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Abstract

Background: The qualitative transcriptional characteristics, the within‐sample

relative expression orderings (REOs) of genes, are highly robust against batch effects

and sample quality variations. Hence, we develop a qualitative transcriptional

signature based on REOs to predict the biochemical recurrence risk of prostate

cancer (PCa) patients after radical prostatectomy.

Methods: Gene pairs with REOs significantly correlated with the biochemical

recurrence‐free survival (BFS) were identified from 131 PCa samples in the training

data set. From these gene pairs, we selected a qualitative transcriptional signature

based on the within‐sample REOs of gene pairs which could predict the recurrence

risk of PCa patients after radical prostatectomy.

Results: A signature consisting of 74 gene pairs, named 74‐GPS, was developed for

predicting the recurrence risk of PCa patients after radical prostatectomy based on

the majority voting rule that a sample was assigned as high risk when at least 37 gene

pairs of the 74‐GPS voted for high risk; otherwise, low risk. The signature was

validated in six independent datasets produced by different platforms. In each of the

validation datasets, the Kaplan‐Meier survival analysis showed that the average BFS

of the low‐risk group was significantly better than that of the high‐risk group.

Analyses of multiomics data of PCa samples from TCGA suggested that both the

epigenomic and genomic alternations could cause the reproducible transcriptional

differences between the two different prognostic groups.

Conclusions: The proposed qualitative transcriptional signature can robustly stratify PCa

patients after radical prostatectomy into two groups with different recurrence risk and

distinct multiomics characteristics. Hence, 74‐GPS may serve as a helpful tool for guiding

the management of PCa patients with radical prostatectomy at the individual level.
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1 | INTRODUCTION

Prostate cancer (PCa) is the second most frequently diagnosed

malignant tumor in men worldwide, with the highest morbidity rates

in the developed countries.1,2 In China, PCa has the most rapid rise of

incidence along with the increases of the aging population and the

implementation of advanced detection services in recent decades.3

The standard method to treat localized PCa patients is radical

prostatectomy, while approximately 20% to 40% of patients will

suffer from biochemical recurrence in 10 years.4,5 The prostate‐
specific antigen (PSA) level is an important indicator of biochemical

recurrence for localized and locally advanced PCa after radical

prostatectomy.6 Nevertheless, some PCa patients with poor prog-

noses have a low PSA level.7,8 The currently available clinical‐
pathological features, such as the Gleason grade group, clinical and

pathological stage and surgical margin,9,10 are unable to provide

accurate predictions for biochemical recurrence.11–13 Thus, it is

crucial to develop an accurate prognostic signature to predict the

recurrence risk for PCa patients after radical prostatectomy.

High‐throughput microarray and RNA‐sequencing technologies

facilitate researchers developing transcriptional prognostic signatures

for PCa patients.14–16 However, most of the reported transcriptional

signatures depend on risk threshold values summarized from the

quantitative expression measurements of the signature genes,14–16

which are easily vulnerable to the measurement variations from batch

effects introduced by laboratory conditions, reagent lots, and personal

differences. In fact, subtle quantitative values of gene expression

measurements are quite error‐prone.17 Data normalization methods for

removing batch effects might even exacerbate the batch problems18,19

and these methods are not suitable for individualized analysis of clinical

application. On the contrary, the within‐sample relative expression

orderings (REOs) of genes that are the qualitative features of

transcription have been proved to be robust against experimental

batch effects and differences in probe designs of different plat-

forms.20,21 The within‐sample REO is a promising feature for building

robust classifiers, for example top‐scoring pair (TSP)22 and k‐TSP23 with
existing R packages.24,25 Besides, the within‐sample REO can be

robustly analyzed individual sample without normalization, which is

suitable for individualized application in clinical practice.

