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Abstract

Background: Abnormal zinc homeostasis is involved in b-amyloid (Ab) plaque formation and, therefore, the zinc load is a
contributing factor in Alzheimer’s disease (AD). However, the involvement of zinc in amyloid precursor protein (APP)
processing and Ab deposition has not been well established in AD animal models in vivo.

Methodology/Principal Findings: In the present study, APP and presenilin 1 (PS1) double transgenic mice were treated
with a high dose of zinc (20 mg/ml ZnSO4 in drinking water). This zinc treatment increased APP expression, enhanced
amyloidogenic APP cleavage and Ab deposition, and impaired spatial learning and memory in the transgenic mice. We
further examined the effects of zinc overload on APP processing in SHSY-5Y cells overexpressing human APPsw. The zinc
enhancement of APP expression and cleavage was further confirmed in vitro.

Conclusions/Significance: The present data indicate that excess zinc exposure could be a risk factor for AD pathological
processes, and alteration of zinc homeostasis is a potential strategy for the prevention and treatment of AD.
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Introduction

The presence of extracellular b-amyloid (Ab) plaques in the

brain is one of the pathological hallmarks of Alzheimer’s disease

(AD). Mounting evidence has demonstrated that aberrant zinc

homeostasis is involved in the pathogenesis of AD [1,2,3,4]. In the

post-mortem AD brain, a marked accumulation of zinc is found in

the Ab plaques [5,6,7,8,9,10]. Since Ab peptide has zinc-binding

sites, and zinc is the only physiologically available metal able to

precipitate Ab, the abnormal enrichment of zinc in the AD brain

indicates that zinc binding to Ab plays a role in the formation of

amyloid plaques [11]. Furthermore, zinc chelating agents, such as

clioquinol (CQ) and DP-109, that modulate brain zinc levels can

inhibit the formation of amyloid plaques [12,13,14]. In prelimi-

nary studies, CQ has shown some effects on cognition in AD

patients [15,16,17]. Thus, abnormal zinc homeostasis is believed

to be a contributing factor leading to Ab aggregation, and

alteration of zinc homeostasis is a potential therapeutic strategy

for AD.

The disruption of zinc homeostasis in the AD brain is associated

with the aberrant distribution and altered expression of zinc-

regulating metalloproteins, such as metallothionein, zinc trans-

porters (ZnT) and divalent metal transporter 1 (DMT1). We have

reported that high levels of ZnT1, 3-7 and DMT1 proteins are

located in the degenerating neurites in or around the Ab-positive

plaques associated with human AD and the APP/presenilin 1

(PS1) transgenic mouse brain [18,19,20,21]. Significant alterations

in the expression levels of ZnT1, 4, and 6 have been detected in

AD postmortem brain specimens [22,23]. Genetic abolition of

ZnT3 results in disappearance of zinc ions in the synaptic vesicles

[24], and leads to an age-dependent deficit in learning and

memory in ZnT3 knockout mice [25]. Most interestingly, a

markedly reduced plaque load and less insoluble Ab have been

observed in ZnT3 knockout plus APP overexpressed mouse brain

[26], suggesting a role of synaptic zinc in Ab generation and

aggregation. Furthermore, in vitro studies have shown that both

APP and its proteolytic product Ab contain zinc binding domains.

However, the involvement of zinc in APP processing and Ab
deposition has not been well established in AD transgenic models

in vivo.

In the present study, we extended our experiments to examine

whether chronic intake of water containing a high level of zinc

accelerates Ab deposition and APP cleavage in APP/PS1 mouse

brain. We found that a high level of dietary zinc could cause

cognition dysfunction and enhance the aggregation of Ab.

Furthermore, we found that a high level of zinc also enhanced

Ab generation through altering the expression levels of APP and

APP cleavage enzymes in vivo and in vitro. Our data support the
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possibility that dietary zinc overload has the potential to be a

contributing factor to the pathophysiology of AD.

Results

Chronic high intake of dietary zinc induces spatial
learning-memory deficits in APP/PS1 mice

APP/PS1 transgenic mice at the age of 3 months were given a

standard diet and deionized water containing ZnSO4 (20 mg/ml).

Morris water maze tests were performed to evaluate whether high

dietary zinc treatment affects learning and memory in APP/PS1

mice at the age of 9 months. These included 2 days of visible

platform training, 5 days of hidden platform tests, and a probe trial

1 day after the last hidden platform test (Figure 1). The visible

platform tests showed that the zinc group and control mice had a

similar escape latency and path length (p.0.05; Figure 1A, B),

suggesting that zinc treatment did not significantly affect motility

or vision in the transgenic mice. In the place navigation (hidden

platform) tests, the zinc group mice showed a longer escape latency

and a longer path length before swimming onto the hidden

platform compared with the control mice fed a normal diet

(p,0.01; Figure 1A, B). Furthermore, the probe trial showed that

the number of times the mice traveled into the center of the

northwest quadrant, where the hidden platform was previously

placed, was significantly less for zinc group mice compared with

controls (p,0.01; Figure 1C). Taken together, these data suggest

that high-dose oral zinc leads to spatial learning-memory

impairments in APP/PS1 mice.

