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Abstract: Multiple myeloma (MM) is a genetically complex disease that results from a multistep
transformation of normal to malignant plasma cells in the bone marrow. However, the molecular
mechanisms responsible for the initiation and heterogeneous evolution of MM remain largely un-
known. A fundamental step needed to understand the oncogenesis of MM and its response to therapy
is the identification of driver mutations. The introduction of gene expression profiling (GEP) in MM is
an important step in elucidating the molecular heterogeneity of MM and its clinical relevance. Since
some mutations in myeloma occur in non-coding regions, studies based on the analysis of mRNA
provide more comprehensive information on the oncogenic pathways and mechanisms relevant to
MM biology. In this review, we discuss the role of gene expression profiling in understanding the
biology of multiple myeloma together with the clinical manifestation of the disease, as well as its
impact on treatment decisions and future directions.

Keywords: biology; drug resistance; gene expression profiling; mRNA; multiple myeloma; prognosis;
treatment

1. Introduction

Multiple myeloma (MM) is a genetically complex disease resulting from a multistep
transformation of normal to malignant plasma cells in the bone marrow [1]. Its precursors
are believed to be monoclonal gammopathy of undetermined significance (MGUS) and
smoldering multiple myeloma. However, while both lack the clinical features of organ
damage presence, such as hypercalcemia, renal insufficiency, anemia, and bone lesions,
they share some genetic mutations of symptomatic MM [2,3]. Further progression of the
disease may lead to the proliferation of clonal plasma cells at sites outside the bone marrow,
manifesting as extramedullary myeloma and plasma cell leukemia (PCL), both known to
be very aggressive malignancies with inferior outcomes [4].

As MM occurs mainly in older patients, its treatment has gained prominence in today’s
aging population. Its annual incidence in the United States in 2020 was estimated to be as
high as 4–6 cases per 100,000, with 32,270 new cases and 12,830 deaths reported [4,5].

In the era of molecular cytogenetic methodologies such as G-band karyotyping, fluo-
rescence in situ hybridization (FISH), comparative genomic hybridization (CGH), as well as
more advanced novel genetic techniques, such as single nucleotide polymorphism (SNP) ar-
rays and next-generation sequencing (NGS), it has become possible to better understand the
molecular background of myelomagenesis [6]. Multiple myeloma is a genetically heteroge-
neous disease. The genetic alterations present in MM can be categorized into translocations,
copy number abnormalities (CNAs), and point mutations [7,8]. The most important molec-
ular mechanism underlying MM pathogenesis is thought to be immunoglobulin heavy
chain (IgH) translocation [9]. Although the molecular mechanisms responsible for the
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initiation and heterogeneous evolution of MM remain largely unknown to date, the iden-
tification of driver mutations is fundamental to understanding the oncogenesis of MM
and its response to therapy. However, the genetic landscape of MM is very complex, and
distinguishing driver from passenger mutations is challenging. The somatic mutation rate
of patients with multiple myeloma was reported to be approximately 1.6 mutations per
Mb [10]. Certain genes, including KRAS, NRAS, TP53, FAM46C, DIS3, and BRAF have been
reported to demonstrate frequent mutations in myeloma patients [11–13].

The introduction of gene expression profiling (GEP) in MM was an important step in
elucidating the molecular heterogeneity of MM and its clinical relevance. Initially array-
based studies, and more recently, those based on RNA sequencing (RNASeq), provided
information on the transcriptomic background of myeloma, its clinical course, and progno-
sis. Since some mutations in MM occur in non-coding regions [14], analytical approaches
based on mRNA provide more comprehensive information on the oncogenic pathways
and mechanisms relevant to MM biology.

This present review discusses the role of gene expression profiling in understanding
the biology of MM, together with the clinical manifestation of the disease, as well as its
impact on treatment decisions and future directions for research.