More importantly, our previous studies have demonstrated that

different from the signatures based on quantitative expression measure-

ments of the signature genes, the REOs‐based qualitative signatures are

rather insensitive to the tumor cell percentage difference of specimen

sampled from different parts of the same tumor,26 the inescapably partial

RNA degradation27,28 and amplification bias of low‐input RNA samples.29

Based on these unique advantages of the within‐sample REOs, we have

developed the qualitative REOs‐based signatures for predicting the

prognosis of breast cancer,30,31 colorectal cancer,32 gastric cancer,33 liver

cancer,34 and lung cancer.35 Thus, it is worthwhile to develop a qualitative

prognostic signature for PCa patients after radical prostatectomy.

In this study, a qualitative REOs‐based signature consisting of 74

gene pairs, named as 74‐GPS, was developed to predict the

recurrence risk of PCa patients using 131 samples in the training

data set. A sample was assigned as high‐risk when at least 37 gene

pairs of the 74‐GPS voted for high risk; otherwise, low risk. This

signature was validated in six independent datasets produced by

different platforms, totally including 660 fresh‐frozen (FF) samples

and 106 formalin‐fixed paraffin‐embedded (FFPE) samples. Using the

multiomics data of PCa samples from The Cancer Genome Atlas

(TCGA), we analyzed the distinct transcriptomic, epigenetic, and

genomic differences between the two prognostic groups. The results

might be helpful for understanding the mechanisms of different

prognoses and guiding the management for PCa patients.

2 | MATERIALS AND METHODS

2.1 | Data collection and data preprocessing

Data for PCa were downloaded from the Gene Expression

Omnibus36 (GEO, http://www.ncbi.nlm.nih.gov/geo/) and TCGA

(http://cancergenome.nih.gov/) database. A total of 791 FF samples

from six datasets and 106 FFPE samples from the GSE54460 data set

with BFS data were analyzed, as described in Table 1. These datasets

were measured by different platforms, including single‐channel
microarray, dual‐channel microarray, and next‐generation sequen-

cing (NGS). For datasets measured by the Affymetrix platform, a

robust multi‐array average (RMA) algorithm was used to process the

raw mRNA expression data (.CEL files).37 For datasets measured by

the Illumina platform and the Stanford Functional Genomics Facility

dual‐channel platform, the processed data were directly used.

The level 3 mRNA‐seq profiles, DNA methylation profiles, and

copy number profiles used in the study were obtained from

cBioPortal (http://www.cbioportal.org/),38,39 which the gene expres-

sion values, the methylation values (β) of the CpG sites or the copy

number alternation status of regions had already been mapped to

Entrez gene IDs. We directly downloaded these processed data.

Overall, 20 436 genes for gene expression data, 16 182 genes for

DNA methylation data and 23 286 genes for copy number data were

analyzed in this study, respectively. The level 2 gene mutation data

were downloaded from TCGA portal. A discrete mutation profile

including 11 249 genes only with the nonsynonymous mutations

were generated.

2.2 | Survival analysis

The BFS time was calculated from the date of the resection to the

date of biochemical recurrence or the date of the last follow‐up visit.

The Cox proportional hazards regression model was used to calculate

the hazard ratios (HRs) and corresponding 95% confidence intervals

(CIs) and estimate the independent prognostic significance of the

signature after adjustment for clinic pathological factors including

Gleason grade group, surgical margins, preoperative PSA and

pathological stage. Harrell's concordance index (C‐index)40 was used

to quantify the overall concordance between the predicted risk
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classification and the BFS time. The log‐rank tests41 was used to

compute the p‐value for the differences between the Kaplan‐Meier

survival curves of BFS in two distinct subgroups.

2.3 | Development of the qualitative signature

For a gene pair (Ga, Gb), gene a and gene b with expression levels of

Ea and Eb, its REO (Ea>Eb or Ea<Eb) classified all samples into two

subgroups. If the two subgroups had significantly different BFS by

the univariate Cox proportional‐hazards regression model, the gene

pair was defined as a prognosis‐associated gene pair. The Storey

procedure was used to adjust the P‐values into false discovery rate

(FDR).42 The significant level was set at 20%. All prognosis‐
associated gene pairs were sorted in descending order according

to their C‐index values. A forward selection procedure was applied

to find the best subset of the prognosis‐related gene pairs that

achieved the highest C‐index in the training data set. The first gene

pair with the highest C‐index was selected as a seed and the other

prognosis‐related gene pairs were added into the seed one by one

based on the descending C‐index value if the gene pair can improve

the C‐index. The subset of prognosis‐related gene pairs with

the highest C‐index was chosen as the final prognostic signature.