Enhancement of zinc content in serum and brain of APP/
PS1 mice fed a zinc diet

The serum zinc levels were measured in the transgenic mice at

the age of 9 months. There was a significant increase in zinc level

in the zinc group (11.2162.42 mg/ml), compared with the control

(0.4360.12 mg/ml) (p,0.01; Figure 2A). We also measured the

zinc level in the brain of the transgenic mice to determine the

effects of a high zinc diet. The brain zinc level was

173.17624.72 ng/mg in the zinc group, and 23.5962.31 ng/

mg in the control group. Statistical analysis showed that treatment

with a high dose of zinc significantly increased the level of zinc in

the brain (p,0.01; Figure 2B).

Increase in the number of zinc-containing plaques in the
brain of APP/PS1 mice fed a high zinc diet

The autometallography (AMG) procedure allows demonstration of

a striking condensation of ionic zinc within plaques in the human

postmortem AD brain and the APP/PS1 transgenic mouse brain

[10,19]. Brain sections of APP/PS1 mice given a high dose of zinc in

their drinking water and normal diet were subjected to AMG analysis.

In general, zinc-positive plaques were distributed throughout the cortex

and hippocampus in all examined animals (Figure 3A), as previously

described [27]. Both the number and size of the zinc-positive plaques in

the zinc-treated group were markedly increased in the cortex and

hippocampus (Figure 3A). Statistical analyses showed that high zinc

treatment significantly increased the number of zinc-positive

plaques by 146.24612.30% in the cortex and 225.00622.97% in

the hippocampus respectively, compared with the control group

(p,0.01; Figure 3B). The size of zinc-containing plaques in the brain of

APP/PS1 mice fed a high zinc diet was increased by 186.83615.74%

Figure 1. Morris water maze assessment of APP/PS1 transgenic mice. APP/PS1 mice at the age of 3 months were given either a standard diet
and deionized water (Con), or a standard diet and deionized water containing 20 mg/ml ZnSO4 (Zn). Morris water maze tests were performed to
evaluate whether high dietary zinc treatment affects learning and memory in APP/PS1 mice at the age of 9 months. (A, B) In the visible platform
training from day 1 to 2, mice in different groups exhibited a similar escape latency and path length to find the visible platform. At day 3, 5, and 7 of
the hidden platform tests, Zn-treated mice showed the longest latency and escape length. (C) In the probe trial on the last day, the Zn-treated mice
exhibited the lowest passing times into the northwest quadrant, where the hidden platform was previously located. * p,0.05, ** p,0.01 versus
control group (repeated measures ANOVA).
doi:10.1371/journal.pone.0015349.g001

Figure 2. Changes in zinc level in APP/PS1 mice fed a zinc diet.
(A) At the age of 9 months, the Zn group mice showed an increased
level of serum zinc. (B) Brain zinc levels were also significantly increased
in the Zn group mice. ** p,0.01 versus control group (Student’s t test).
doi:10.1371/journal.pone.0015349.g002

Zinc Enhances APP Processing
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in the cortex and 179.60621.74% in the hippocampus, compared

with the control group (p,0.01; Figure 3B).

High dietary zinc increases Ab burden in the APP/PS1
mouse brain

To determine whether chronic high intake of dietary zinc

potentiates Ab deposition, brain sections of APP/PS1 mice were

subjected to Ab immunohistochemical analysis. As shown in

Figure 4, both the number and size of the Ab-immonoreactive

senile plaques were markedly increased in the cortex and

hippocampus in the brain of zinc-treated mice (Figure 4A).

Statistical analyses showed that a high intake of dietary zinc

significantly increased the number of Ab plaques by

154.5568.25% in the cortex and 188.31611.90% in the

hippocampus, compared with the control group fed a normal diet

Figure 3. Zinc accumulation in neuritic plaques in APP/PS1 mice. (A) Zinc ions stained by AMG showing the distribution patterns of zinc ions
in the cortex and hippocampus, especially mossy fibers. Importantly, the number and size of the zinc-containing plaques were increased in Zn-
treated mice. (B) Statistical analysis showing that the number and size of zinc-containing neuritic plaques were significantly increased in Zn-treated
mice compared with controls. ** p,0.01 versus control group (Student’s t test).
doi:10.1371/journal.pone.0015349.g003
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(p,0.01; Figure 4B). We also evaluated the changes in Ab burden

by measuring the areas of Ab-positive neuritic plaques in the

mouse brain. In the zinc group, the area of Ab plaques was

significantly increased by 173.36611.44% in the cortex and

213.15634.29% in the hippocampus, compared with the control

group (p,0.01; Figure 4B).