2. Techniques Used for Gene Expression Analysis

The history of transcript profiling begins with early attempts of Northern blotting, re-
verse transcriptase quantitative PCR (RT-qPCR), and Sanger sequencing of the expressed se-
quence tags (ESTs), these being short nucleotide sequences generated from cDNAs [15–18].
Other early gene expression analysis techniques include serial analysis of gene expres-
sion (SAGE) [19] and DNA microarrays [20]. Both techniques are widely used for gene
expression studies and novel gene identification. SAGE is based on the principle that
an oligonucleotide sequence can uniquely identify a gene. It requires the isolation of
mRNA and the generation of cDNA, from which unique small sequences (∼initially 10 bp),
i.e., tags, are generated using restriction enzyme digestion. The frequency of a specific
sequence tag determines the relative abundance of the transcript. Over the years, variations
of SAGE have been devised to identify tags more accurately by increasing tag length by
even as much as 26 bp [21]. DNA microarrays act by measuring the hybridization of the
labeled target cDNA strands to a sample with fixed probes [22]. Although the techniques
mentioned have been widely used, they both have their limitations.

The development of the high throughput sequencing RNA-seq technique has enabled
even better exploration of RNA biology. The popularity of RNA-seq is driven by its large
number of applications with differential gene expression analysis being the most common
one. The standard workflow of RNA-seq begins with RNA extraction. This is followed by
the purification of RNA from a sample since the isolated RNA is mostly ribosomal. The
two most common techniques used for target enrichment are poly(A) capture for mRNA
selection and ribosomal depletion. Following this, cDNA synthesis is performed and an
adaptor-ligated sequencing library is prepared. Finally, the cDNA library is amplified
by polymerase chain reaction (PCR) using parts of the adapter sequences as primers.
When the experiment is finished, the data analysis begins: aligning and/or assembling the
sequencing reads to a transcriptome, quantifying reads that overlap transcripts, filtering
and normalizing between samples, and statistical modeling of significant changes in the
expression levels of individual genes and/or transcripts between sample groups [23,24].

Over the years, our understanding of hematological malignancies has improved
thanks to the development of next-generation sequencing (NGS), an approach compris-
ing a range of methodologies that allow the investigation of genomics, transcriptomics,
and epigenomics. An extensive review by Braggio et al. details the advances in the ge-
nomic exploration of hematological malignancies achieved through genome-wide sequence
analysis [25].

Transcriptomic studies have provided important information regarding pathways
and genes involved in myelomagenesis. Such gene expression profile (GEP) studies
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constitute a reliable prognostic tool that has been independently validated by various
multiple myeloma cooperative groups. However, in daily clinical practice, no consensus
has evolved to integrate GEP in multiple myeloma care.

3. Gene Expression Profile in Multiple Myeloma Biology and Prognosis

Multiple myeloma is a genetically complex and heterogeneous neoplasm in which the
concurrency of multiple genomic events results in tumor development and progression.
MM exists as hyperdiploid and nonhyperdiploid forms, with different karyotype [26,27].
Its most important oncogenic mechanisms are believed to be oncogene activation by IgH
translocations and oncogene mutations [28]. IgH translocations are present in up to 50% of
patients, and mainly involve five chromosomal loci, 11q13, 6p21, 4p16, 16q23, and 20q11,
which contain the CCND1, CCND3, FGFR3/NSD2, MAF, and MAFB oncogenes [29].

The transcriptome of multiple myeloma has been evaluated in different patient co-
horts [30–33]. Studies based on GEP have been widely used to better understand the
biology of MM by identifying the genes involved in the molecular pathogenesis of the dis-
ease and their clinical significance, to predict survival in multiple myeloma, and to identify
patients who will benefit from particular types of therapy. Some groups have even made
an attempt to compare the transcriptome of MM and primary plasma cell leukemia: a more
aggressive form of plasma cell dyscrasia [34]. Expression profiles of differentially expressed
genes are of critical importance and have provided insights into MM biology. These genes
may relate to cell cycle, cell death, autophagy, kinome, stemness, cytogenetic abnormalities,
chromosome 1, homozygous deletions, and immune subnetworks [33,35–42].

