L1. Removing both from the data yielded
an ACC = 0.707.
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Table 3. Performances of the LR method when some of the features are removed from the initial pool
of available ones.

Initial Feature Set Selected Features ACC F1 AUC

All ECOG, IOLine, NLR,
MSC, PD-L1 0.756 0.722 0.83 (0.76–0.88)

No PD-L1 ECOG, IOLine, NLR, MSC 0.726 0.696 0.82 (0.75–0.88)

NO MSC ECOG, IOLine, NLR, PD-L1, Age 0.750 0.709 0.81 (0.74–0.87

NO PD-L1 and MSC ECOG, IOLine, NLR, Age 0.707 0.662 0.80 (0.73–0.86)

NO ECOG IOLine, NLR, MSC, PD-L1 0.726 0.690 0.80 (0.73–0.87)

Finally, removing the ECOG decreased the accuracy of the LR model to ACC = 0.726;
therefore, the importance of the physician clinical evaluation was comparable to PD-L1
in the prediction. These findings were confirmed by the values of the F1 score and the
average AUC (Table 3). The ROC curve obtained by the leave-one-out method is presented
in Figure 4.

4.3. Survival Analysis According to PFS and OS

Since good results were obtained in classifying patients as responders and non-
responders, it was also possible to estimate the mOS and mPFS of these patients using KM
curves, as shown in Figure 5a,b. At data cut-off (November 2020), mOS was 10.1 months
for all patients. Median PFS for the R and NR groups was 11.4 vs. 1.8 months (HR 0.095,
95%CI 0.062–0.114, p < 0.0001), and the median OS, 38.5 vs. 3.8 months (HR 0.123, 95%CI
0.079–0.193, p < 0.0001). Appendix A contains all of the Kaplan–Meier curves separately
according to first and further-line therapy in R and NR patients, respectively (Figure A2).
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4.4. Predicting Long-Survival Patients (≥24-Months OS)

To predict long-survival (≥24-months OS) patients, another ML binary classification
analysis was performed.

Because we were solving a different classification model, we needed to reconsider
the use of the above-mentioned methods from scratch. Table 4 lists all of the procedures
for feature selection. Even in this case, the LR method proved to be the most promising
according to the AIC criterion. It achieved an ACC = 0.855, F1 = 0.908, and AUC = 0.87.
The features included in the model were ECOG, histology, NLR, and IO line.
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Table 4. Features selected for the different models and corresponding performances for the task of
predicting the long- survival patients.

ML Model Selected Features AIC ACC F1 AUC

LR ECOG, Histology,
NLR, IOLine 58.1 0.855 0.917 0.89

(0.80–0.94)

FFNN Histology, NLR,
PD-L1, NLR4 61.4 0.839 0.908 0.87

(0.78–0.92)

K-NN NLR, PD-L1, Histology 60.6 0.847 0.916 0.88
(0.80–0.93)

SVM Age, Histology, MSC,
ECOG, PD-L1, NLR 63.2 0.847 0.913 0.90

(0.83–0.94)

RF NLR, PD-L1 63.8 0.847 0.917 0.83
(0.74–0.89)

The ROC curves computed using the leave-one-out approach are provided in Figure A3.

