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Abstract

The scientific literature contains large amounts of information on genes, proteins,

chemicals and their interactions. Extraction and integration of this information in curated

knowledge bases help researchers support their experimental results, leading to new

hypotheses and discoveries. This is especially relevant for precision medicine, which

aims to understand the individual variability across patient groups in order to select

the most appropriate treatments. Methods for improved retrieval and automatic relation

extraction from biomedical literature are therefore required for collecting structured

information from the growing number of published works. In this paper, we follow a

deep learning approach for extracting mentions of chemical–protein interactions from

biomedical articles, based on various enhancements over our participation in the BioCre-

ative VI CHEMPROT task. A significant aspect of our best method is the use of a simple

deep learning model together with a very narrow representation of the relation instances,

using only up to 10 words from the shortest dependency path and the respective depen-

dency edges. Bidirectional long short-term memory recurrent networks or convolutional

neural networks are used to build the deep learning models. We report the results of

several experiments and show that our best model is competitive with more complex

sentence representations or network structures, achieving an F1-score of 0.6306 on the

test set. The source code of our work, along with detailed statistics, is publicly available.

Database URL: https://github.com/ruiantunes/biocreative-vi-track-5-chemprot/

Introduction

As the knowledge of how biological systems work at
different structural levels grows, more possibilities arise for

applying it in diagnosing and treating common and com-
plex diseases. Furthermore, exploiting the large amounts
of biomolecular data from -omics studies and patient-level
information recorded in electronic health records offers
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Figure 1. Example sentence illustrating biochemical entities and their relations.

prospects for precision and personalized medicine [1].
Nonetheless, relevant fine-grained information is constantly
being communicated in the form of natural language
through scientific publications. To exploit this source of
updated knowledge, several methods have been proposed
for retrieving relevant articles for database curation [2], and
for extracting from the unstructured texts information such
as entity mentions [3, 4], biomolecular interactions and
events [5, 6] or the clinical and pharmacological impact of
genetic mutations [7]. These methods have proven essential
for collecting the most recent research results and for
expediting database curation [8].

The BioCreative VI CHEMPROT challenge stimulated
the development of systems for extracting interactions
between chemical compounds (drugs) and GPROs (gene
and protein related objects) from running text, given their
importance for precision medicine, drug discovery and basic
biomedical research [9]. An example illustrating various
relations that can be extracted from a single sentence in
a publication is shown in Figure 1. The development of
systems able to automatically extract such relations may
expedite curation work and contribute to the amount of
information available in structured annotation databases,
in a form that is easily searched and retrieved by researchers.

Data for the CHEMPROT task was composed of
PubMed abstracts in which gold-standard entities were
provided, and the aim was to detect chemical–protein
pairs that expressed a certain interaction. Therefore, the
biomedical named entity recognition (NER) step was out
of the scope of this task. The organizers defined 10 groups
of chemical–protein relations (CPRs) that shared some
underlying biological properties, in which only five of them
(up-regulation, down-regulation, agonist, antagonist and
substrate) were used for evaluation purposes. More detail
about the data is presented in Section 3.

This paper describes our participation in the CHEMPROT
task together with the improvements we performed after the
challenge. At the time of the official evaluation, our system
[10] was based on the application of bidirectional long
short-term memory (BiLSTM) recurrent neural networks
RNNs using features from tokenization, part-of-speech
(PoS) tagging and dependency parsing. After the challenge
we ran additional experiments including other resources

and methods, which allowed the system to perform better.
Despite the main idea of our system remaining the same,
the final results showed that our adjustments to the system
led to an improvement in F1-score of 11 percentage points
on the test set. These experiments included adapting the
network structure, employing other networks such as
convolutional neural networks (CNNs), performing a more
meticulous pre-processing, balancing precision and recall,
adding more training data from an external repository and
testing other pre-trained word embeddings.

This paper is organized as follows: related work is
presented in the next section, followed by resources and
methods we employed; next, we present our results and
discuss possible limitations of our approach; finally, some
conclusions and future work directions are given in the last
section.

Related work

Previous research on biomedical relation extraction focused
on protein–protein interactions (PPIs) [6] and relations
between drugs, genes and diseases [8, 11]. Machine learn-
ing methods combined with kernel functions to calculate
similarities between instances given some representation
were shown to achieve good results in textual relation
extraction.

As opposed to the traditional machine learning meth-
ods employed in initial works, deep learning techniques
eliminate the need for feature engineering, instead using
multiple data transformation layers that apply simple non-
linear functions to obtain different levels of representation
of the input data, intrinsically learning complex classifi-
cation functions [12]. These strengths have brought much
attention with significant successes in several natural lan-
guage processing tasks, including word sense disambigua-
tion (WSD) [13], text classification [14, 15] and NER
[16, 17].