GEP studies have led to the identification of Cyclin D family deregulation in MM
and MGUS [30,43,44]. Deregulation of the cyclin D family (CCND1, CCND2, and CCND3)
appears to be one of the key molecular events in the pathogenesis of MM [45]. It can result
from the translocation of CCND1 or CCND3 with the IgH gene in the t(11;14) and the
t(6;14), specific cyclin D amplification, trisomies, and other cytogenetic events. CCND2 is
particularly overexpressed in t(4;14) and t(14;16) patients [30,31]. A proposed classification
based on CCND1 gene expression status and 14q32 translocations divides MM patients
into eight different subgroups [44].

Another attempt to use gene expression profiling in order to develop a prognosti-
cally relevant molecular classification of MM was made by Zhan et al. [32] The findings
indicated the presence of seven disease subtypes that were strongly influenced by known
genetic lesions including c-MAF– and MAFB-, CCND1- and CCND3-, MMSET-activating
translocations and hyperdiploidy, these being CD1 [(t(11;14)], CD2 [t(11;14) and t(11;16)],
MS [t(4;14)], MF [t(14;16) and t(14;20)], hyperdiploid cluster (HY), low bone disease (LB),
and proliferation-associated genes (PR). Zhan et al. also identified myeloid gene expres-
sion signatures but excluded them from profiling analyses [32]. Broyl et al. confirmed
the findings made by Zhan et al. and identified three novel subsets of MM: the nuclear
factor kappa light chain-enhancer (NF-kB) subgroup, the cancer/testis antigen (CTA) sub-
group characterized by high proliferation index, and the PRL3 subgroup characterized by
up-regulation of protein tyrosine phosphatases PRL-3 and PTPRZ1 [31].

A review by Szalat et al. indicated the existence of 11 different molecular subgroups
of MM based on transcriptomic studies [46]. A summary of this classification correlated
with the clinical outcome is given in Table 1. Liu et al. combined data from whole-genome
gene expression profiling microarrays and CytoScan HD high-resolution genomic arrays to
integrate GEP with copy number variations (CNV); the findings highlighted certain molec-
ular alterations in MM that were important for disease initiation, progression, and poor
clinical outcome. In particular, eight cytogenetic driver lesions essential to the development
and progression of myeloma were highlighted by the amplification of chromosome 1q:
they suggest that 1q gains and the upregulated ANP32E, DTL, IFI16, UBE2Q1, and UBE2T
gene expression could be responsible for MM aggressiveness [47]. These findings support
those of Shaughnessy et al., who found that most of the up-regulated genes mapped to
chromosome 1q, and the down-regulated genes mapped to chromosome 1p; this suggests
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that disease progression may be influenced by changes in the transcriptional regulation
of genes mapping to chromosome 1 [40]. However, studies based on different molecular
methods have yielded conflicting findings considering 1q gain as an adverse prognostic
factor. Some early studies suggest it has no prognostic value [48,49], while some latest
reports suggest it may be associated with an inferior outcome [50–53].

Table 1. The identification of 11 molecular subgroups of incorrectly expressed genes using gene expression profiling.

Prognosis Subgroup Cytogenetics Cyclin D
Expression

Upregulated
Genes

Downregulated
Genes Frequency

Lo
w

ri
sk

CD1 t(11;14) CCND1
INHBE
ETV1

MACROD2

CD9
NOTCH2NL 4–9%

CD2
t(11;14)

t(6;14)