Increase in expression level of APP protein and Ab
generation in the APP/PS1 mouse brain after a high zinc
diet

To further test whether a high dose of dietary zinc affects APP

expression, the levels of APP mRNA and APP695 protein were

measured by RT-PCR and Western blotting, respectively. As can

Figure 4. Zinc treatment enhances neuritic plaque formation in APP/PS1 mice. (A) Ab immunohistochemical images showing the Ab-
positive plaques in the transgenic mouse brain. There were more neuritic plaques in Zn-treated mice compared with controls. (B) Quantification of
neuritic plaques showed that both the number and size of neuritic plaques were increased in Zn-treated mice compared with controls. ** p,0.01
versus control group (Student’s t test).
doi:10.1371/journal.pone.0015349.g004
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be seen in Figure 5A, the expression levels of APP mRNA were not

significantly changed between groups after examining brain

samples of APP/PS1 mice treated with zinc or fed a normal diet.

Western blot analysis revealed that zinc treatment significantly

increased the level of APP695 protein by 132.79616.82%,

compared with controls fed a normal diet (Figure 5B).

To determine whether a high zinc intake had altered brain Ab
levels in APP/PS1 mice, a Sandwich ELISA for the detection of

Ab was employed (Figure 5C, D). Statistical analysis showed that a

high zinc diet significantly increased the level of Ab1-40 (p,0.05)

and Ab1-42 (p,0.01) in the brain, compared with controls. The

levels of Ab1-40 and Ab1-42 were increased by 122.19620.60%

(Figure 5C) and by 148.96615.67% (Figure 5D) in the brain

homogenates of APP/PS1 mice with a high level of zinc in their

drinking water, compared with controls fed a normal diet.

High level of zinc in drinking water accelerates APP
processing in the APP/PS1 mouse brain

To further examine whether a high intake of dietary zinc altered

APP processing, the relative key enzymes (including ADAM10,

BACE1 and PS1) and cleavage fragments of APP (including

sAPPa, sAPPb, C83 and C99) in the brain samples of APP/PS1

mice were subjected to Western blot analyses. As shown in

Figure 6A, zinc treatment significantly decreased the expression

level of ADAM10 by 45.8067.01% compared with the control

group (p,0.01; Figure 6A). In contrast, the level of BACE1 was

significantly increased in zinc-treated mouse brain by

147.49621.91% (p,0.01; Figure 6A). Furthermore, the level of

PS1 in zinc-treated mouse brain was significantly increased by

130.44636.80%, compared with the control group (p,0.01;

Figure 6A).

We then examined the levels of a-secretase-generated sAPPa/

C83 and b-secretase-generated sAPPb/C99 fragments in the

transgenic mouse brain. Zinc treatment significantly reduced the

level of sAPPa by 53.5563.32% (p,0.01; Figure 6B), and

increased the level of sAPPb by 255.62627.24%, compared with

the control group (p,0.01; Figure 6B). The level of C83 fragments

was reduced by 70.4864.27% and the level of C99 was increased

by 144.65615.79% in brain of zinc-treated mice relative to the

controls (p,0.01; Figure 6B).

Figure 5. Expression level of APP and Ab in APP/PS1 mice. (A) RT-PCR showed that no difference in APP mRNA levels between groups was
detected in the transgenic mouse brain. GAPDH was used as an internal control. (B) Western blot analysis showed that high zinc treatment
significantly increased the level of APP695protein. GAPDH was used as an internal control. (C, D) ELISA assay showed that the levels of Ab1-40 and
Ab1-42 were significantly increased in Zn-treated mice compared with controls. * p,0.05, ** p,0.01 versus control group (Student’s t test).
doi:10.1371/journal.pone.0015349.g005
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Taken together, these results indicate that the a-secretase

cleavage activity is markedly reduced while b- and c-secretase are

increased in the brain of zinc-treated transgenic mice.

High zinc exposure enhances amyloidosis in APPsw
transfected cells

To further verify that high zinc exposure might be involved in

APP processing and Ab secretion, a human neuroblastoma SHSY-

5Y cell line stably transfected with APPsw was used as an in vitro

model [28,29]. A zinc concentration of 1 mM (low zinc) and

70 mM (high zinc), and a concentration of TPEN (zinc chelator) of

1 mM were selected based on the evaluation of cell viability by

MTT assay (Figure 7A, B). The zinc-specific fluorescent probe,

Zinquin, was used to examine the levels of zinc in cells after zinc or

chelator treatments. The results showed that Zinquin fluorescence

was distributed in a punctate pattern in APPsw cells (Figure 7C).

