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Abstract
Osteoarthritis (OA) is one of the most debilitating diseases and is
associated with a high personal and socioeconomic burden. So far, there is
no therapy available that effectively arrests structural deterioration of
cartilage and bone or is able to successfully reverse any of the existing
structural defects. Efforts to identify more tailored treatment options led to
the development of strategies that enabled the classification of patient
subgroups from the pool of heterogeneous phenotypes that display distinct
common characteristics. To this end, the classification differentiates the
structural endotypes into cartilage and bone subtypes, which are
predominantly driven by structure-related degenerative events. In addition,
further classifications have highlighted individuals with an increased
inflammatory contribution (inflammatory phenotype) and pain-driven
phenotypes as well as senescence and metabolic syndrome phenotypes.
Most probably, it will not be possible to classify individuals by a single
definite subtype, but it might help to identify groups of patients with a
predominant pathology that would more likely benefit from a specific drug or
cell-based therapy. Current clinical trials addressed mainly
regeneration/repair of cartilage and bone defects or targeted
pro-inflammatory mediators by intra-articular injections of drugs and
antibodies. Pain was treated mostly by antagonizing nerve growth factor
(NGF) activity and its receptor tropomyosin-related kinase A (TrkA).
Therapies targeting metabolic disorders such as diabetes mellitus and
senescence/aging-related pathologies are not specifically addressing OA.
However, none of these therapies has been proven to modify disease
progression significantly or successfully prevent final joint replacement in
the advanced disease stage. Within this review, we discuss the recent
advances in phenotype-specific treatment options and evaluate their
applicability for use in personalized OA therapy.
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Introduction
Osteoarthritis (OA) is a multi-factorial, mostly slowly progress-
ing, and primarily non-inflammatory degenerative disorder 
of the synovial joints that is often age related and/or trauma  
induced. Degradative processes eventually lead to the irre-
versible destruction of the articular cartilage and other tissues  
of the joints. Although OA is the most common musculoskeletal 
condition worldwide that causes significant health, economic, 
and social problems, research efforts so far have not been 
able to define its exact etiology. Age-related wear of articular  
cartilage and subchondral bone, limb overuse, overloading and  
mal-alignment, genetic disorders, and metabolic syndromes  
(obesity, inflammatory responses, and diabetes) are important  
players in the onset and progression of OA1,2. For many  
years, strong and cost-intensive efforts have been undertaken 
to develop therapies to improve care, quality of life, and pain 
relief for OA patients. Therapeutic approaches predominantly  
addressed symptoms and tried to modify/improve structural  
features of affected joint tissues. Despite this, no therapies 
have been able to halt or delay OA progression satisfactorily 
or provided effective and long-lasting symptomatic relief.  
Currently, joint replacement with an artificial prosthesis is the  
most effective measure to improve pain sensation and quality 
of life in patients. The development of novel therapeutic  
approaches targeting the osteoarthritic degradative and inflam-
matory processes in cartilage, synovium, or bone requires a  
deep understanding of the disease status of these joint tissues 
at the time of the intervention. It is crucial to apply therapies 
at the early stages of the disease prior to major structural and 
functional alterations in the osteochondral unit; otherwise,  
these interventions will not be successful3. Structural and  
clinical features of OA are characterized by a high interpatient  
variability. This heterogeneity is considered to be a major  
factor associated with the complexity of OA and the ongoing  
difficulties to identify “one size fits all” therapies4,5.

It is accepted that defining OA subgroups based on risk factors 
is too simple, so it is of high clinical interest to identify  
specific OA phenotypes (subgroups of patients with similar  
clinically observable characteristics, i.e. genetic predispositions 
combined with environmental factors leading to tibiofemoral 
OA) and endotypes (disease subtypes defined functionally and  
pathologically by a molecular mechanism, i.e. different  
mechanisms leading to the same phenotype as tibiofemoral OA), 
which are the basis of accurate prognosis and development of 
personalized therapies5. Several attempts have been made to  
group and identify OA phenotypes according to pathobiologi-
cal mechanisms. Felson defines criteria for characterizing OA 
phenotypes via an epidemiological approach4. He discriminates 
between generalized arthritis and joint-specific OA, secondary 
and primary OA, and incident and progressive OA. Another  
intriguing perspective is presented by Berenbaum et al., who 
provide a novel definition of OA as a “mismatch disease”  
commonly referred to by evolutionary biologists6. This is  
defined as a condition that is more common today than in the  
past because the human body is not well adapted to certain  
features of modern environments. These features are high  
levels of physical inactivity, chronic low-grade inflammation, 
high body mass index, and obesogenic diets (processed foods  

which are high in sugar and saturated fat and low in fiber content).  
Other distinctions include the following phenotypes: chronic pain 
with central sensitization, inflammation, metabolic syndrome,  
bone and cartilage metabolism, and mechanical and minimal  
joint disease7. Deveza et al. divide according to mechanistic  
subgroups including senescence, inflammation, pain, and metabolic 
endotypes5.

However, one thing has to be kept in mind when trying to  
define subgroups of OA. Although OA can be initiated by  
multiple factors at multiple sites, mechanical overloading 
is still the key feature of its pathogenesis. Joint tissues are  
sensitive to physical stimuli, and OA may result from  
excessively aberrant or physiologically normal mechanical 
stresses on initially healthy or pathologically impaired  
articular cartilage, bone, and ligaments, respectively8. Brandt 
et al. pointed out in a commentary that they feel all OA is  
secondary due to the accumulation of intra-articular (i.a.) stress 
and all OA is primarily driven by mechanical stress on the  
joint9. They postulate a basic mechanical etiopathogenesis for 
common OA and would rather categorize it on the basis of the  
underlying mechanical abnormality like post-traumatic, failure 
to absorb repetitive impulsive loading, and congenital or  
developmental anatomic incongruities.

This review will select key OA pheno-endotypes according to 
relevant literature and current clinical trials/therapies that have  
been the most promising targets for recent clinical or pre-clinical 
studies.

Treatments targeting articular cartilage
OA is characterized by the degradation of articular cartilage 
and bone matrix components. Among the earliest are type II  
collagen and the proteoglycan aggrecan, leading to the loss of 
cartilage structure and function10,11. Cartilage matrix degen-
eration products are well investigated for drug target discovery.  
Several key anabolic and catabolic pathway enzymes are  
dysregulated in OA cartilage, providing the opportunity to  
identify and validate new drug targets12. To this end, novel  
combinations addressing existing known targets may be  
identified. This also includes combinations of therapeutics 
that are anti-catabolic and those that target anabolic signaling  
pathways. If investigated, this might lead to identifying novel  
efficacious add-ons from combining known drugs and targets.  
For better classification, there should be discrimination  
between disease-modifying OA drugs (DMOADs), which target 
pathways of cartilage catabolism and anabolism, and regenerative 
strategies based on stem cells and their components.