CCND1
CCND3

cd79a
cd20 CCND2 11–17%

LB - CCND1
CCND2

EDN1
IL6R

SMAD1

DKK1
STAT1
STAT2

12–17%

HY HD CCND1
TRAIL
DKK1
CCR5

CCND2
CD52

TAGLN2
CKS1B
OPN3

26–32%

NF-κB HD CCND1
CCND2

CD40
BCL10

IL8

TRAF3
CCR2

MAT2A
11%

PRL3 HD CCND2
SOX3

PTP4A3
PTPRZ1

CD44
DUSP6 2–3%

Myeloid - CCND1
CCND2

CD163
CA1
LIZ

PRMT1
DUSP5
SMAD7

12%

H
ig

h
ri

sk

MF t(14;16)
t(14;20) CCND2

IL6R
c-MAF
MAFB

DKK1
CCND1 6–10%

MS t(4;14)
1q gain CCND2

MMSET
FGFR3
PBX1

CCND1
DUSP2

SYK PAX5
15–17%

PR 1q gain CCND2
CCND1

CCNB1
MCM2
CDC2
BIRC5
CCNB2
AURKA

CXCR4
CD27 11%

CTA 1q gain CCND1
CCND2

Cancer testis
antigen
AURKA

MALAT1 7%

Manasach et al. compared the value of retrospective GEP data with FISH criteria to
identify high-risk (HR) patients. They conclude that GEP identified more HR patients
than FISH. Patients reclassified from standard-risk FISH to HR GEP presented with 1q
amplification of equal to or over four copies [54]. Elsewhere, a multi-tissue transcriptome-
wide association study (TWAS) aimed at exploring MM biology by Went et al. [55] identified
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108 genes at 13 independent regions associated with MM risk; all of these were within
1 Mb of known MM GWAS risk variants [56–59].

It should be noted that transcriptomic approaches have rarely been employed in as-
sessments of the risk of multiple myeloma or progression from MGUS. A number of GWAS
and SNP studies have been conducted in order to explore this field, including multiple
studies by the International Multiple Myeloma Research (IMMEnSE) consortium [56–62].

4. Gene Expression Profile and Multiple Myeloma Prognosis

Many different transcriptomic models for prognostication have been identified; how-
ever, none of them have been introduced into routine clinical practice. So far, the revised
International Staging System (R-ISS) is still the first choice in MM management [63], and the
older Durie-Salmon staging system is still used in some places [64]. Zhan et al. performed
a microarray analysis on tumor cells from 532 newly diagnosed patients with MM in order
to identify high-risk disease [32]. They report that high-risk groups presented a similar
gene expression profile to human MM cell lines, whereas low-risk MM groups exhibited
patterns identical to MGUS and normal plasma cells. After evaluation of the 70-gene risk
model in relapse samples of 51 out of 351 of the training cohort, high-risk scores associated
with poor survival were found in 39 patients. Kuiper et al. identified a 92-gene signature
(EMC-92) that proved to be an independent prognostic factor of survival [65]. More recently
Decaux et al. proposed a risk stratification model based on 15 different genes and note that
patients with high-risk MM were characterized by the overexpression of genes involved
in multiple phases of the entire cell cycle [33]. Dickens et al. limited the prognostication
to six genes [41]. Similarly, Botta et al. proposed a prognostic risk score based on only
six genes: IFNG, IL2, LTA, CCL2, VEGFA, and CCL3 [42]. This list was acquired from a
gene expression profiling dataset of MGUS, smoldering MM, and symptomatic-MM, and
identified inflammatory and cytokine/chemokine pathways as the most progressively
affected during disease evolution.

Hose et al. proposed that assessment of proliferation by GEP allows the selection
of patients for risk-adapted anti-proliferative treatment [66]. Liu et al. [35] constructed
a multiple myeloma molecular causal network (M3CN) based on gene expression, copy
number variation, and clinical data to better understand MM tumorigenesis, progression,
and drug responses. The M3CN-derived prognostic subnetwork achieved demonstrated
satisfactory separation between different risk groups [35]. However, the most complex
approach was proposed by Katiyar et al. [67], who identified unified potential signatures
for MM based on a genome-wide meta-analysis of differentially expressed genes (DEGs)
and miRNAs (DEMs) in MM cells and normal plasma cells. The authors identified the top
five most functionally connected hub genes (UBC, ITGA4, HSP90AB1, VCAM1, VCP) using
protein–protein interactions.

In addition, transcription factor regulatory networks were determined for five seed
DEGs with four or more biomarker applications (CDKN1A, CDKN2A, MMP9, IGF1,
MKI67) [67]. The above studies indicate, that DEGs may influence disease pathogene-
sis, clinical presentation, and drug sensitivities in MM patients.