The voting rule was as follows: a patient was classified into the high‐
risk group when at least 50% of the gene pairs voting for high risk;

otherwise, the patient was classified into the low‐risk group. The

R‐codes for developing the REOs‐based signature were available in

Supporting Information Methods.

2.4 | Analysis of epigenomic and genomic data

The RankCompV2 method, which is insensitive to batch effects,43

was used to identify differentially expressed genes (DEGs) between

the high‐risk and low‐risk groups of PCa samples. the Wilcoxon rank‐
sum test was used to identify differentially methylated genes

(DMGs). Fisher's exact test was used to detect genes whose

frequencies of copy number alteration or mutation were significantly

different between two prognostic groups of TCGA samples.

2.5 | Direction concordance scores

If k genes were overlapped between two DEGs lists identified from two

datasets, of which s genes showed the same dysregulated direction

(both up‐ or downregulated in the high‐risk group compared to the low‐
risk group), then the direction concordance score was computed as s/k.

Similarly, if k genes were overlapped between two DMGs lists identified

from two datasets, of which s genes showed both hyper‐ or

hypomethylated in the high‐risk group compared with the low‐risk
group, then the direction concordance score was computed as s/k.

For k DMGs, if s genes were upregulated (or downregulated) and

TABLE 1 Description of the datasets used in this study

PC131 PC332 PC111 PC92 PC89 PC36 PC106

Accession GSE21032 TCGA GSE70768 GSE70769 GSE40272 GSE46602 GSE54460

Platform GPL10264 Illumina Hiseq‐
RNAseqV2

GPL10558 GPL10558 GPL9497 GPL570 GPL11154

Sample size 131 332 111 92 89 36 106

Sample type FF FF FF FF FF FF FFPE

Age 58 61 62 ‐ 62 63 61.7

Median follow‐up
period (mo)

54.5 (1.9‐149.2) 28.9 (0.2‐163.6) 34 (2‐66.8) 79.6 (1.8‐122.3) 43.3 (0‐116) ‐ 68.5 (0.7‐180.6)

Pathologic stage

T1‐T2 85 ‐ 33 48 ‐ 19 87

T3‐T4 46 ‐ 78 42 ‐ 17 18

NA 0 ‐ 0 2 ‐ 0 1

Median preoperative

PSA (ng/mL)

8.5 (1.1‐132) 9.8 (0.8‐87) 8.6 (3.2‐23.7) 11 (1.5‐117) 6.7 (2.1‐44.5) 18.2 (5.3‐42.5) 10.9 (1.8‐72.6)

Gleason grade group

1 41 ‐ 17 20 13 16 11

2‐3 74 ‐ 85 55 65 15 80

4 8 ‐ 8 5 4 4 10

5 7 ‐ 1 10 7 1 5

NA 1 ‐ 0 2 0 0 0

Surgical margin

positive 31 69 26 42 10 16 40

negative 100 244 85 50 78 20 61

NA 0 19 0 0 1 0 5

Abbreviations: FF, fresh‐frozen; FFPE, formalin‐fixed paraffin‐embedded; NA, not available; PSA, prostate‐specific antigen.
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correspondingly hypomethylated (or hypermethylated), the direction

concordance score was computed as s/k. This score was used to

calculate the reproducibility of DEGs identified from multiple indepen-

dent datasets and the consistency between DEGs and DMGs. The

cumulative binomial distribution model44 was used to evaluate whether

the case of observing a direction concordance score of s/k is random:
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where pe = 0.5 is the probability of one gene having the concordant

dysregulated direction in two lists of genes by chance.