Zinc treatments increased the Zinquin fluorescence, while TPEN

reduced it (Figure 7C). The fluorescence density assays showed

that 70 mM zinc treatment significantly enhanced the Zinquin

fluorescence by 300.31656.19% (p,0.01; Figure 7D), whereas

TPEN treatment reduced the fluorescence density by

30.94614.65% compared with the control cultures (p,0.01;

Figure 7D).

Consistent with our in vivo data from APP/PS1 transgenic mice,

high zinc (70 mM) exposure significantly increased the APP

cleavage enzyme levels of BACE1 by 135.50617.05% and PS1

by 132.79613.11% (p,0.01), and reduced the levels of ADAM 10

by 80.1165.04% (p,0.05), respectively, in APPsw cells

(Figure 8A). Subsequently, the levels of b-secretase-generated

fragments sAPPb and C99 were markedly increased by

131.4668.57% and 126.95622.46% (p,0.01), while the levels

of a-secretase-generated sAPPa and C83 were decreased by

79.8964.63% (p,0.01) and 76.9465.61% (p,0.05), respectively,

following 70 mM zinc treatment (Figure 8B). Also, chelation of zinc

with 1 mM TPEN reversed the changes in the expression levels of

the cleavage enzymes and fragments of APP (Figure 8B).

Furthermore, ELISA detection showed that the levels of secreted

Ab1-42 in culture medium were increased by 166.27623.04% in

the 70 mM zinc treatment group (p,0.01; Figure 8C), and reduced

by 37.18610.36% with 1 mM TPEN (p,0.01; Figure 8C),

compared with the control group. These data clearly indicated

that high zinc exposure enhanced the amyloidogenic APP

cleavage pathway and Ab generation in APPsw overexpressing

cells.

In contrast to high zinc exposure, low zinc (1 mM) treatment

guided APP processing to the non-amyloidogenic pathway in our

APPsw overexpressing cells. Following 1 mM zinc treatment, the

levels of AMAM10, sAPPa and C83 were increased by

142.21612.04% (p,0.05; Figure 8A), 116.71619.07% (p,0.05;

Figure 8B) and 117.81612.47% (p,0.05; Figure 8B), whereas the

Figure 6. Expression level of APP cleavage enzymes and products in APP/PS1 mice. (A) The expression levels of ADAM10, BACE1 and PS1
in transgenic mouse brain were determined by Western blot analyses. GAPDH was used as an internal control. The level of ADAM10 was markedly
reduced, whereas the level of BACE1 was significantly increased in Zn-treated mice, compared with controls. (B) Zinc treatment significantly reduced
the level of sAPPa and C83, and increased the level of sAPPb and C99 compared with the control group. ** p,0.01 versus control group (Student’s t
test).
doi:10.1371/journal.pone.0015349.g006
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levels of BACE1, sAPPb and C99 were reduced by 89.61613.34%

(p,0.05; Figure 8A), 81.0364.80% (p,0.05; Figure 8B) and

94.0669.89% (p,0.05; Figure 8B), respectively, compared with

the controls. The level of secreted Ab1-42 in culture medium was

decreased by 64.43611.77%, following 1 mM zinc treatment

(p,0.05; Figure 8C). These data are consistent with previous

reports showing that exposure to low concentrations of zinc

(#50 mM) significantly enhances the levels of secreted APP and

results in reduced release of Ab in a medium of cultured CHO-K1

cells [30,31].

Figure 7. Cell viability and zinc accumulation in APPsw cells treated with zinc and TPEN. (A, B) MTT analyses were performed on the
SHSY-5Y cells stably transfected with human APPsw, to select appropriate concentrations of zinc and TPEN for the in vitro studies. The cells were
treated with indicated concentrations of zinc and TPEN for 8 h. Based on the cell viability, we chose a concentration of 1 mM ZnSO4 as ‘‘low zinc’’ and
70 mM as ‘‘high zinc’’ treatment, and 1 mM TPEN for zinc chelation treatment, respectively. (C, D) Zinquin fluorescence staining showing that zinc
treatments enhanced the Zn-fluorescence accumulation, while TPEN reduced the density of fluorescence in APPsw cells. Fluorescence values were
obtained during the period of basal conditions and the status at the end of each indicated administration. The y-axis data describe F/F0 fluorescence
values. ** p,0.01 versus control group; ## p,0.01 versus 70 mM Zn treatment group (one-way ANOVA Post hoc Fisher’s PLSD).
doi:10.1371/journal.pone.0015349.g007
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Discussion

