
Response to “Technical approaches to reduce interference of Fetal calf serum
derived RNA in the analysis of extracellular vesicle RNA from cultured cells”

Dear Editor

We read with great interest the article by Driedonks and
colleagues (2019) on “Technical approaches to reduce
interference of fetal calf serum derived RNA in the
analysis of extracellular vesicle RNA from cultured
cells” [1]. We would like to comment on our experience
utilizing FBS-EV “depletion” protocols, in the hope that
such a dialogue might be constructive to others investi-
gating EVs derived from cultured cells, and the future
evolution of FBS-EV “depletion” protocols.

Foetal bovine serum (FBS) extracellular vesicle (EV)
contamination in FBS-supplemented culture media is of
great concern to the EV-field, especially those assessing
in vitro EV (and exosome) cargo composition and char-
acterization from cultured cells [2]. We recognize the
valiant effort put forth by our colleagues, modifying exist-
ing EV “depletion” protocols [3] and maximizing reduc-
tions in residual FBS-EVs (and RNA species) within
supplemented culture media. Our concern remains, how-
ever, that despite the authors’ technical modifications (i.e.
adjusting serial serum dilutions and supernatant removal
techniques – decant versus pipette) of existing protocols,
there remain significant quantities of FBS-EVs (and RNA
species) present in the supernatant used for culture that is
difficult to isolate and remove. Using nanoparticle track-
ing analysis with ZetaVIEW®, our group has shown that
a large population (109 EVs/ml) of residual FBS-derived
EVs persist in EV- “depleted” FBS using a similar 18-h
ultracentrifugation protocol (20% FBS dilution, 100,000
×g with an SW41 Ti Rotor, k factor = 124) [4].
Additionally, previous reports have demonstrated that
FBS EVs may alter phenotype (and likely genotype) of
cultured cells [5–8]. We have also shown that FBS-EV-
“depleted”media provides suboptimal conditions for pri-
mary astrocyte growth and viability in culture [4].

Thus, these contaminant EVs not only influence the
ability to characterize the EVs isolated from conditioned
in vitro culture media but also may affect the underlying
cellular processes of those cells, including EV release
dynamics and EV cargos. More importantly, our field is
at the mercy of existing technological capabilities. There
remain relevant issues regarding limits of detection in

available technologies that reportedly quantify differ-
ences at the nano (10−9) scale [9,10]. Further, current
technologies available for EV quantification (e.g.
NanoSight, ZetaVIEW, qNano, High-Resolution Flow
Cytometry) produce inconsistent and unreliable results,
varying across institutions and laboratories [11,12].
Therefore, we contend that it remains impossible to
confidently assert that using existing methodologies for
FBS EV-depletion (i.e. ultracentrifugation [3], chemical-
based precipitation, size-exclusion chromatography,
ultrafiltration [13]) can reduce the number of FBS EVs
present within the resultant supernatant used to supple-
ment culture media to non-confoundable levels.

Based on our experience and perspective, we would
ask the EV-research field to reconsider the continued
use of FBS EV-“depletion” protocols for in vitro EV
(and exosome) analyses, and increase the focus towards
serum-free media alternatives [14,15]. Advancing
towards utilizing serum-free media, supplemented
with a necessary cocktail of growth factors to support
in vitro cell growth, may result in a better indication of
both physiologic and pathobiologic cellular processes,
in the absence of influential exogenous EVs [16]. Such
an approach may allow for more relevant understand-
ings of differential EV cellular dynamics and cargos
within specific cell types, leading towards novel diag-
nostic and/or therapeutic health-care options [17].
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