2.6 | Functional enrichment analysis

The gene categories for functional enrichment analysis were performed

on the Kyoto Encyclopedia of Genes and Genomes.45 The hypergeo-

metric distribution model46 was applied to determine the significance of

biological pathways enriched by genes of interest. The Benjamini and

Hochberg procedure47 was used to estimate the FDR. Statistical

analysis was carried out with the R software package version 3.5.1.

3 | RESULTS

3.1 | Development of the qualitative REOs‐based
signature

The general workflow of this study is described in Figure 1. Total,

131 FF PCa samples measured by the GPL10264 platform (Table 1),

denoted as PC131, were used as the training data set. Using the

univariate Cox proportional‐hazards regression model with FDR <

20%, we found 80 genes with expression levels significantly

correlated with the BFS of PCa patients after radical prostatectomy.

A total of 3160 gene pairs consisting of every two of the 80

prognosis‐associated genes were constructed and each gene pair

classified all samples into two subgroups according to its REO in each

sample. Using the univariate Cox proportional‐hazards regression

model with FDR < 20%, 1205 prognosis‐associated gene pairs were

identified and sorted in descending order according to their C‐index
values. Then, based on a forward selection method (see Section 2), 74

gene pairs with the highest C‐index (C‐index = 0.87) were chosen as

the final prognostic signature, denoted as 74‐GPS (Table 2). Patients

were classified into the high‐risk group when at least 37 of 74 gene

pairs suggested that this patient was at high risk; otherwise, the low‐
risk group. According to this decision rule, samples in the training

data set were stratified into two subgroups: 108 samples in the low‐
risk group and 23 samples in the high‐risk group, and the BFS of the

former group were significantly better than the latter group

(HR = 63.23, 95% CI: 18.56‐215.40, P < 2.2 × 10−16, C‐index = 0.87,

Figure 2A). A multivariate Cox regression analysis revealed that the

74‐GPS still displayed significant correlations with patients' BFS in

the training data set if the clinical factors of Gleason grade group,

surgical margins, preoperative PSA and pathological stage were

considered, as shown in Figure 3.

3.2 | Validation of the qualitative REOs‐based
signature

The first validation data set included 332 FF samples from TCGA,

denoted as PC332. The 172 patients predicted to be at the low‐risk
recurrence group had a significantly better BFS than the 160

patients predicted to be at the high‐risk group (HR = 2.02, 95% CI:

1.06‐3.83, P = 2.78 × 10−2, C‐index = 0.60; Figure 2B). The second

validation data set included 111 FF samples measured by the

GPL10558 platform, denoted as PC111. The signature classified 98

F IGURE 1 Overview of the workflow used in this study. The
workflow includes three major steps: the development of the REOs‐
based signature in the training datasets (Step 1), the validation of the
signature in the six independent validation datasets (Step 2), and the
multiomics characteristics analyses of the two prognostic groups

(Step 3). CNV, copy number variation; DNA methy, DNA
methylation; Exp, expression; REOs, relative expression orderings
[Color figure can be viewed at wileyonlinelibrary.com]
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and 13 samples into the low‐risk and high‐risk groups, respectively

while the BFS of the former were significantly better than the latter

(HR = 4.69, 95% CI: 1.63‐13.51, P = 1.15 × 10−2, C‐index = 0.61;

Figure 2C). The signature was also verified in the other three

validation datasets with 92, 89, and 36 FF samples, respectively.

Each group of patients at the low‐risk had significantly longer BFS

than the group of patients at the high‐risk in all datasets (Figure 2D‐F).
Notably, 106 FFPE samples in the data set GSE54460 were

successfully stratified into two different prognostic groups: 91 patients

at the low‐risk group had a significantly better BFS than 15 patients at

the high‐risk group (HR = 2.68, 95% CI: 1.40‐5.14, P = 6.82 × 10−3,

C‐index = 0.57; Figure 2G). As we know, FFPE samples always suffer

RNA degrade during the process of preparation and storage, which

hampers the clinical application of quantitative transcriptional

signatures.27,48

The multivariate Cox regression analysis was also performed in

the validation datasets. The results showed that the signature

remained significantly associated with patients' BFS in the datasets

PC332, PC111, PC92, and PC89 after adjusting the available clinic

pathological factors. The detailed information was shown in Figure 4

and Table S1.