Anabolic drug: sprifermin
A promising anabolic DMOAD is sprifermin, which is a  
truncated version of human FGF18 that induces chondrocyte  
proliferation and cartilage matrix production. The results of 
a phase Ib study of i.a. injected sprifermin in patients with  
symptomatic knee OA found a statistically significant dose- 
dependent reduction in loss of total femorotibial cartilage  
thickness compared to placebo after 12 months of follow up13.  
Sprifermin is currently being studied in a phase II multicenter 
randomized dose-finding clinical study (clinicaltrials.gov: 
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NCT01919164). The i.a. administration of 100 μg of sprifermin 
to participants with symptomatic radiographic knee OA every  
6 or 12 months vs. placebo resulted in an improvement in  
total femorotibial joint cartilage thickness after a follow up 
period of 2 years. This improvement was statistically significant, 
but clinical importance was not clear. Application of a lower 
dose, 30 μg of sprifermin, every 6 or 12 months vs. placebo 
did not result in a significant difference and it was uncertain  
whether the response was long lasting14 (Table 1A).

Anabolic drug: BMP-7
Another approach was the application of BMP-7, where  
studies have shown a pro-anabolic effect, making BMP-7 a  
potential candidate to promote articular cartilage repair. 
Three clinical trials (two phase I and one phase II) inves-
tigated the administration of BMP-7 in patients with knee 
OA. Two trials were completed without results being posted 
(NCT01133613 and NCT01111045), and one was completed with  
results published (NCT00456157)15. There was no dose-limiting  

Table 1. Current OA drug targets addressing several proposed OA phenotypes.

Target Drug Trial ID Affected 
joint

Results

A) Treatments targeting cartilage

Inhibition of 
cartilage matrix 
degradation

MMP-inhibitor PG-116800 NCT00041756 knee OA Termination due to 
musculoskeletal toxicity12

Cartilage matrix 
regeneration

Sprifermin (truncated human 
FGF18)

NCT01919164 Knee OA Improvement in total 
femorotibial joint cartilage 
thickness13,14

Cartilage matrix 
regeneration

BMP-7 or OP-1 NCT01133613, NCT01111045, 
NCT00456157

Knee OA Pain improvement in BMP-7 
group and placebo group15

B) Treatments targeting subchondral bone

Bisphosphonates/
bone turnover

Zoledronic acid Knee OA Reduced BML size and visual 
analogue scale pain score16,17

Risedronate Knee OA Reduced pain in patient 
subgroup with BMLs18

AXS-02 (disodium zoledronate 
tetrahydrate)

NCT02746068 Knee OA Reduced pain in patient 
subgroup with BMLs19

Inhibition of bone 
degradation

Cathepsin K inhibitor MIV-711 EudraCT: 2015-003230-26, 2016-
001096-73

Knee OA Slowdown of bone and 
cartilage degeneration20

C) Treatments targeting inflammatory processes

IL-1 Anakinra (IL-1 receptor antagonist) NCT00110916 Knee OA No improvements of OA 
symptoms21

AMG 108 (fully human monoclonal 
antibody to IL-1R1)

NCT00110942 Knee OA Minimal clinical benefit22

Lutikizumab (anti IL-1α/β antibody) NCT02087904 Knee OA No improvement in synovitis, 
minimal effect on WOMAC 
pain score23

NCT02384538 Hand OA No improvement in pain or 
imaging outcomes24

Tumor necrosis 
factor-alpha

Adalimumab ACTRN12612000791831 Erosive 
hand OA

No effect on pain, synovitis, or 
BMLs25

Knee OA Effective pain reduction, 
increased physical function26

Etanercept NTR1192 (EHOA) Erosive 
hand OA

No pain relief, decrease in 
serum MMP-3 levels27,28

Infliximab Hand OA In recent-onset RA patients, 
treatment reduced progression 
of hand OA29

Toll-like receptor 7/9 Hydroxychloroquine Hand OA Failed to show efficacy30,31

I-kB kinase SAR113945 (I-kB kinase inhibitor) NCT01113333, NCT01598415, 
NCT01511549, NCT01463488

Knee OA No superior efficacy32
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Target Drug Trial ID Affected 
joint

Results

p38 MAP kinase FX-005 NCT01291914 Knee OA Pain relief superior to placebo

D) Treatments targeting pain processes

NGF Tanezumab (anti-NGF antibody) NCT02697773 Knee and 
hip OA

Modest improvement in 
functional and pain scores, 
safety concerns owing to 
increased need for joint 
replacement33

NGF receptor 
tropomyosin-related 
kinase A (TrkA)

Pan Trk inhibitor GZ389988 NCT02424942, NCT02845271 Knee OA Short-term moderate pain 
reduction compared to 
control34

Transient receptor 
potential vanilloid 1 
(TRPV1) receptor

Trans-capsaicin (CNTX-4975) NCT02558439 Knee OA Intra-articular CNTX-4975 
reduced moderate-to-severe 
pain compared to placebo 
over 24 weeks35

Mavatrep (JNJ-39439335) EudraCT 2009-010961-21 Knee OA Significant reduction in pain 
and improvement in function, 
but dose adjustments required 
because of altered heat 
perception and resulting 
thermal burns36,37

Kappa-opioid 
receptor

Selective agonist CR845 NCT02524197, NCT02944448 Knee and 
hip OA

Dose-dependent pain 
reduction, more effective in hip 
OA patients38

Alpha calcitonin 
gene-related 
peptide

Galcanezumab (LY2951742) NCT02192190 Knee OA Study was terminated owing to 
inadequate efficacy39

Imidazoline 
receptor I2

CR4056 (receptor ligand) EudraCT 2015-001136-37 Knee OA Successful analgesia, 
especially in male and 
overweight patients associated 
with metabolic syndrome40

E) Treatments targeting metabolic syndrome

Cox-2 and T2DM Cox-2 inhibitor and metformin Taiwan National Health Insurance 
Research Database

Knee OA Lower rate of receiving joint 
replacement surgery41

HMG-CoA-
Reductase

Statins: simvastatin, atorvastatin, 
atorvastatin calcium, fluvastatin 
sodium, lovastatin, nystatin, 
pravastatin, pravastatin sodium, 
rosuvastatin, and rosuvastatin 
calcium

SEKOIA phase III trial Knee OA Radiological worsening over 
3 years, regardless of other 
potential confounding factors42

HMG-CoA-
Reductase

Statins: atorvastatin, fluvastatin, 
pravastatin, rosuvastatin, or 
simvastatin

UK-based Clinical Practice 
Research Datalink

Hand OA No protective effect of statins 
on the risk of developing hand 
OA43

HMG-CoA-
Reductase

Statins: pravastatin, rosuvastatin, 
simvastatin, fluvastatin, lovastatin, 
and atorvastatin