5. Discussion

The use of AI is attracting great interest in the medical field and, in particular, in
oncology. The recent literature contains a wide range of publications regarding the use of
AI applied to NSCLC, especially focusing on real-world data, genomics, circulomics, and
radiomics. In our study, we aimed to find an algorithm to predict response to and efficacy of
IO using real-world data (i.e., clinical, tumor, and treatment data) and translational data (i.e.,
the results of the MSC test). Combining the current medical literature, clinical experience
of physicians, and ML tools, we developed an algorithm including five important features
discriminating between R and NR patients with good accuracy (ACC = 0.756, F1 = 0.722,
and AUC = 0.83). The model achieved significantly better results compared to PD-L1
prediction value alone, which is the only biomarker currently used by physicians in clinical
practice to select NSCLC patients for IO with an accuracy of ACC = 0.655 on the analyzed
dataset. To determine whether the algorithm maintained its accuracy using only real-world
data, we decided to exclude the PD-L1 from the model features. In this case, the accuracy
of the model decreased, suggesting that even if the PD-L1 alone is not enough to provide
an effective response prediction, it remains an essential feature for IO prediction to be
used in clinical practice. We did the same with the MSC, since this test is an expensive
and time-consuming exam, and, therefore, its introduction in clinical practice needs to
be justified. When we excluded the MSC from the model, the model accuracy decreased,
albeit by less than in the case of PD-L1 exclusion, again suggesting that the MSC has a
role in our model. We also tested the model removing the patient’s ECOG, which is a
physician-dependent value, and the results demonstrated a significant impact, analogous
to PD-L1. Since the model was able to discriminate between R and NR groups, we were
also able to indirectly predict the PFS and OS of these patients.

With a binary classification approach, we provided a method to identify and predict
those patients with long OS (≥24-months OS). Even in this case, the use of ML techniques
showed a significant improvement over the use of PD-L1 (ACC = 0.855, F1 = 0.908, and
AUC = 0.87 vs. ACC = 0.734).

Various papers have been recently published to address the same unmet clinical need
not only in NSCLC but also in other different cancer types.

Radiomics features are frequently used to predict IO response in NSCLC patients.
In the study by He et al. [25] with a dual propose, radiomics were applied to build a
TMB signature. CT images were used to discriminate between high-TMB and low-TMB
in 327 patients. The model was then applied to the IO of 123 patients’ dataset to evaluate
risk stratification. The TMB radiomic signature reached an AUC of 0.74 [5]. The prediction
was slightly lower compared to our study, probably indicating that the clinical features
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and patients’ presentations have comparably high relevance as tumor features and that it is
important to consider them in the model.

Khorrami et al. [26] compared changes (“delta”) in the radiomic texture of CT scan
patterns (139 patients) and associated them with tumor-infiltrating lymphocyte (TIL) den-
sity in diagnostic biopsies from 36 patients. A linear discriminant analysis classifier yielded
an AUC of 0.88 ± 0.08 in distinguishing R from NR patients when CT scan features were
combined with TIL density. However, 36 patients were included in this coupled analysis,
and even if our study achieved a lower AUC, our model included four real-world datasets
that were easier to be obtained compared to radiomics and TIL analysis.

Yang et al. [27] used 200 patients to develop a deep learning (DL) model integrating
different data sources (serial radiomics, CT scans, laboratory and baseline clinical data)
to identify R and NR subgroups to IO in NSCLC patients. The model reported an AUC
of 0.80 (95%CI: 0.74–0.86), showing a smaller than expected value when compared to
ours (AUC 0.82). A very interesting study called DeePaN [28] used a deep patient graph
convolutional network to investigate the IO benefit in NSCLC patients. By integrating
real-world data (age, sex, race, histology, stage, ECOG score, smoking status and previous
treatment, blood analyses) and genomics in 1937 patients, the algorithm was able to
divide patients into two different subgroups: beneficial and non-beneficial patients with
an mOS of 20.35 and 9.42 months, respectively. Even though our sample was smaller, our
model was able to predict survival and response with comparable results. The model also
demonstrated the positive role of TMB and KRAS mutation in IO patients [28]. The study
by Tian et al. [29] had a dual purpose: first, to predict a PD-L1 signature (PD-L1ES) using CT
images (in 939 patients), and second, to predict IO response in NSCLC patients combining
PD-L1ES and clinical features (in 77 patients). PD-L1ES was able to distinguish patients
with a better PFS compared to those with a lower PFS. However, results of the combined
model (PD-L1ES and clinical data) were superior to both the clinical and PD-L1ES models
alone [29]. Our study also confirmed the importance of PD-L1 and the value it added to
clinical features.