3.3 | Distinct transcriptional and functional
characteristics of the two prognostic groups

With 10% FDR control, 177 DEGs and 1250 DEGs were identified by

RankCompV2 between the high‐ and low‐risk prognostic groups of

the datasets PC131 and PC332, respectively. These two lists of DEGs

shared 84 genes, of which 83 genes showed the same dysregulated

directions in the high‐risk group compared with the low‐risk group,

with a direction concordance score of 98.81% which was unlikely

observed by chance (binomial distribution test, P < 2.2 × 10−16, see

Section 2). Besides, the direction concordance scores between every

two of the DEGs lists detected from the seven datasets were all

unlikely happened by chance (see Table S2). These results suggested

that the distinct transcriptional characteristics of the two prognostic

groups were highly reproducible in the independent datasets.

With FDR < 10%, functional enrichment analysis for the 1250

DEGs identified from TCGA samples in the data set PC332 revealed

that the genes upregulated in the high‐risk group were significantly

enriched in pathways associated with cell proliferation, such as the

PI3K‐Akt signaling pathway and the TGF‐beta signaling pathway,

whereas the downregulated genes were significantly enriched in

TABLE 2 The composition of the 74‐GPS

Pair 1‐25 Gene A Gene B Pair 26‐50 Gene A Gene B Pair 51‐74 Gene A Gene B

pair1 ENG CEBPD pair26 ASPN ZNF622 pair51 COL5A2 HELB

pair2 INHBA CFDP1 pair27 INHBA ITGA11 pair52 RELN CTHRC1

pair3 ZHX3 TACC2 pair28 ASPN OLFML2B pair53 BGN TACC2

pair4 OLFML2B HELB pair29 ENG TJP2 pair54 PPP2R2C TACC2

pair5 COL1A1 HSPA1B pair30 ZHX3 CCNL1 pair55 FOLH1B TACC2

pair6 NOTCH3 CEBPD pair31 LTBP2 ZNF334 pair56 THBS2 CEBPD

pair7 PPP2R2C CFDP1 pair32 RELN CLEC14A pair57 BGN FZD5

pair8 COL3A1 ZFP36 pair33 COL8A1 HELB pair58 POSTN FZD5

pair9 COL1A1 NXF1 pair34 TACC2 ZNF532 pair59 COMP DLL4

pair10 THBS2 CCNL1 pair35 FOLH1B ZNF532 pair60 SFRP4 JUNB

pair11 ZHX3 TEP1 pair36 LTBP2 CCNL1 pair61 COL8A1 HOPX

pair12 NIPA1 ZNF532 pair37 COL3A1 TJP2 pair62 ESM1 HOPX

pair13 COL3A1 TACC2 pair38 CLSTN2 FZD5 pair63 LTBP2 CFDP1

pair14 XPO6 NXF1 pair39 COL3A1 FZD5 pair64 CLSTN2 ZFP36

pair15 HOPX HELB pair40 CLSTN2 CCNL1 pair65 FOLH1 CEBPD

pair16 CDH13 HELB pair41 TCF19 HELB pair66 FAP LAMP5

pair17 POSTN SLC25A17 pair42 OR,2T2 CTHRC1 pair67 CCNL1 FZD5

pair18 NIPA1 CCNL1 pair43 SFRP4 HOPX pair68 CXCL14 TACC2

pair19 ASPN NOX4 pair44 NOTCH3 XPO6 pair69 CTHRC1 DLL4

pair20 FOLH1B HSPA1B pair45 PPP2R2C ITGA11 pair70 PYDC2 MAB21L3

pair21 COL3A1 XPO6 pair46 OR,2T11 OLFML2B pair71 COL10A1 ABCC11

pair22 HOXC4 HELB pair47 THY1 ITGA11 pair72 CDH13 ZNF334

pair23 COL1A1 CCNL1 pair48 CXCL14 CCNL1 pair73 CCNL1 CEBPD

pair24 COMP TJP2 pair49 DLL4 HELB pair74 CPS1 COL5A2

pair25 COL3A1 ENG pair50 NIPA1 ZFP36

Note: Gene pair votes for high‐risk when Gene A has a higher expression level than Gene B in a sample.
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metabolic pathways, such as fatty acid degradation pathway and