Study cohorts: 1. The Malmo Diet 
and Cancer Study (MDCS) 
2. The Malmo Preventive Project 
(MPP) 
3. Swedish Mammography 
Cohort (SMC) 
4. Cohort of Swedish Men 
(COSM)

Knee or 
hip OA

Statin use is not associated 
with reduced risk of 
consultation or surgery for OA 
of the hip or knee44

BML, bone marrow lesion; IL, interleukin; IL-1R1, interleukin 1 receptor type 1; MMP, matrix metalloproteinase; NGF, nerve growth factor; OA, osteoarthritis; RA, 
rheumatoid arthritis; T2DM, type 2 diabetes mellitus; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index

toxicity identified in the latter study. Most adverse events 
were mild or moderate and were similar in placebo and BMP-7  
groups. Notably, overall, the outcome of the BMP-7 group 
was similar to the placebo group, as both groups experienced  
a 20% improvement in pain (Table 1A).

Anti-catabolic drugs: MMP inhibitors
Inhibition of MMPs, i.e. MMP-13 and aggrecanases such as 
ADAMTS-4 and -5, which are key proteases responsible for  
cartilage matrix degradation in OA45,46, might be another way to 
delay cartilage destruction. A human clinical trial (NCT00041756) 
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involving knee OA patients receiving the MMP inhibitor  
PG-116800 (PG-530742), which has low affinity for both  
MMP-1 and MMP-7, was unfortunately terminated because of 
musculoskeletal toxicity12 (Table 1A). The most frequent adverse 
effect was arthralgia (35% of patients), and 13% of patients 
reported hand adverse events (edema, palmar fibrosis, Dupuytren’s 
contracture, or persistent tendon thickness or nodules). As a  
result, MMP inhibitor PG-116800 has not been developed  
further as a treatment for knee OA47. Other more MMP-13  
selective compounds, such as CP-544439, AZD-8955, and  
WAY-170523, are under investigation, but clinical data have 
not been released yet13. MMPs and aggrecanases are involved in 
cartilage matrix degradation, and a balanced activity of these  
proteases is critical for matrix homeostasis. An unbalanced  
protease activity favoring rapid cartilage matrix degradation in  
early OA pathogenesis might classify as an additional OA  
endotype, which then would qualify as a specific target for drug 
intervention.

These data demonstrate that compounds such as sprifermin  
(FGF18) and BMP-7 have promising pro-anabolic effects on  
cartilage tissue, whereas the inhibition of catabolic factors such 
as proteases has not shown beneficial effects in cartilage so far  
owing to adverse effects (Table 1A).

Regenerative therapies with stem cells
A total of 144 clinical trials investigating the therapeutic  
impact of stem cells on OA and on cartilage trauma have 
been reported to date at www.clinicaltrials.gov, suggesting  
regenerative medicine may be a promising therapy for future 
OA management. At first, case reports described the transplan-
tation of mesenchymal stem cells (MSCs) through an invasive  
approach (surgery). Later, the introduction of autologous 
MSCs within the joint by i.a. injection, which represents a  
less-invasive strategy, was reported to be feasible and safe.  
Indeed, after i.a. injection into SCID mice, MSCs engrafted  
directly in the injured site, which has been suggested to avoid 
systemic distribution and toxicity as well as to promote longer  
survival of the cells48. Currently, mostly autologous MSCs  
and adipose-derived stem cells (ASCs) are applied for knee OA 
therapy, but very few approaches are targeting hip OA. Almost 
all of the trials are phase Ia/b safety and dose-finding studies  
with a low number of participants. About 45 of the listed  
studies are completed, but only six of them report results. A 
total of 55 of the trials that are recruiting or not yet recruiting  
indicate strongly increasing interest in stem cell therapy not  
only for traumatic cartilage injury but also for late-stage OA.

Extracellular vesicles derived from stem cells
Our literature search shows that stem cells, specifically  
autologous stem cells derived from bone marrow (BMSCs) and 
adipose tissue (ASCs), are preferred over other cell types for  
regenerative strategies. However, there is doubt among surgeons 
and researchers about whether or not stem cells are really the  
optimal tool for regenerative therapy.

After administration, stem cells tend to disappear quickly 
from the target tissue; however, their chondroprotective and  
immunomodulatory effects are long lasting. Presumably, the  

therapeutic effects are mainly mediated in a paracrine manner, 
as they appear to be independent of the engrafted cells49. When 
exposed to inflammatory signals, MSCs develop and show a 
rich secretory profile. After stimulation of these cells with tumor  
necrosis factor (TNF)-α, a proteomic approach identified 118  
proteins, which were differentially expressed by human ASCs50. 
However, paracrine effects are not limited to soluble factors, 
as stem cells and other cell types produce extracellular vesicles  
(EVs), which are small phospholipid-bilayer-enclosed particles 
carrying many cytoplasmic components51,52. EVs play a role in a 
number of different cellular activities, such as communication  
between cells via horizontal transfer of mRNA and proteins,  
and they are distinguished according to size. EVs are attractive 
options for therapeutic use because of their unique physical and 
biological characteristics, which include high biocompatibility 
and intrinsic targeting activity53. Exosomes, the most-studied  
group of EV, can be as small as 30–150 nm in diameter, so it 
may be possible for them to passively diffuse through tissues54.  
Overall, the consensus is that stem cell secretomes and EVs 
applied for the treatment of cartilage pathology and knee 
OA had pleiotropic and overall positive effects55. In vitro,  
anti-catabolic, immunomodulatory, and regenerative properties 
were assigned to the secretome and EVs. Pre-clinical in vivo  
studies resulted in positive effects on the joint and confirmed 
the effectiveness of EV injections as a minimally invasive  
therapy56. Exosome injections partially improved the gait  
abnormality patterns in an OA mouse model57, and MSC  
secretome injections provided early (day seven) pain reduction in  
treated mice58. All together, these data support the transla-
tional potential of this regenerative approach. The promising  
in vitro and in vivo results support the potential of this new 
treatment strategy, opening up new perspectives for cell  
component-based therapies. EVs are proposed as next-generation 
biomarkers to predict the pathophysiological state of the  
joint55, assigning an important role for EVs in future therapies 
for the treatment of joint disorders. Remarkably, they constitute a  
simpler, and most of all safer, alternative to actual cell-based  
therapeutic strategies, as they are cell derived but not living  
cells and thus cannot proliferate or form tumors. As known for 
cells, EVs can also be combined with scaffolds, either bound on  
their surface or embedded within the biomaterial matrices.  
Specific activation signals such as ultrasound may enable 
the controlled release of specific subpopulations of EVs, i.e.  
exosomes.