Both APP and its proteolytic byproduct Ab, which play central

roles in senile plaque formation in the pathogenesis of AD, are

zinc-containing metalloproteins that contain zinc-binding domains

[32]. Therefore, it is rational to speculate that zinc overload may

be involved in APP expression, Ab generation and aggregation. In

the present study, involving treatment with a high level of zinc in

the drinking water of APP/PS1 mice, we found that mice fed a

high zinc diet exhibited spatial learning impairments as shown by

Morris water maze tests. Apart for body weight loss, fur color

changes (data not shown), raised serum and brain zinc levels, and a

high zinc content in the drinking water resulted in no other overt

signs of toxicity such as general behavioral and neurological

changes during the entire observation period which our model

mice were given a high zinc diet. This is in agreement with

previous reports showing that there was no serious toxicity in

C57BL/6 mice after chronic zinc treatment at the same dose

[33,34]. Thus, we further evaluated the effects of a chronic high

dietary zinc intake on accumulation of Ab deposits, as well as APP

expression and cleavage in the APP/PS1 transgenic mouse brain.

We and others have reported that zinc is highly concentrated

in amyloid plaques in human postmortem brain samples [5,6,

7,8,10,18,35] and in AD transgenic mouse brains [9,36]. Here, we

Figure 8. Expression level of APP cleavage enzymes and products in APPsw cells. SHSY-5Y cells stably overexpressing APPsw were
exposed to 1 mM zinc, 70 mM zinc, 1 mM TPEN, and 70 mM zinc plus 1 mM TPEN, respectively, for 8 h. (A) Western blot was performed to determine
the expression levels of APP cleavage enzymes, including ADAM10, BACE1 and PS1. GAPDH was used as an internal control. Low (1 mM) and high zinc
(70 mM) treatment showed different effects on the expression of ADAM10. ADAM10 was markedly increased after low zinc treatment, but significantly
reduced after high zinc treatment. There were no significant changes in ADMA10 levels in the TPEN or Zn + TPEN group, compared with controls.
High zinc (70 mM) treatment significantly increased the levels of BACE1 as well as PS1. TPEN treatment reduced the BACE1 and PS1 levels. In Zn +
TPEN group, the levels of BACE1 and PS1 were significantly reduced compared with the high zinc (70 mM) treatment group. (B) The expression levels
of APP cleavage products, including sAPPa, sAPPb, C83 and C99, were determined by Western blot analysis. GAPDH was used as an internal control.
Low zinc (1 mM) exposure significantly enhanced the expression level of sAPPa, however, high zinc (70 mM) treatment markedly reduced the sAPPa
expression level. There were no significant changes in sAPPa levels in the TPEN or Zn + TPEN treatment group compared with controls. The
expression level of sAPPb was significantly decreased after low zinc (1 mM) treatment, but was significantly increased after high zinc (70 mM)
treatment. (C) ELISA results showed the Ab1-42 level in the medium of APPsw cells following the indicated treatments. High zinc (70 mM) treatment
significantly increased the levels of Ab1-42, whereas low zinc (1 mM) and TPEN treatment reduced the levels of Ab1-42. * p,0.05, ** p,0.01 versus
control group; # p,0.05, ## p,0.01 versus 70 mM Zn treatment group (one-way ANOVA Post hoc Fisher’s PLSD).
doi:10.1371/journal.pone.0015349.g008
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found that a high intake of dietary zinc resulted in an increase in

zinc-containing plaques in APP/PS1 transgenic mice. Coincident

with the AMG results, Ab immunohistochemical analyses

demonstrated that there was an increased Ab burden in transgenic

mice fed a high zinc diet. Since the small peptide Ab possesses

selective high- and low-affinity zinc binding sites [32,37], and zinc

at a concentration of 300 nM can rapidly destabilize Ab and result

in fibril formation [11,37], it is likely that an overload of brain zinc

increases Ab binding and, hence, enhances Ab aggregation and

plaque formation in the brain after chronic administration of a

high zinc diet.

Zinc is toxic and, besides its physiological roles, it is involved in

neuronal and glial death through activation of multiple intracellular

pathways leading to necrotic, apoptotic and autophagic neuronal

death [38,39,40,41]. The elevated level of zinc in the AD brain is

caused, at least partly, by the abnormal distribution and expression

of zinc-regulating proteins such as ZnTs and DMT1 [18,19,21]. At

an early stage of AD, the elevated brain zinc results in the formation

of zinc-Ab complex, which is of some benefit in protecting against

zinc toxicity [42,43,44]. On the other hand, recent studies have

shown that soluble Ab is a major factor in neuronal and synaptic

pathology, since it is more toxic than insoluble Ab [45,46,47]. It is

likely that the initial zinc-Ab complex and subsequent Ab
aggregation inhibits Ab mediated neurotoxicity. However, it is

worth noting that the initial zinc-Ab complex may serve as a seed for

the process of Ab aggregation and plaque formation in the brain

[5,11,48,49]. Although it is still debatable whether Ab aggregation

mediated by interaction with zinc plays a role in reducing the

toxicity of soluble Ab or whether the zinc-containing plaques

themselves are toxic to neuronal cells [44,50,51,52], the interaction

between Ab and zinc seems to be a critical factor for activating AD

pathological processes. Nevertheless, our present data suggest that a

high zinc intake leads to more zinc-Ab complex formation,

accelerates Ab deposition and enhances the amyloid burden.