glutathione metabolism pathway (hypergeometric distribution model,

FDR < 10%, Table S3). These results indicated that the tumor cells in

the high‐risk patients might grow faster than that in the low‐risk
patients and experience dysregulated metabolism, which led to poor

prognosis of PCa patients.49,50

3.4 | Distinct epigenomic characteristics of the two
prognostic groups

In the TCGA data set PC332, 160 samples and 172 samples with DNA

methylation data were classified into the high‐risk prognostic group

and the low‐risk prognostic group by the 74‐GPS, respectively. Using
the Wilcoxon rank‐sum test with FDR < 1%, 1631 hypermethylated

and 624 hypomethylated genes were identified from the high‐risk
prognostic group compared with the low‐risk prognostic group,

respectively. There were 12.94% of 1631 hypermethylated genes

overlapped with the 1250 DEGs between the two different prognostic

groups. The direction concordance score of hypermethylation with

downregulation was 94.31%, which was extremely unlikely happened

due to chance (binomial distribution test, P < 2.2 × 10−16). Similarly,

11.86% of 624 hypomethylated genes were overlapped with DEGs

between the high‐risk prognostic groups and low‐risk prognostic

groups. The direction concordance score of hypomethylation with

upregulation was 93.24%, which was also extremely unlikely happened

due to chance (binomial distribution test, P = 8.88 × 10−16).

An additional 160 samples without the recurrence information in

the TCGA data portal, denoted as PC160, were used to confirm the

epigenomic characteristics of the two prognostic groups. In data set

F IGURE 2 The Kaplan‐Meier curves of biochemical recurrence‐free survival for the training and validation datasets. The Kaplan‐
Meier curves of biochemical recurrence‐free survival for the training data set PC131 (A) and the six validation datasets PC332 (B),

PC111 (C), PC92 (D), PC89 (E), PC36 (F), and PC106 (G). A sample was assigned into the high‐risk group (red lines) when at least 37

gene pairs of the 74‐GPS voted for high‐risk; otherwise, the low risk group (blue lines). GPS, gene pairs [Color figure can be viewed at

wileyonlinelibrary.com]
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PC160, 98 samples and 62 samples with DNA methylation data were

classified into the high‐risk prognostic group and the low‐risk
prognostic group by the 74‐GPS. With 10% FDR control, 588 DEGs

were identified by RankCompV2 between the high‐ and low‐risk

prognostic groups. The direction concordance score of DEGs from

data set PC160 and data set PC332 was 100% (425/425). Using the

Wilcoxon rank‐sum test with FDR < 10%, 542 hypermethylated and

237 hypomethylated genes were identified from the high‐risk

F IGURE 3 Univariate and multivariate
Cox regression analyses for the 74‐GPS in
the training data set. The forest plot of

univariate (blue lines) and multivariate
(orange lines) Cox regression analysis of the
predictive signature and available

prognostic factors in the training data set
PC131. Red color indicates significant
P values. P < .1. GPS, gene pairs [Color figure

can be viewed at wileyonlinelibrary.com]

F IGURE 2 Continued
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prognostic group compared with the low‐risk prognostic group,

respectively. The direction concordance score of DMGs from data set

PC160 and data set PC332 was 97.98% (339/346). Moreover, the

direction concordance scores of hypermethylation with downregula-

tion and hypomethylation with upregulation in data set PC160 were

95.83% (23/24) and 97.50% (39/40), respectively. All the direction

concordance scores were extremely unlikely happened due to

chance, as shown in Table S4 and S5. The consistent and reproducible

results observed in datasets PC332 and PC160 implied that the

epigenetic alterations may cause reproducibly transcriptional altera-

tions between different prognostic groups.