Therapies addressing subchondral bone
Besides nutrient supply and metabolism, physiological and 
non-physiological shock absorption and support of overlying  
cartilage are the main functions of subchondral bone59,60.  
Therefore, any changes affecting bone cell metabolism,  
structural integrity, and architecture might render the bone  
more susceptible to aberrant loading or even induce abnormal 
reactions to normal physiological load. OA-related changes in  
subchondral bone structure were long regarded as an adaptation  
of bone to the biomechanical changes observed in articular  
cartilage. Recently, several pre-clinical and clinical studies  
demonstrated that alterations in bone structure might even  
precede and instead mediate cartilage pathology61,62 and that 
OA progression is associated with temporal changes in bone  
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structure60. In early OA, accelerated bone turnover leads to bone 
plate thinning and increased porosity, whereas the trabecular  
compartment shows increased trabecular spacing and decreased 
bone volume fraction. Progression of OA is accompanied 
by subchondral bone plate thickening, increased trabecular  
thickness, and increased bone volume fraction60. Bone marrow 
lesions (BMLs), a hallmark of OA, appear early on MRI and are 
associated with increased pain and cartilage degeneration63.

Therapies with bisphosphonates
Bisphosphonates (BPs) effectively slow down bone turnover 
by inhibiting osteoclast activity in osteoporosis, but their  
usability in OA remains uncertain18. There are indications that a 
specific patient subgroup might respond to BP use: intravenous  
zoledronic acid successfully reduced BML size and visual  
analogue scale (VAS) pain score after 6 months in a randomized  
controlled trial, though a second multicenter trial could not 
confirm the results16,17. Furthermore, a meta-analysis by  
Vaysbrot et al. identified similar effects in a trial using oral  
risedronate treatment in a patient subgroup with BMLs18. An 
active phase III trial (NCT02746068) using AXS-02 (disodium  
zoledronate tetrahydrate) in knee OA with associated BMLs  
provided promising results in the reduction of pain supposedly  
by suppression of local acid and pro-inflammatory cytokine 
production64 (Table 1B). The ongoing phenotype debate in OA 
raised the question of whether the effectiveness of BPs has been  
confounded owing to the heterogeneity of the patient group 
enrolled in clinical trials so far64. Indeed, BPs might be  
especially beneficial in patients with BML or high bone turn-
over in an early state of OA. Interestingly, pharmacologic  
agents like BPs that directly affect osteoclast activity  
effectively reduced pain. Recent research identified osteoclasts 
as the inducers of OA bone pain by induction of sensory  
innervation in a murine OA model65. Determination of more of 
these connections and more precise categorization of patient  
subgroups (like bone pain due to BML development or  
increased osteoclast activity/bone turnover) might lead to the  
repurposing of already existing drugs for new targets.

Drugs targeting bone cells
New therapeutic approaches include neutralization of cathepsin  
K, the major osteolytic protease released by osteoclasts. The  
“small molecule” cathepsin K inhibitor MIV-711 effectively  
attenuated joint pathology in a rabbit OA model66 and slowed 
bone and cartilage degeneration in a phase IIa multicenter trial 
of primary knee OA20. With 26 weeks’ duration, the study was 
relatively short, and MIV-711 did not reduce pain during this 
time (Table 1B). Denosumab, a monoclonal antibody directed 
against RANKL and thereby inhibiting osteoclastogenesis, is 
currently tested in erosive OA of interphalangeal finger joints  
(NCT02771860) and in knee OA (DISKO, ISRCTN96920058), 
but results have not been published to date. Potential new  
targets to address subchondral bone include TGFβ, which is 
elevated in OA synovial fluid67. Systemic blocking of TGF  
prevented bone and cartilage degeneration in a rodent OA  
model68, but targeting this specific molecule needs to take into 
consideration the physiological role of TGFβ as a differentiation  
stimulus for chondrocyte precursor cells67. Furthermore, OA  
bone is targeted by anabolic therapies. Teriparatide, a synthetic  

parathyroid hormone, effectively reduced chondrocyte apoptosis 
and attenuated OA progression after i.a. application in a surgical 
rat OA model69. Its effectivity is currently being evaluated in a  
phase II trial of knee OA (NCT03072147).

Dietary supplementation of vitamin D3

Additional dietary supplementation of vitamin D
3
 (cholecal-

ciferol) might be an option to target and strengthen bone in OA  
owing to its ability to increase calcium and phosphate uptake 
from the gut and its direct effect on bone cell metabolism70.  
Numerous trials for vitamin D

3
 supplementation in OA  

patients can be found at clinicaltrials.gov, but there are  
contradictory reports about a relationship between vitamin D 
levels and a higher risk for OA incidence and progression71. 
A meta-analysis of randomized controlled trials revealed a  
reduction in WOMAC pain and improved joint function in OA 
patients after vitamin D

3
 intake, but only at a concentration of  

2,000 IU72. Cartilage degradation was not affected. Generally,  
vitamin D

3
 intake might be beneficial for a large proportion of 

the population, as its deficiency is a worldwide problem and  
elderly people, who are also at an increased risk of OA, are  
often affected73.

Restoration of bone metabolism and structure might be a  
worthwhile goal because of the huge importance of this  
structure as a mechanic buffer for proper load perception 
and distribution. A detailed knowledge of timely changes in  
OA-related bone metabolism might enable a more precise use of 
bone anabolic and anti-catabolic therapies to restore or prevent 
bone degradation. Maintenance of bone structure and shock- 
absorbing abilities might prevent cartilage alterations and  
therefore put a hold on subsequent degradative events culminating 
in joint failure.

Treatments targeting inflammatory mediators and 
pathways
It is now commonly accepted that OA has an inflammatory 
component that might be more dominant in specific patient  
subgroups and joint tissues. The release of various pro- 
inflammatory mediators like prostaglandins, cytokines, and  
chemokines has been demonstrated in numerous pre-clinical  
OA animal models and in patients74. Synovitis is a common  
feature of inflammatory OA, and technical progress in imaging  
technologies like ultrasound and MRI revealed synovitis in a 
large number of patients at different disease stages75,76. A plethora  
of triggers including aberrant mechanical forces, metabolic  
syndrome, increased age, and fragments of cartilage extracellular  
matrix (ECM) or crystals might induce the release of these 
mediators from various responsive joint tissue cell types. 
A large number of recent review articles address cells and  
components of the innate immune system as the main drivers of 
OA inflammatory processes77,78. Non-steroidal anti-inflammatory  
drugs and glucocorticoids are commonly used to treat OA but 
are not optimal owing to moderate effectiveness and serious  
side-effects in long-term use79,80.