In recent years, gene expression profiling has been used to establish classifiers for
prognostication. Various studies have shown that that GEP classifiers are more robust
than FISH markers in identifying risk. For instance, a multivariate analysis by Kuiper
et al. found that combinations of GEP with ISS, particularly SKY92 + ISS, proved superior
to other combinations for stratifying MM into high-risk and low-risk categories [68]. A
summary of the differences between gene expression classifiers in MM is presented in
Table 2.
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Table 2. Summary of differences between gene expression classifiers in MM.

Classifiers
Name

No. of Genes
Involved Gene Names Involved

No. of Patients Tested in
Validation in the Original

Publication

No. of
Risk-Groups

Identified
Reported Outcome Ref.

UAMS70 70

FABP5, PDHA1, TRIP13, AIM2, SELI,
SLCI19A1, LARS2, OPN3, ASPM, CCT2,
UBE2I, STK6, FLJ13052, LAS1L, BIRC5,

RFC4, CKS1B, CKAP1, MGC57827,
DKFZp779O175, PFN1, ILF3, IFI16,
TBRG4, PAPD1, EIF2C2, MGC4308,
ENO1, DSG2, C6orf173, EXOSC4,

TAGLN2, RUVBL1, ALDOA, CPSF3, NA,
MGC15606, LGALS1, RAD18, SNX5,
PSMD4, RAN, KIF14, CBX3, TMPO,

DKFZP586L0724, WEE1, ROBO1, TCOF1,
YWHAZ, MPHOSPH1, GNG10, NA,
PNPLA4, NA, KIAA1754, AHCYL1,

MCLC, EVI5, AD-020, NA, PARG1, CTBS,
UBE2R2, FUCA1, RFP2, FLJ20489, NA,

LTBP1, TRIM33

412 7

Low-risk groups
3-year EFS:

84% in LB, 72% HY,
82% in CD1, and 86%

in CD2
3-year OS:

81% in CD1, 84% in
HY, 87% in LB, and

88% in CD2 [32]
High risk groups

3-year EFS:
44% in PR, 39% in MS

and 50% in MF
3-year OS:

55% in PR, 69% in MS,
71% in MF

UAMS17 17

KIF14, SLC19A1, CKS1B, YWHAZ,
MPHOSPH1, TMPO, NADK, LARS2,

TBRG4, AIM2, 242488_at, ASPM,
AHCYL1, CTBS, MCLC, LTBP1,

1557277_a_at

181 2

High-risk vs. low-risk
5-year EFS: 18% vs.

60%, p < 0.001;
HR = 4.51
5-year OS:

28% vs. 78%, p < 0.001;
HR = 5.16

[40]

UAMS80 80

COX6C, NOLA1, COPS5, SOD1, TUBA6,
HNRPC, PSMB2, PSMC4, LOC400657,
C1orf31, FUNDC1, SUMO1, PSMB4,
PSMB3, ENSA, PSMB4, COMMD8,
MRPL47, PSMC5, HNRPC, PSMA4,

PSMD4, NMT1, PSMB7, NXT2,
SLC25A14, PSMD4, PSMD2, SNRPD1,
PSMD4, CHORDC1, PSMD14, LAP3,

PSMA7, UBPH, BIRC5, STAU2, ALDOA,
TMC8, C1orf128, FLNA, HIST1H3B, FOSB,

LOC644250, C17orf60, LZTR2, PDE4B,
STAU2, PDE4B, GABARAPL1, TAGAP,
LOC643318, CISH, NR4A1, MGC61598,

ANKRD37, KIAA1394, ACVR1C, TBC1D9,
CRYGS, PDE4B, CISH, ZNF710, RBM33,
STX11, KIAA1754, CISH, RPL41, WIRE,
LAPTM4A, KLHL7, C9orf130, C14orf100,

1561060_at, 229388_at, 239343_at,
236986_at, 227524_at, 239082_at,

226399_at

128 2

Low-risk vs. high-risk
2-year OS: 92% vs.

60%
2-year PFS: 87% vs.