The development and validation of a 12-gene immune relevant prognostic signature for
lung adenocarcinoma through ML strategies was investigated in 954 patients to predict IO.
From a discovery dataset of 204 observations including microarray data of gene expression
of 1811 genes, Cox regression was used to decrease the number of features to 336. Random
forest was then used to extract the final 12 selected genes used to compute the risk score.
Patients were classified into high- or low-score with an AUC of 0.854 (95%CI = 0.79–0.92).
Patients with a high-risk score experienced lower survival comparing to those with the
low-risk score (HR = 10.6, 95%CI = 3.21–34.95, p < 0.001) [30].

Independently from IO, ML and DL techniques are now used in research to predict
NSCLC prognosis for patients treated with different therapies to better address precision
medicine; however, these techniques are still far from their introduction in clinical practice.
An interesting study used DL to implement OS prediction in NSCLC patients by integrating
microarray and clinical data. A list of 15 relevant genes was built using seven known
relevant biomarker genes and eight other less-known genes. Expression data on the
15 genes and the clinical data were combined and used to develop an integrative deep
NN predicting the 5-year survival status of NSCLC patients with high accuracy (AUC:
0.8163, accuracy: 75.44%); these data were consistent and comparable with our results [31].
Another study developed an algorithm to predict NSCLC survival time in 1000 patients
treated with different types of therapies. Thirteen features were included in the algorithm,
e.g., number of primaries, tumor size, age, and stage. Random forest was the best model to
predict short-term survival period (<6 months) [32].

Finally, IO biomarker prediction, as we mentioned above, is an unmet clinical need
also for other cancer types. In fact, as in NSCLC, various efforts have been made to find
predictive biomarkers of IO response using ML or DL methodology in other cancers. An
interesting report on melanoma patients integrated histologic data and clinical data to
predict IO response. The algorithm consisted of a segmentation classifier that took as input
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the whole slide image of the patient (hematoxylin and eosin tissue). These results were
then combined through a multivariable logistic regression with clinical characteristics such
as age, gender, histologic subtype, etc. The classifier accurately stratified patients into high
versus low risk for disease progression with an AUC = 0.80 [33].

Gene expression data were used to separate gastric metastatic cancer patients into
durable clinical benefit (DCB) and non-durable clinical benefit (NDCB) groups considering
a training dataset of 25 (DCB) plus 45 (NDCB) and a validation cohort of 9 (DCB) plus
15 (NDCB), obtaining an accuracy of ACC = 0.857 in the validation cohort [34].

Lastly, in another work regarding IO prediction in bladder cancer, CT-scans were
used to develop an ML model according to the RECIST methodology, and the ROIs were
processed to extract radiomic features. Considering a dataset of 43 subjects, the model
reached an accuracy of ACC = 0.861 [35].

Our study had various limitations: firstly, the limited sample size. Secondly, we did
not use radiomic features in our study, and no genomic data were included except the
unique molecular data requested for standard of care.

Many studies have sought to extract more information from imaging (radiomics) and
genomic data. Radiomics is a very important frontier but still in an early phase, and more
time will be needed to include it in clinical practice. The same may be said for genomics.
The approach adopted in this paper used routine information from imaging (e.g., RECIST)
as well as real-world genetic data that had already been investigated as per standard of care,
both of which added to the clinical information and enabled better extraction of predictive
multifactorial information. These data can also be less expensive and easier to collect.

6. Conclusions

In conclusion, the results suggest that the data integration provided by AI techniques
is a good tool to improve prediction for NSCLC patients treated with IO. More specifically,
the model showed that higher ECOG, NLR value, IO line, and MSC test level correlated
negatively with the response to IO therapy, whereas conversely, higher PD-L1 correlated
positively with the response. It also confirmed that PD-L1 and MSC were relevant biomark-
ers to improve the accuracy of the model. Moreover, considering the difference in survival
among R and NR groups, these results suggest that the model could also be used to
indirectly predict survival (PFS and OS).

Finally, a second binary model was able to identify long survival patients with
high accuracy.
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