Anti-cytokine therapy
Most biologics used to treat OA-related inflammation were  
developed for rheumatoid arthritis (RA), a disease associated  
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with more pronounced inflammation. So far, biologics target-
ing the inflammatory cytokines interleukin (IL)-1 and -6 as 
well as TNF-α have not been useful in the prevention of pain or  
structural progression of OA (Table 1C). Granulocyte/macro-
phage colony-stimulating factor (GM-CSF) was associated with 
inflammatory pain in a mouse OA model81 and was associated 
with hip OA over  knee OA in a study analyzing mononuclear 
cell contribution to synovial inflammation82. The anti-GM-CSF  
antibody otilimab (GSK3196165) was enrolled in a study for ero-
sive hand OA and yielded promising results (NCT02683785)83. 
Mavrilimumab, a GM-CSF receptor inhibitory antibody effec-
tive in RA84, might therefore also have potential as an OA drug. 
The predominantly low-grade and non-systemic inflammation  
observed in OA might explain the limited success of single 
cytokine blockade. Concentration on specific OA subsets like 
erosive hand OA associated with more pronounced inflammation 
potentially presents a responsive patient group for anti-cytokine  
biologics. Identification of a single potent driver of OA inflam-
mation seems to be difficult, and broader approaches targeting 
general pro-inflammatory signaling pathway components might  
be more favorable (Table 1C).

Interference with pro-inflammatory signaling pathways
Targeting single cytokines has so far had little effect. Recent 
strategies aim to interfere with further upstream initiators of 
the pro-inflammatory signaling cascade. Hydroxychloroquine  
(HC), a chloroquine derivative used to treat malaria and  
inflammatory autoimmune disorders like RA, supposedly exerts 
its effects via Toll-like receptor (TLR) 7/985. Several studies 
using HC in hand OA have failed to show effects so far30,31, and  
results from a study in knee OA are not obtainable yet 
(NCT01645176). TLR downstream targets include molecules 
like MyD88, TRAF3/6, p38 MAPK, Janus kinases, and tran-
scription factors like NF-κB86. Several attempts have been made 
to interfere with signaling molecules to inhibit inflammation  
in OA. The I-κB kinase inhibitor SAR113945 was tested 
in four trials of knee OA (NCT01113333, NCT01598415,  
NCT01511549, and NCT01463488), but, though the compound 
showed a good safety and tolerability profile, a larger proof-of- 
concept study failed to show superior efficacy87. A small  
subgroup of patients with effusion at baseline elicited a reduced 
WOMAC pain score after 56 days. Local delivery of a potent 
p38 MAPK inhibitor (PH-797804) reduced joint destruction 
and inflammation in a murine destabilization OA model87. The  
efficacy of PH-797804 compared to naproxen was evaluated in 
a clinical trial involving knee OA patients, but the results have  
not yet been disclosed (NCT01102660). FX-005, another  
therapeutic p38 MAPK inhibitor with sustained-release  
kinetics, was evaluated in a phase I/II knee OA trial where 
it promoted pain relief superior to placebo after 4 weeks  
(NCT01291914) (Table 1C). Direct targeting of the TLR would 
provide even higher upstream interference with OA immune 
activation, e.g. the application of a miR-21 inhibitor targeting 
TLR7 was able to induce long-lasting analgesia in an OA rat  
model88. As for anti-cytokine therapy, careful evaluation of  
individual patient inflammatory status will probably help to  
identify more responsive patient subgroups or joints.

Other immune system targets
The complement system might also be a potential source of  
therapeutic targets for OA therapy89,90. An increasing number 
of drugs targeting different factors of the complement cascade 
are available and were tested in the clinic for various diseases91, 
but, to the best of our knowledge, none of them has been tested 
in OA patients so far. Similarly, there is increasing awareness 
that adaptive immune mechanisms might be involved in OA  
pathophysiology92,93, but these insights have not been translated  
into therapeutic approaches so far. Identification of more  
immune system entities contributing to OA development and 
progression will provide even greater numbers of targets for  
potential OA therapeutics but requires meticulous analysis of  
timely and spatial involvement in disease-related processes.

Gene therapies
Novel genetic approaches are currently under evaluation for 
safety in clinical phase I studies. They include i.a. injection of  
recombinant adeno-associated virus type 2/5 (rAAV2.5) vector 
encoding IL-1 receptor antagonist (IL-1Ra) into one knee  
joint of patients with moderate OA of the knee (NCT02790723) 
and FX201, a helper-dependent non-integrating adenovirus,  
containing the human IL-1Ra gene under the control of an  
inflammation-sensitive promoter (NCT04119687). Moreover,  
new gene therapeutic targets include interferon (INF)-β (rAAV2.5 
vector encoding human IFN-β under control of a NF-κB  
promoter, ART-I02) in subjects with RA or OA and active  
arthritis of the hand (NCT02727764) as well as XT-150, a  
plasmid DNA carrying a variant of the human IL-10 transgene 
(NCT03477487). Although results of these studies are not  
available yet, gene therapy offers great therapeutic potential as 
it is aimed at prolonged, site-specific, and controlled release  
of treatments in the target joints. Confining anti-cytokine or any 
anti-inflammatory treatment to specific joints could potentially  
prevent the side-effects observed with a more classic biologic 
treatment plan94. Virus-related delivery systems might provide  
superior performance over classical delivery systems but, clearly, 
safety aspects (e.g. immunogenicity of the vector, off-target 
and long-term effects) have to be taken seriously and analyzed  
carefully in relation to effectiveness before considering any 
kind of genetic therapy95. In general, data from an equine study 
using AAV2.5-delivered IL-1Ra showed promising results  
regarding pharmacodynamics and safety profile96. As mentioned 
above, first-in-human clinical trials will evaluate the safety  
profile of gene-related therapies and will give a general hint  
regarding the applicability of gene therapies for OA.

Treatments addressing pain
Apart from structural deterioration in OA joints, pain is a  
dominant and probably the most debilitating hallmark of OA 
pathology and the a priori reason why patients see a physician. 
Huge effort has been put into OA-related pain research to iden-
tify underlying mechanisms, but, because of its complexity, 
no general guidelines could be identified for its effective  
treatment97,98. The sensation of pain in OA does not show  
uniform appearance among patients and during progression.  
The source of OA pain includes nociceptive pain komma   
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inflammatory pain and neuropathic pain as well as processes 
of peripheral and central sensitization. Structural features like  
BMLs,  synovitis, and joint effusion show a strong association  
with pain intensity63,99,100.

Classical treatments include the use of acetaminophen  
(paracetamol), NSAIDs, and opioids, which induce a plethora 
of unwanted side effects. Here komma we will discuss the latest  
developments in therapies directly targeting neuronal structures  
to alleviate OA pain.