53%

[69]

IFM15 15
CNDP2, STMN1, AFG3L2, STK38, PARP1,
CPSF6, LOC151162, TOX2, FRY, FLJ21438,

MGST1, ALDH2, CTSF, ATF4, FAM49A
853 2

3-year OS
Low-risk: 90.5% (95%

CI, 85.6% to 95.3%)
High-risk: 47.4% (95%

CI, 33.5% 60.1%)

[33]

MRCIX6 6 BUB1B, HDAC3, CDC2, FIS1, RAD21,
ITM2B 800 2

Median OS: 13 vs. 45
months

Median PFS 11 vs. 22
months

[41]

HM19 19

BUB1B, HEATR2, CENPW, NUDT11,
EHD4, EZH2, DLGAP5, HJURP, CDCA8,

TMEM48, CDC42BPA, DEPDC1B,
FAM83D, PGM2L1, NUSAP1

345 3 OS at 48 months (%):
92 vs. 72 vs. 20 [70]

GPI50 50

ASPM, AURKA, AURKB, BIRC5, BRCA1,
BUB1, BUB1B, CCNA2, CCNB1, CCNB2,
CDC2, CDC20, CDC25C, CDC6, CDCA8,

CDKN3, CEP55 (C10orf3), CHEK1, CKS1B,
CKS2, DLG7, ESPL1, GINS1, GTSE1,

KIAA1794, KIF11, KIF15, KIF20A, KIF2C,
KNTC2, MAD2L1, MCM10, MCM6,

MKI67, NCAPD3, NCAPG, NCAPG2,
NEK2, NPM1, PCNA, PGAM1, PLK4,

PTTG1, RACGAP1, SMC2, SPAG5, STIL,
TPX2, UBEC2C, ZWINT

345 3 EFS 12.7 vs. 26.2 vs.
40.6 months p < 0.001 [66]
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Table 2. Cont.

Classifiers
Name

No. of Genes
Involved Gene Names Involved

No. of Patients Tested in
Validation in the Original

Publication

No. of
Risk-Groups

Identified
Reported Outcome Ref.

SKY92/EMC92 92

SLC30A7, AK2, SYF2, S100A6, NUF2,
DARS2, ARPC5, DTL, ANGEL2, LBR,

TARBP1, GGPS1,LTBP1, FAM49A, MCM6,
ACVR2A, GRB14, ITGA6, DHRS9, STAT1,

SPATS2L, BCS1L, SFMBT1, ARL8B,
POLQ, MCM2, CCRL1, SEC62, GABRA4,
PGM2, NCAPG, FGFR3, SEPT11, AIMP1,

CENPE, IL7R 5, DHFR 5, SAR1B,
PCDHB7, ATP6V0E1, MCM3, TUBB,
TUBB, MARCKS, SLC17A5, NCUBE1,
SUN1/GET4, DNAJB9, 208232_x_at,

RAB2A, TRAM1, ZNF252, HNRNPK,
MRPL41, ZWINT, 243018_at, FANCF,

EHBP1L1, C11orf85, PPP2R1B, ROBO3,
238780_s_at, C1S, ESPL1, ITM2B, ZBTB25,
NPC2, ATPBD4, C15orf38, FANCI, SMG1,

DYNLRB2, TMEM97, SPAG5, TOP2A,
BIRC5, C18orf10, TSPAN16, RPS28,

RPS11, NOP56, FTL 19, CDH22,
DONSON 21, PFKL, ST13, DUX4, RPS4X,

KIF4A, HMGN5, HMGB3, MAGEA6

757 in validation 4

HR 3.4 (95%
CI:2.19–5.29,

p = 5.7 × 10−8) in
high-risk patients

[68]

CTA 28

ASPM, BIRC5,
C4A, CDC2, CENPA, CST3, CTAG2, DLG7,
FLJ110719, FLJ21841, GAGE5, GAGED2,

KIF20A, MAGEA1, MAGEA12, MAGEA3,
MAGEA6, NEK2, RACGAP1, RRM2, SGK,

SSX1, SSX2, SSX3, SSXT/SSX4 fusion,
TOP2A, TTK, TYMS.