3.5 | Distinct genomic characteristics of the two
prognostic groups

The 331 samples with copy number alteration data in the data set

PC332 were divided into 160 high‐risk samples and 171 low‐risk

F IGURE 4 Univariate and multivariate

Cox regression analyses for the 74‐GPS in
the validation datasets. The forest plot of
univariate (blue lines) and multivariate

(orange lines) Cox regression analyses of
the predictive signature and available
prognostic factors in the validation

datasets PC332 (A), PC111 (B), PC92 (C),
and PC89 (D). Red color indicates
significant P values. P < .1. GPS, gene pairs
[Color figure can be viewed at

wileyonlinelibrary.com]
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samples, respectively. A total of 10,342 genes were with significantly

higher copy number alteration frequencies in the high‐risk group

than in the low‐risk group (Fisher exact test, FDR < 5%). Then 6.48%

of 2378 genes frequently amplified in the high‐risk group were

shared in the DEGs list, of which 68.18% were upregulated in the

high‐risk group. This was unlikely happened due to chance (binomial

distribution test, P = 3.75 × 10−6). Moreover, Among the 7964 genes

frequently deleted in the high‐risk group, 457 genes were shared in

the DEGs list, of which 61.49% were downregulated in the high‐risk
group. This was also unlikely happened due to chance (binomial

distribution test, P = 5.16 × 10−7).

The 109 samples with copy number variation data in the data

set PC131 were divided into 24 high‐risk samples and 85 low‐risk
samples by the 74‐GPS, respectively. With 5% p‐value control, 4020

DEGs were identified by Student`s t‐test between the high‐ and

low‐risk prognostic groups with a direction concordance score of

97.08% (333/343) in the data set PC332. A total of 2957 genes had

significantly higher copy number alteration frequencies in the high‐
risk group than in the low‐risk group (Fisher exact test, P < 5%), with

a direction concordance score of 94.40% (1483/1571) in the

datasets PC332. And the direction concordance scores of amplifica-

tion with upregulation and deletion with downregulation in the

high‐risk group of the data set PC131 were 74.47% (70/94) and

61.80% (406/657), respectively. All the direction concordance

scores were unlikely happened due to chance, as shown in Table

S4 and S6.

In the data set PC160, 98 samples and 62 samples with copy

number variation data were classified into the high‐risk prognostic

group and the low‐risk prognostic group, respectively. A total of

4893 genes had significantly higher copy number alteration

frequencies in the high‐risk group than in the low‐risk group (Fisher

exact test, P < 5%), with a direction concordance score of 74.47%

(2138/2871) in the datasets PC332. And the direction concordance

score of amplification with upregulation in the high‐risk group was

82.26% (51/62). All the direction concordance scores were also

unlikely happened due to chance (shown in Table S4 and S6).

The results observed in the datasets PC332, PC131, and PC160

implied that these copy number alterations, especially amplification,

may cause reproducibly transcriptional alterations between different

prognostic groups.

Using Fisher's exact test with P < .1, 84 genes whose mutation

frequencies tended to be different were detected between the 160

high‐risk samples and the 171 low‐risk samples with somatic mutation

data in the data set PC332 (Table S7). Impressively, all of the 84 genes

had higher mutation frequencies in the high‐risk group than in the low‐
risk group, which was unlikely to happen due to chance (binomial

distribution test, P < 2.2 × 10−16). In the data set PC160, 12 genes

whose mutation frequencies tended to be different were detected

between the 97 high‐risk and the 62 low‐risk samples with somatic

mutation data (Fisher's exact test, P < .1). In both the data set PC160

and PC332, TP53 was with significantly higher mutation frequencies in

the high‐risk group than in the low‐risk group. It has been reported that

TP53 mutation is correlated with metastasis and poor prognosis of PCa

patients.51–53 Functional enrichment analysis showed that these 84

mutation genes were significantly enriched in focal adhesion and

PI3K‐Akt signaling pathways (hypergeometric distribution model,

FDR <10%), suggesting that mutation‐induced alternation of genes in

these pathways might lead a poor outcome of PCa patients.