Anti-nerve growth factor antibody treatment
A huge effort has been made in the development of  
therapeutics targeting nerve growth factor (NGF). NGF might 
be released upon mechanical stimulation or inflammatory  
mediators from different cell types including osteoclasts,  
osteocytes, chondrocytes, synovial fibroblasts, and macrophages 
in pre-clinical OA studies and human OA100–105. After the first  
promising clinical tests using anti-NGF antibodies, the FDA 
stopped ongoing trials owing to reports of serious adverse side 
effects with fast progression of OA and increased demand  
for knee replacement surgery. After the identification of risk  
factors (NSAID use) and dose modifications, the hold was lifted 
in 2015 and clinical trials continued (extensively reviewed  
in 106,107). A new phase III trial of knee and hip OA using subcu-
taneous injections of tanezumab (monoclonal anti-NGF antibody)  
displayed modest improvements in pain and functional scores 
compared to control but again raised safety concerns after  
increased need for total joint replacement in the tanezumab  
group33. Active immunization against NGF might provide 
a new alternative to target chronic pain, as demonstrated in 
murine OA108. Although initial trials using anti-NGF antibodies  
looked promising, further studies are needed to warrant treatment 
safety.

Anti-nerve growth factor receptor strategy
New strategies to inhibit NGF-induced pain concentrate on 
the antagonization of its receptors tropomyosin-related kinase 
A (TrkA) and p75NTR. TrkA inhibition effectively reduced 
pain behavior in several pre-clinical OA models109,110. Various  
molecules have been developed to target the TrkA receptor: pan 
Trk inhibitor GZ389988 (NCT02424942 and NCT02845271), 
AR786 (allosteric selective TrkA inhibitor), ASP7962 (TrkA  
receptor antagonist, NCT02611466111), ONO-4474 (pan Trk  
inhibitor), and VM902A (allosteric TrkA selective inhibitor). 
Only GZ389988 exhibited modest pain reduction compared to 
control after 4 weeks but no prolonged efficacy after 12 weeks34  

(Table 1D). NGF receptor p75NTR concentration is increased in the 
blood, synovial fluid, and tissue macrophages of OA patients112 
and has been related to inflammatory pain in a rat model113.  
LEVI-04, a p75 neurotrophin receptor fusion protein (p75NTR-
Fc), is currently being investigated in a phase I clinical  
trial (NCT03227796), but results are not available yet.

Ion channels
Furthermore, ion channels like transient receptor potential  
(Trp) and Nav1.7/Nav1.8 voltage-gated sodium channels gained  
attention as potential drug targets114,115. TRP vanilloid 1 (TRPV1)  
channels expressed by sensory neurons might be targeted using  

receptor agonists like capsaicin or resiniferatoxin. In various  
animal models, these molecules resulted in long-term desensi-
tization or nerve degradation, thus reducing pain and neuropep-
tide release, but conflicting observations have been reported114.  
Currently, several active clinical trials are analyzing the use  
of topical and i.a. trans-capsaicin (CNTX-4975) in knee OA. 
Stevens et al. described a dose-dependent effect of i.a. CNTX-
4975 that reduced pain compared to placebo over 24 weeks in 
patients with moderate-to-severe knee OA (Table 1D)35. The  
FDA assured Fast Track designation to CNTX-4975 for the 
treatment of OA knee pain in 2018. Several “small molecule”  
TRPV1 antagonists have been tested so far in healthy subjects 
but not in OA pain116,117, and some had to be stopped because 
of inefficiency or adverse effects, including NEO6860, which  
caused headache, nausea, fatigue, and increased blood pressure 
among other adverse effects118,119. A single dose of JNJ-39439335 
(Mavatrep), a selective competitive TRPV1 receptor antagonist, 
was evaluated in phase I studies and successfully reduced 
pain and improved functional score in knee OA patients after  
7 days, though future studies require dose adjustment owing 
to adverse events involving thermal perception36,37 (Table 1D).  
Animal models indicate involvement of voltage-gated sodium 
channels Nav1.7 and Nav1.8 in pathological pain states120, and 
A-803467, a selective Nav1.8 channel-blocking agent, dis-
rupted nociceptive signal transmission in monoiodoacetate 
(MIA)-induced OA121. Furthermore, Vertex’s sodium-channel 
blocker VX-150 showed efficacy in acute pain reduction and 
was granted a breakthrough therapeutic potential by the FDA,  
though results of a completed phase IIa clinical study have not  
been published yet (NCT02660424)122.

Targeting peripheral opioid receptors
Opioids are effective analgesics but their use is limited due 
to serious adverse side effects like constipation, respiratory  
depression, tolerance, and dependence. Currently, new  
opioid receptor (OR) agonists with an improved safety profile  
targeting the μ, δ, and κ subtypes are in development. Selec-
tively targeting the peripheral κ-OR might avoid side effects 
observed when drugs target the μ-OR. Cara Therapeutics 
developed the selective κ-OR agonist CR845 and evalu-
ated its efficacy in knee and hip OA (NCT02524197 and 
NCT02944448), reporting dose-dependent efficacy in the  
reduction of pain in hip OA over knee OA38 (Table 1D).

Evolving new targets
Pain relief might also be achieved by targeting the nociceptin/ 
orphanin FQ peptide receptor (NOP)123. Cebranopadol (GRT6005), 
a dual agonist for the NOP/μ-OR, proved to be safe and  
efficient in chronic back pain124 and was recently tested in  
patients with painful knee OA (NCT01357837 and NCT01709214). 
Other nerve-associated targets include the bradykinin B2  
receptor (Fasitibant, NCT02205814 and NCT01091116) and 
the CB2 cannabinoid receptor (GW842166 [NCT00479427 and 
NCT00447486], LY2828360 [NCT01319929]). Direct blockade 
of the sensory neuropeptide α-calcitonin gene-related peptide  
using LY2951742 (galcanezumab) failed to reduce pain in  
patients with mild-to-moderate OA39 (Table 1D). CR4056, an  
imidazoline-2 ligand with powerful analgesic properties, inhib-
ited inflammation-induced PKCε phosphorylation and membrane  

Page 9 of 17

F1000Research 2020, 9(F1000 Faculty Rev):325 Last updated: 04 MAY 2020



translocation in sensory neurons125 and effectively reduced  
allodynia and hyperalgesia in two rat OA models126. A recent 
phase II trial in knee OA patients reported successful analgesia, 
especially in male patients and in overweight patients associated  
with the metabolic phenotype40 (Table 1D).