53 patients overall 2
Median survival of

27 months in the
high-risk cluster 1

[71]

CI 4 CETN2, TUBG1, PCNT1 PCNT2 539 2

High CI vs. low CI
Median OS 30.6 vs.

45.6 months, log-rank
p = 0.04

Median PFS 2.8 vs. 4.9
months, log−rank

p = 0.02

[72]

5. mRNA and Drug Resistance

Despite recent advancements in the design of novel anti-myeloma drugs, the acquisi-
tion of anti-cancer drug resistance is a major limitation of MM therapy. The mechanisms
underlying drug resistance are diverse and include both genetic and epigenetic abnor-
malities. The topic of drug resistance in multiple myeloma has been widely reviewed by
Robak et al. [73]. However, for the purpose of this review, we would like to briefly mention
the mechanisms associated with altered mRNA expression.

Mitra et al. [74] developed a gene expression signature that predicts response specific
to proteasome inhibitor (PI) treatment in MM on human myeloma cell lines (HMCLs). They
created a 42-gene expression signature that could distinguish good and poor PI response
in the HMCL panel and could be successfully applied to four different clinical data sets on
MM patients undergoing PI-based chemotherapy to distinguish between good and poor
outcomes [74].

In a study of the functional role of ABCB1 overexpression in MM, Besse et al. [75]
found this to be the most significant change in carfilzomib-resistant MM cells compared
to bortezomib-resistant cells. This change enhances the p-glycoprotein-mediated export
of therapeutic drugs. The authors identified nelfinavir and lopinavir as approved drugs
that could overcome resistance to carfilzomib by modulating P-glycoprotein function [75].
In addition, they observed that ABCB1 overexpression reduces the proteasome-inhibiting
activity of carfilzomib but not of bortezomib.

Tang et al. [67]. identified 2099 long non-coding mRNAs that were deregulated in
exosomes of bortezomib-resistant patients. Of these, 78 mRNAs in drug resistance-related
pathways were enriched, with mammalian targets: rapamycin, platinum drug resistance,
the cAMP, and phosphoinositide 3-kinase/Akt signaling pathways being key examples [76].

A recent study by Robak et al. [77] compared the mRNA expression of nine previ-
ously described genes that may affect resistance to multiple myeloma (ABCB1, CXCR4,
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MAF, MARCKS, POMP, PSMB5, RPL5, TXN, and XBP1) by bortezomib-refractory and
bortezomib-sensitive patients [77]. The analysis was performed on 73 MM patients and
11 healthy controls. It was reported that RPL5 was significantly downregulated in MM
patients, and that POMP was significantly upregulated in MM patients refractory to borte-
zomib. A multivariate analysis found high expression of PSMB5 and CXCR and autologous
stem cell transplantation to be independent predictors of progression-free survival, while
high expression of POMP and RPL5 was associated with shorter overall survival [77].

6. mRNA in CAR-T Cell Therapy

When reviewing the role of messenger RNA in the biology of multiple myeloma, it
is important to include the latest achievement in the field of chimeric antigen receptor
(CAR) T cell therapy. Despite the introduction of many novel therapeutic strategies,
multiple myeloma remains incurable and requires continued intervention for disease
control. However, a promising recent development is the design of an engineered T-
cell product, Descartes-08, that transiently modifies a purified population of autologous
CD8 + T-cells with anti-B cell maturation antigen (BCMA) CAR mRNA, as reported by
Lin et al. [78]. Descartes-08 is engineered by mRNA transfection to express anti-BCMA
CAR for a defined length of time. The mRNA is synthesized by in vitro transcription from
a linearized DNA plasmid [78]. The development of this virus-free CAR-T cell technology
has recently led to the initiation of the first clinical trial [79].

7. Conclusions

Gene expression profiling studies provide important information regarding the biol-
ogy of multiple myeloma and may serve as a tool to predict outcomes and guide therapy. In
the era of personalized medicine, the future lies in enabling therapy to be chosen based on
the presence of specific mutations and gene expression profiles. However, the complexity
of the MM genome and transcriptome still requires further investigation.
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