Further studies are needed to elucidate the paradoxical role of zinc

in plaque pathology [31].

APP protein contains a novel zinc binding motif which is

located between the cysteine-rich and negatively charged ectodo-

mains [32]. Besides its structural role, zinc may be involved in the

function and metabolism of APP protein, and produce an even

greater deposition of Ab. However, apart for several in vitro studies

that tested the effects of zinc on APP processing [30,53], there are

no detailed reports whether zinc binding to APP alters APP

processing and Ab production in AD transgenic animal models. In

the present study, we found that a high intake of dietary zinc

significantly increases the expression levels of APP protein in APP/

PS1 transgenic mouse brain. We also found that high-dose zinc

treatment results in reduced expression levels of ADAM10, but

enhances the levels of BACE1 and PS1, resulting in increased

secretion of sAPPb over sAPPa in the transgenic mouse brain.

Further, consistent with our in vivo data, high zinc (70 mM)

exposure suppresses a-secretase cleavage, but enhances b- and c-

secretase cleavage of APP and Ab generation in APPsw

overexpressing cells. Thus, our in vivo and in vitro studies clearly

show that high-dose zinc treatment enhances the amyloidogenic

APP cleavage pathway and Ab secretion. Interestingly, a recent

study involving APP/PS1 mice fed a zinc-deficient diet has shown

that such a diet increases the plaque volume but does not alter the

total plaque number in the brain [27]. Chronic high zinc- or

copper-treated mice overexpress APP-C100, which contains Ab
but not the N-terminal zinc and copper binding domain of APP,

resulting in reduced soluble Ab levels but with no changes in the

total Ab levels in the brain [54]. It has also been reported that

exposure to copper and, presumably, a mixture of other metals in

drinking water results in enhanced Ab deposition in the brains of

rabbits fed a high cholesterol diet [55]. Alain Boom and colleagues

showed that 100 mM zinc induced the appearance known to be

associated with increased tau phosphorylation, suggesting that zinc

plays a considerable role in the development of tau pathology

associated to Alzheimer’s disease [56]. On the other hand, some

reports have shown the protective effects of low micromolar

concentrations of zinc against Ab cytotoxicity [43,44,57]. So far,

the role of zinc in AD remains debatable. Both high and low zinc

could play a harmful role. Whether or not to supply zinc and what

the suitable dose range should be are topics worthy of future

research on AD. Taking these findings together with the present

evidence that high-dose zinc treatment leads to enhanced

amyloidogenic APP cleavage and Ab aggregation in the APP/

PS1 mouse brain and APPsw overexpressing cells, it can be

concluded that disturbed metal homeostasis is involved in multiple

steps of APP processing and Ab deposition by a series of

complicated mechanisms.

In summary, the present study provides evidence that chronic

exposure to high zinc levels in drinking water leads to an increase

in APP expression, amyloidogenic APP cleavage and Ab
deposition in the APP/PS1 transgenic mouse brain. The present

data, together with previous reports, suggest that excess zinc

exposure could be a risk factor for AD pathological processes, and

corrections of metal abnormalities in the brain are beneficial

strategies for AD prevention and therapy.

Materials and Methods

Ethics statement
The experimental procedures were carried out in accordance

with the regulations of the animal protection laws of China and

approved by the animal ethics committee of China Medical

University (JYT-20060948). All efforts were made to minimize

animal suffering and the number of animals used.

Animals and Treatments
Male APP/PS1 double transgenic mice (B6C3-Tg (APPswe,

PSEN1dE9) 85Dbo/J mice) were used in the present study

(breeding pairs were obtained from the Jackson Laboratory, West

Grove, PA). They were kept in cages in a controlled environment

(22–25uC, 50% humidity). Mice at the age of 3 months were

randomly assigned to one of two groups (n = 12 in each group). (1)

Control group: mice were given a standard diet (30 ppm zinc) and

deionized water ad libitum. (2) Zinc group: mice were given a

standard diet and deionized water containing ZnSO4 (20 mg/ml).