Despite huge efforts invested in the development of new OA  
analgesics and although several candidates look promising and  
more and more potential drug targets are identified, pain  
reduction in OA is still relatively unsuccessful. The complex 
and diverse underlying mechanisms of OA pain, the timely and  
spatial alterations of pain types and sensitization, and the  
interaction of nerves and OA-related structural changes, immune 
reactions, and altered metabolic conditions still require more 
intense interdisciplinary research to achieve effective pain  
management.

Metabolic syndrome therapies related to OA
Metabolism can be altered in OA, and there are multiple  
metabolic components underlying metabolic dysregulation. The 
metabolic syndrome, characterized by excessive and long-term  
positive energy balance, is defined by several cardio-metabolic 
factors that commonly are found together with obesity, which are 
central adiposity, dyslipidemia, impaired fasting glucose levels, 
and hypertension. People with metabolic syndrome are prone to  
developing a variety of disorders, especially cardiovascular  
diseases, type 2 diabetes mellitus (T2DM), and some forms of  
tumor. The increase in prevalence of metabolic syndrome in  
industrialized nations, and an association with obesity, together  
with the fact that it was a rare disease in pre-industrial popu-
lations, leads to the hypothesis that the metabolic syndrome  
might be a major risk factor for OA nowadays6,127,128.

Besides hypertension, which seems to provide an elevated 
risk of knee OA129, T2DM and knee OA often coexist and are  
known for common risk factors such as obesity and aging. 
The mechanical impact of excess body weight on joints may  
explain lower limb OA. However, it is unclear whether T2DM 
is linked to OA independently of excess weight and whether  
T2DM is involved in OA pathology. A coexistence between the 
occurrence of T2DM and OA was shown, but a causal link is  
not yet established130. T2DM clearly has an unhealthy effect 
on OA via two pathways: (1) chronic hyperglycemia, which 
is connected to oxidative stress, abnormal production of  
pro-inflammatory cytokines and advanced glycation end  
products (AGEs) in joint tissues, and (2) insulin resistance, 
which may have local effects but may also maintain a systemic  
low-grade inflammatory state131.

Metabolic targets for osteoarthritis therapy
So, are there metabolic targets known that are suitable for OA 
therapy? Some experimental studies show that mTOR signaling 
pathways can activate autophagy, which might be an effective 
approach for treating OA132. OA chondrocytes where AMP 
kinase (AMPK) has been removed exhibit increased catabolic  
responses to pro-inflammatory cytokines and biochemical injury. 
These effects are attenuated by molecules that activate AMPK, 
indicating that decreased AMPK activity is associated with  
cartilage degradation133,134. Possibly, AMPK-activating drugs 

such as methotrexate, metformin, and sodium salicylate might  
be good candidates to combat OA progression. A Taiwanese 
study examined whether or not the use of a COX-2 inhibitor 
with metformin in OA patients with T2DM was related to fewer 
joint replacement surgeries than the use of a COX-2 inhibitor  
only41. At the end of a 10-year follow up period, fewer joint  
replacement surgeries seemed to be needed in the case group  
compared to the control group. This outcome may be attributed 
to the fact that a combination therapy decreases pro-inflammatory  
factors associated with OA progression much more than one  
without metformin therapy (Table 1E).

Statin usage and osteoarthritis
Some pre-clinical and clinical data are available regarding 
the effects of statin usage on OA progression. Farnahgi et al.  
aimed to define the effects of hypercholesterolemia on the  
progression of OA in a murine OA model135. Surgical desta-
bilization of the medial meniscus in knees from mice which  
were fed a high-cholesterol diet compared to controls led to 
a severe increase in OA symptoms. Doses of free cholesterol  
as recommended clinically resulted in overproduction of reactive 
oxygen species (ROS) and mitochondrial dysfunction. Hyper-
trophic and degradative markers were upregulated in chondro-
cytes, resulting in increased breakdown of the cartilage matrix. 
The authors reported that the severity of these diet-induced OA 
symptoms was reduced by the application of atorvastatin and 
a mitochondrial-targeting antioxidant, thus implicating that  
hypercholesterolemia promotes OA progression by mitochon-
drial dysfunction in chondrocytes, which was in part a result of  
increasing ROS production and apoptosis.

In a post-hoc analysis of the SEKOIA trial, the impact of  
statin use on radiological progression in patients with radio-
logical and symptomatic knee OA was investigated. Results  
demonstrated that the use of statins was related to radiologi-
cal deterioration over the course of 3 years irrespective of other  
potentially related factors, such as obesity or T2DM hyper-
tension, disease duration, symptom intensity and radiological  
severity42. Another trial investigated the association between  
statin therapy initiation and incidence of hand OA, but no 
association was observed in this study43. A pooled analysis  
based on time-to-event analysis of four population-based large 
cohorts demonstrated that statin use is not associated with  
reduced risk of consultation or surgery for OA of the hip or  
knee44 (Table 1E).

It appears that repurposing some drugs such as metformin  
might identify valuable candidates for the treatment of OA in 
the context of metabolic syndrome. However, clinical studies  
assessing the effect of other compounds, such as statins, on 
knee OA progression have shown conflicting results. In line 
with this, more data and a priori clinical studies are necessary to  
correlate unambiguously the increase of metabolic syndrome in 
modern times with OA.

Therapies targeting senescence and aging
Age is a key risk factor for the development of OA, and  
age-related changes within the joint might represent targets 
for therapy. Aging and OA are closely related but still occur  
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independently of one another. Some hallmarks of aging can  
influence the development of OA, such as genomic instability, 
telomere attrition, epigenetic alterations, loss of proteolytic  
homeostasis, dysregulated nutrient sensing, mitochondrial  
dysfunction, cellular senescence, stem cell exhaustion and  
altered intercellular communication137,138. So far, no human clinical  
trials have been designed to specifically target aging-related 
processes, but pre-clinical studies targeting some of the  
age-related factors generated promising data which may lead 
to novel therapeutic strategies. In the meantime, there are  
several “senolytics” known, which have the potential to qualify as 
therapeutic agents to treat OA.

Cell cycle inhibitors
Cellular senescence leads to the senescence-associated secre-
tory phenotype (SASP), which is characterized by cell-cycle 
arrest, enhanced production of pro-inflammatory cytokines 
and other factors138, and increased expression of the cell cycle  
inhibitor p16Ink4a139. Baker et al. addressed the physiological  
relevance and effects of naturally occurring senescent cells. 
The authors injected a transgene, INK-ATTAC, which was  
previously established in their lab, into p16Ink4a-expressing cells 
of wild-type mice to induce apoptosis140. Their study did not  
address OA specifically, but they convincingly demonstrated  
that p16Ink4a-positive cells accumulate during adulthood and  
have a detrimental effect on lifespan and encourage age- 
dependent alterations in various organs. Removing these 
cells could offer an attractive approach to healthy lifespan  
extension in joint tissues, which overexpress this cell cycle 
inhibitor. A direct connection to OA was tested by using the 
p16-3MR transgenic mouse, which harbors a p16INK4a (Cdkn2a)  
promoter141. Introducing OA in this mouse strain after anterior 
cruciate ligament transectiseon (ACLT) allowed the selective  
following and removal of senescent cells. I.a. injection of a  
senolytic molecule, UBX0101, which selectively kills senescent 
cells, attenuated the development of post-traumatic OA, reduced 
pain and the production of SASP factors, and improved the  
development, phenotype, and function of human OA chondro-
cytes in 3D pellet culture. The half-life of UBX0101 was low,  
preventing systemic exposure, but was still effective in blocking 
cartilage degradation by eliminating senescent cells rather than 
blocking their SASP secretion.