4 | DISCUSSION

In this study, we developed a qualitative transcriptional signature,

74‐GPS, to predict the recurrence risk of PCa patients after radical

prostatectomy, which was validated in six independent datasets

produced by different platforms, including a total of 660 FF and 106

FFPE samples. The further multiomics data analyses showed that the

distinct transcriptomic, epigenetic, and genomic landscapes between

the high‐risk and low‐risk groups might be helpful to understand the

mechanisms of different prognoses and prescribe more specific and

proper treatments for PCa patients. Consistent with our previous

study,34 the qualitative REOs‐based prognostic signature is highly

robust against experimental batch effects and differences in probe

designs of different platforms. Besides, the signature can be readily

applied at an individualized level without data normalization, which is

more reliable and practical than quantitative signatures for risk

prediction.54

At present, most of the clinical tissue samples are fixed in FFPE

blocks,55–57 and stored in hospitals and tissue banks, which is a huge

and precious resource for clinical research.58 Nevertheless, FFPE

samples are generally considered unreliable for gene expression

analysis because of RNA degradation during preparation and storage.

As shown in our previous study,27 the expression measurements of

thousands of genes had at least two‐fold change in FFPE

samples compared with paired FF samples. Therefore, quantitative

signatures based on gene expression measurements of FFPE (or FF)

samples could not be applied to FF (or FFPE) samples directly. In

contrast, as demonstrated in our previous study27 and confirmed in

this study, most of the REOs of gene pairs in FFPE samples were

insensitive to partial RNA degradation, which makes it possible to be

easily applied to both FF and FFPE samples.

One limitation of our study was that all samples for the

development and validation of the signature were from the public

databases. We noticed that compared with preoperative PSA and

surgical margins, the signature lost significance in the datasets

PC36 and PC106, which might be attributed to the inherent

limitations in the public domain data available, such as the small

sample size of data set PC36 or the poor quality of gene

expression measurements for FFPE samples in data set PC106.

Although the multivariate Cox regression analysis of samples

integrated from datasets PC111, PC92, PC36, and PC106 with the

common available clinical‐pathological factors showed that the

signature remained significantly associated with patients' BFS

(shown in Table S1 and Figure S1), it is necessary to collect an

additional data set of independent samples in our future work to

validate our signature. For the sake of more reliable prediction
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under some circumstances, the 74‐GPS could be combined with

preoperative PSA and surgical margins to predict the biochemical

recurrence for PCa patients.

The multiomics analysis of TCGA samples played an essential

role in uncovering the underlying molecular mechanisms of

determining different prognoses of PCa patients after radical

prostatectomy. For example, gene PDGFRB in the PI3K‐Akt
signaling pathway, which was upregulated with concordant

hypomethylation in the high‐risk group, can regulate cell growth,

division, and migration59,60 and is correlated with bone metastases

and biochemical recurrence of PCa patients.61,62 In addition, gene

THBS1 in the TGF‐beta signaling pathway, which was upregulated

with consistent hypomethylation alteration in the high‐risk group,

has been reported to be positively associated with the invasion of

PCa and the recurrence of PCa patients after radical prostatect-

omy.63 These results provided evidence that the tumor cells of

high‐risk patients own faster growth and stronger migration

abilities, which result in poorer prognoses.

According to the National Comprehensive Cancer Network

(NCCN) guidelines for prostate cancer patients after radical

prostatectomy,64 PSA measurements should be performed every 6

to 12 months and a digital rectal examination (DRE) is recommended

annually for the first 5 years. For PCa patients assigned as high risk

by the signature, we suggest that more close follow‐ups, such as PSA

testing every 3 months and DRE every 6 months for the first 5 years,

maybe better to detect disease progression timely. This study may be

helpful to guide management and improve prognoses for PCa

patients after radical prostatectomy.

5 | CONCLUSION

In conclusion, the qualitative REO‐based 74‐GPS is a robust

individual‐level prognostic signature for predicting the BFS of

postsurgical PCa patients from different hospitals equipped with

different platforms. The PCa patients who identified with a high risk

of biochemical recurrence by the signature should have timely

treatments or close follow‐ups.
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