The doses of zinc chosen for this study were based on previous

reports showing that it produced no serious toxicity in C57BL/6

mice after chronic treatment [33]. The potential toxicity of high-

dose oral zinc on transgenic mice was evaluated by monitoring

their general aspect and body weight. As reported previously

[33,34], apart for a coat color change from black to bright brown

on the back, and a decline in body weight starting from the 14th

week after zinc treatment, no other overt signs of toxicity, such as

general behavioral and neurological changes, were observed in

mice on a high zinc diet during the entire observational period. At

the age of 9 months, blood samples were drawn from the heart just

prior to decapitation, and the levels of zinc in serum and brain

were analyzed using a polarized Zeeman atomic absorption

spectrophotometer (Hitachi 180-80, Japan).

Morris Water Maze
Morris water maze tests were carried out as previously described

with few modifications [58], using a circular tank, equipped with a
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digital pick-up camera to monitor the animal behavior and a

computer program for data analysis (ZH0065, Zhenghua Bio-

equipments, China). Briefly, one week before reaching the age of 9

months, transgenic mice were trained for 2 days to remember the

visible platform, which is placed in the center of the northwest

quadrant in the tank with opaque water. From the 3rd to 7th day,

the platform was placed just below the water surface (hidden

platform) for the place navigation test, and each mouse was

subjected to 3 trials per day with an inter-trial interval of 1 min.

For each trial, the latency to escape to the hidden platform and the

path length were recorded. At the 8th day, the platform was

removed from the tank for the probe trial. The number of times

the animal crossed the center of the northwest quadrant at an

interval of 1 min was recorded. Finally, data for the escape

latency, the path length and the number of passing times between

groups were analyzed statistically.

Tissue Preparation
The day after the Morris water maze tests, mice were

anaesthetized with sodium pentobarbital (50 mg/kg, i.p.) and

sacrificed by decapitation. The brains were removed immediately

and split sagittally into halves. The left hemisphere was kept at

280uC for Western blotting, RT-PCR or ELISA analyses. The

right hemisphere was further cut into two slabs. One was

immersed in 3% glutaraldehyde for zinc autometallographic

analysis while the other was placed in 4% paraformaldehyde for

immunohistochemical staining.

Autometallography and Stereological Assessment
AMG was performed to analyze the distribution of zinc in the

transgenic mouse brain according to our previous reports [20,59].

In brief, brain slices (2 mm) were cut with a vibratome and

immersed in a mixture of 3% glutaraldehyde and 0.1% sodium

sulfide at 4uC for 2 days. The slices were placed in 30% sucrose,

frozen with liquid nitrogen and 30-mm cryostat sections were

prepared. Brain sections containing typical hippocampal structures

from 2 groups were selected, placed in the same jar, and incubated

in AMG developer at 26uC for 60 min. The AMG development

was stopped by rinsing with 5% sodium thiosulfate for 10 min.

After several washes with distilled water, the sections were

dehydrated, covered with neutral balsam and examined with a

light microscope equipped with a digital color camera. The

sodium diethyldithiocarbamate trihydrate (DEDTC, Merck, 6689)

control procedures were performed to ensure the specificity of the

zinc ion staining [59].

The stereological assessment of zinc load in the AMG-stained

brain sections was performed as reported previously [18], and this

was carried out in matched brain areas from different groups.

Briefly, a set of every 6th systematically sampled 30-mm-thick

AMG-stained sections of the transgenic mouse brain (yielding

typically 5 sections/mouse) was selected. The total number of zinc-

positive plaques was counted using the optical fractionator

technique, while the area of zinc-positive plaques was analyzed

in the same sections using the area fraction technique. The data

were analyzed with Image-Pro Plus 6.0 software (Media

Cybernetics, USA).

Immunohistochemistry and Ab Load Measurements
Routine free floating ABC procedures were applied. Cryostat

sections (30 mm) were treated with 3% hydrogen peroxide (H2O2)

in PB for 10 min to reduce endogenous peroxidase activity. After

rinsing, the sections were treated with 5% bovine serum albumin

and 3% goat serum in TBS for 1 h. They were then incubated

with mouse anti-Ab (1:500, Sigma, A5213) overnight at 4uC. After

rinsing in TBS, the sections were incubated with 1:200 diluted

biotinylated goat anti-mouse IgG for 1 h at room temperature

(RT). The sections were then rinsed and treated with an ABC kit

for 1 h at RT. The sections were rinsed in TBS and incubated

with 0.025% 3, 3-diaminobenzidine (DAB) plus 0.0033% H2O2 in

TBS for 10 min. After rinsing, the sections were dehydrated,

covered with neutral balsam, and examined with a light

microscope. Control sections were incubated with normal serum

instead of Ab antibody followed by all subsequent incubations as

described above. The stereological assessment of Ab load in the

Ab-immunostained brain sections was performed according to the

above described procedure.