Targeting cell cycle inhibitors appears to be an intriguing new  
strategy to halt OA progression by addressing a risk factor,  
aging, that is closely associated to OA.

Redox signal pathways and osteoarthritis
An important therapeutic target might be redox-signaling  
pathways and associated mitochondrial dysfunction in OA. It is 
accepted that increasing levels of ROS contribute to age-related 
diseases by promoting cellular dysfunction and abolishing  
physiological cell signaling pathways142. The prevention of 
mitochondrial peroxiredoxin (PRX) 3 hyperoxidation-induced  
expression of mitochondrial catalase abrogated p38-mediated 
cell death and restored homeostatic signaling to maintain the  
viability of aging chondrocytes143. Another promising target  
could be superoxide dismutase 2 (Sod2), as deletion of Sod2 
enhanced the severity of OA in mice144. Another interesting  

target for counteracting oxidative stress-induced tissue damage 
might be nuclear receptor erythroid 2 related factor (Nrf2). Nrf2 
is a key transcription factor that regulates the expression of  
phase II antioxidant enzymes. These enzymes protect against  
oxidative stress and tissue damage. Cai and colleagues explored 
the role of Nrf2 in OA pathogenesis and the effects of Nrf2  
acetylation for histone deacetylase inhibitor (HDACi) protection. 
For this, they took advantage of two murine OA models: i.a. 
injection of MIA and destabilization of the medial meniscus  
(DMM)145. In order to analyze the efficacy of HDACi on  
protection from cartilage damage, a pan-HDACi, trichosta-
tin A (TSA), was applied. TSA promoted the induction of  
Nrf2 downstream proteins in mouse joint tissues and reduced 
the expression of OA-associated proteins like several MMPs and  
pro-inflammatory cytokines. TSA markedly ameliorated the 
cartilage damage in both OA models but offered no significant  
protection in Nrf2-knockout mice, suggesting that the protective 
effect of HDACi on OA progression was Nrf2 dependent.

Addressing redox-signaling pathways and mitochondrial  
dysfunction will enable exciting novel strategies to combat  
cellular senescence in general and thereby eliminate a major  
risk factor for OA: age.

Antioxidants may also have bone-protective effects in OA  
pathology. Using a spontaneous OA model, the STR/Ort mice, 
Javaheri et al. treated these mice for 3 months with SFX-01®, a 
synthetic stable variant of sulforaphane, a naturally occurring  
antioxidant146. SFX-01® treatment both modifies bone archi-
tecture in the STR/Ort mice and likely reduces OA pain and  
improves gait without improving articular cartilage lesion  
severity and occurrence of osteophytes in the joints of these  
mice. These findings strengthen the possibility that bone-target-
ing therapies with antioxidants may have some merit and exert  
osteotrophic effects possibly not only in OA.

Conclusions and open questions
For a few years, a novel concept considered OA as a multi- 
faceted disease involving the whole joint and not only cartilage 
or synovium. This offers new options to identify and develop  
novel therapeutics and to re-profile candidate drugs. Recent 
advances in OA pathology have enlightened key roles of  
several new pathways, which can be targeted. However, as OA 
is a highly heterogeneous disease, a single therapeutic targeting 
a single joint tissue may not be effective and no “one size  
fits all” drug/therapy will ever be developed. Improved patient 
stratification in combination with advanced DMOADs and  
cell-based therapies might lead to the development of personalized 
OA therapeutics.

Attention to temporal changes in disease progression like the  
transition from high bone turnover in early OA to decreased 
bone turnover in the late stages or timely changes in the pain 
type requires precise knowledge of the underlying mechanistic  
alterations. Choosing appropriate medication for selective  
disease time-points might help tailor individual treatment  
regimens for each patient in the future. Additionally, OA might 
present itself with overlapping endotypes like, for instance, 
an inflammatory pain endotype that could benefit from a  
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combination of pharmaceuticals addressing both pain and  
inflammation.

Many clinical studies have been conducted in OA that address 
mainly structural targets like cartilage and bone in combination  
with reduction of inflammation and pain. In general, success 
was marginal, and only very few drugs, i.e. sprifermin or some 
BPs, resulted in improvement of joint structure and function. In  
addition, targeting TrkA or TRPV1 led to pain relief; however, 
no pharmacological treatment was able to halt or reverse OA  
progression long term.

Data from the application of MSCs/ASCs generated some  
guarded optimism; however, so far, only cartilage lesions were 
addressed with cell-based therapies, whereas subchondral bone, 
tendons, and other joint tissues were not included. This is a  
crucial shortcoming, as OA is recognized as a whole-joint  
disease.

One central point to be considered for all future therapeutic  
approaches, either regenerative or pharmacological, is the 

mechanical status of the joint. With this in mind, it is strongly  
suggested that the altered joint mechanics that cause OA are 
addressed in a first-line therapy. If altered OA joint mechanics  
are not normalized and original biomechanical pathways are 
not restored, it will be most likely that pharmacological or  
biological treatments of articular cartilage or inflammatory 
processes will not be efficacious. Furthermore, modulation of  
derailed cellular mechanoreceptive pathways might provide new 
opportunities to halt structural tissue deterioration. OA is not a 
single disease with a common pathophysiological pathway, as 
many pathways and risk factors lead to mechanical failure of the 
joint (Figure 1), so identifying early OA stages would certainly 
be advantageous for the development of more efficient, targeted  
therapies. Therefore, the identification of reliable biomarkers 
and even more advanced imaging methods as well as stronger  
inter-disciplinary treatment regimens is indispensable.

Considering these central points, personalized OA therapy is the 
ultimate goal, and recent advances in phenotype classification 
and targeted drug development might provide a pool of suitable  
therapeutic options in the future.

Figure 1. Critical factors for the pathogenesis of OA. Intrinsic repair mechanisms are limited and therefore extrinsic repair support is 
required to restore or ameliorate joint function. DMOAD, disease-modifying osteoarthritis drug; SB, subchondral bone.
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