Cell Culture and Drug Treatment
Human neuroblastoma SHSY-5Y cells stably transfected with

human APPsw [28,29] were grown in DMEM supplemented with

10% heat-inactivated fetal calf serum, 100 U/ml penicillin,

100 mg/ml streptomycin and 200 mg/ml G418 at 37uC in

humidified 5% CO2 air. Cells were incubated in serum-free

medium for 2 h when they reached nearly 70% confluence. Then,

cells were incubated with ZnSO4 (1 mM, 70 mM), TPEN (1 mM) or

ZnSO4 (70 mM) plus TPEN (1 mM) for 8 h. The concentrations of

zinc and TPEN were selected based on routine MTT assay. To

analyze the zinc entry into the cells, the staining with a zinc-

specific fluorescent dye, Zinquin, was carried out by incubating the

cells with 0.24 mM Zinquin ethyl ester (Alexis, USA) for 30 min,

and then examining them under a fluorescent microscope

equipped with an image analysis system.

Western Blotting
The preparation of lysates from the transgenic mouse brain

samples and culture cells, and the Western blots were performed as

described previously [19,21]. Briefly, samples were homogenized

in an ice-cold lysis buffer. Each homogenate was centrifuged at

12,000 rpm for 30 min at 4uC, the supernatant was collected and

the total protein levels were measured using a BCA protein assay

kit. Proteins (50 mg) were separated on 8–15% SDS polyacryl-

amide gels according to the molecular weight of the detection

proteins, and transferred onto PVDF membranes using an

electron transfer device (45 V, overnight at 4uC). The membranes

were blocked with 5% non-fat milk in TBS containing 0.1%

Tween-20 for 1 h and then incubated with a primary antibody for

2 h at room temperature. The primary antibodies used were:

rabbit anti-ADAM10 (1:1000, Millipore, AB19026), rabbit anti-

APP695 (1:4000, Chemicon, AB5352), rabbit anti-BACE1

(1:1000, Sigma, B0681); goat-anti-PS1 (1:1000, Millipore,

MAB1563); mouse anti-sAPPa (1:500, IBM, 2B3, JP11088);

mouse anti-sAPPb (1:500, IBM, 6A1, JP10321); rabbit anti-APP-

CTFs (1:4000, Sigma, A8717), and mouse anti-GAPDH (1:10000,

KC-5G5, Kang Chen, 0811). Bound secondary antibodies were

visualized using an enhanced chemiluminescence kit (Pierce, CA).

Blots were repeated at least three times for every set of conditions.

The band intensities were quantified using Image-pro Plus 6.0

analysis software.

RT-PCR
Total RNA was isolated using Trizol reagent (Invitrogen) after

homogenizing the brain tissue samples. The isolated RNA was

examined by UV-spectroscopy at 260 nm. Total RNA (2 mg) of

each sample was first transcribed to cDNA using a Reverse

Transcription System kit (Promega, Madison, WI, USA). PCR

amplification was performed with reagents from Promega. The

cDNA solution was amplified with primers based on the human

APP sequences. The primer sequences were: APP: 59-GACT-
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GACCACTCGACCAGGTTCTG-39 (upstream), 59-CTTGAA-

GTTGGATTCTCATACCG-39 (downstream); GAPDH: 59-A-

CGGATTTGGTCGTATTGGG-39 (upstream), 59-CGCTCCT-

GGAAGATGGTGAT-39 (downstream). Amplification was per-

formed as follows: APP: 35 cycles of 95uC for 30 s, 62uC for 30 s

and 72uC for 30 s; GAPDH: 30 cycles of 95uC for 45 s, 58uC for

45 s, and 72uC for 60 s. The PCR products were normalized in

relation to standards of GAPDH mRNA. The results were

determined and quantified with ChemDoc XRS Quantity One

software.

ELISA
Ab levels were determined using ELISA assay as described

previously [21]. In brief, samples were placed in a 1:8 dilution of 5

M guanidine HCl/50 mM Tis HCl and thoroughly ground. The

homogenate was diluted with dilution buffer containing an

inhibitor protease complex and centrifuge at 12,000 rpm for

30 min at 4uC. The samples were then loaded on to 96-well plates

and the level of Ab was determined using ELISA kits for Ab1-40

(Kuregen, KU0821E-10) and Ab1-42 (Invitrogen, KHB 3441),

according to the manufacturers’ protocols. The absorbance was

recorded at 450 nm using a 96-well plate reader.

Statistical Analysis
Data are expressed as means 6 SEM. For water maze analysis

of latencies and path length, repeated measures analysis of

variance (ANOVA) were performed, and differences among

means were evaluated with multivariable ANOVA. Other

comparisons were analyzed by Student’s t test, and one-way

ANOVA Post hoc Fisher’s PLSD for cultured cells. All data were

analyzed using SPSS 13.0 software, and statistical significance was

assumed if p,0.05.
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