Several works have demonstrated the use of deep neural
networks for biomedical relation extraction and classifica-
tion. For example, Nguyen et al. [18] used a CNN with pre-
trained word embeddings, outperforming previous state-of-
the-art systems for relation classification. Nonetheless, the
sequential nature of natural texts can be better modeled
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by recurrent networks, which contain a feedback loop
that allows the network to use information regarding the
previous state. LSTM networks are a special type of RNNs
in which a set of information gates is introduced in the
processing unit that allow these networks to memorize
long-term dependencies while avoiding the vanishing gra-
dient problem. Wang et al. [19] used BiLSTM networks
and features from the dependency structure of the sentences
obtaining an F1-score of 0.720 in the DDIExtraction 2013
corpus. Zhang et al. [20] also used BiLSTM models for
extracting drug–drug interactions (DDIs) achieving a state-
of-the-art F1-score of 0.729 in the same dataset. They
integrated the shortest dependency path (SDP) and sen-
tence sequences, and concatenated word, PoS and position
embeddings into a unique embedding, and an attention
mechanism was employed to give more weight to more
relevant words.

Methods for extracting chemical–disease relations were
evaluated in the BioCreative V CDR task, in which par-
ticipants were required to identify disease and chemical
entities and relations between them [21]. Using the pro-
vided gold-standard entities, Zhou et al. [22] achieved an
F1-score of 0.560 with a hybrid system consisting of a
feature-based support vector machine (SVM) model, a tree
kernel-based model using dependency features and a LSTM
network to generate semantic representations. This result
was improved to 0.613 by inclusion of post-processing
rules. The same result was achieved by Gu et al. [23], also
with a hybrid system combining a maximum entropy model
with linguistic features, a CNN using dependency parsing
information and heuristic rules.

Regarding CPR extraction, the state-of-the-art results
were achieved by teams participating in the BioCreative
VI CHEMPROT challenge [9], with some improvements
described in follow-up works. The best participating team
achieved an F1-score of 0.641 using a stacking ensem-
ble combining an SVM, a CNN and a BiLSTM [24, 25].
Lemmatization, PoS and chunk labels from the surrounding
entity mentions and from the SDP were used as features
for the SVM classifier. For the CNN and BiLSTM, the
sentence and shortest path sequences were used, where
each word was represented by a concatenation of several
embeddings (PoS tags, dependencies, named entities and
others). Corbett et al. [26] achieved an F1-score of 0.614
using pre-trained word embeddings and a network model
with multiple LSTM layers, with the ChemListem NER
system used for tokenization [27]. This result was improved
to an F1-score of 0.626 in post-challenge experiments [28].
Mehryary et al. [29] proposed two different systems: an
SVM classifier and an ensemble of neural networks that
use LSTM layers. Both systems took features from the
dependency parsing graph, although the SVM required

more feature engineering. They combined the predictions
of the two systems, yet the SVM alone produced the best
F1-score (0.610). After the challenge they achieved an F1-
score of 0.631 by using their improved artificial neural
network (ANN) [30]. Lim et al. [31] used ensembles of
tree-LSTM networks, achieving an F-score of 0.585 during
the challenge. They later improved this result to 0.637
with a revised pre-processing and by using more mem-
bers in the ensemble, and equaled the best challenge F1-
score (0.641) using a shift-reduce parser based network
architecture [32]. Lung et al. [33, 34] achieved an F1-
score of 0.567 using traditional machine learning. Neural
networks with attention mechanisms were also followed
by Liu et al. [35, 36] and Verga et al. [37], but achieved
lower results. However, the use of attention layers [38, 39]
has been shown to be effective in different information
extraction tasks such as document classification [40] and
relation extraction [41], being an interesting direction to
explore.

Zhang and Lu [42] present a semi-supervised approach
based on a variational autoencoder for biomedical
relation extraction. They evaluated their method in the
CHEMPROT dataset experimenting with different number
of labeled samples, showing that adding unlabeled data
improves the relation extraction mainly when there are
only a few hundred training samples. Using 4000 (from a
total of 25 071) labeled training instances together with
unlabeled data taken from the remaining training instances
(with true labels removed), their semi-supervised method
achieved an F-score of 0.509.

Lastly, a recent work by Zhang et al. [43] achieved the
state-of-the-art F-score of 0.659 using BiLSTM models with
deep context representation (providing superior sentence
representation compared to traditional word embeddings)
and multihead attention.

Materials and methods

This section describes the resources used, the evaluation
metric employed and the methods implemented.

Dataset

The CHEMPROT corpus was created by the BioCreative VI
organizers [9], being composed of three distinct sets: train-
ing, development and test (Table 1). During the challenge, to
hinder manual corrections and to ensure that systems could
annotate larger datasets, the organizers included 2599
extra documents in the test set, which were not used for
evaluation.

Each document, containing the title and the abstract of
a PubMed article, was annotated by expert curators with
chemical, protein entity mentions and their relations. The
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Table 1. CHEMPROT dataset statistics

Training Development Test

Abstracts Total 1020 612 800
With any relation 767 443 620
With evaluated relations 635 376 514

Entities Chemical 13 017 8004 10 810
Protein 12 735 7563 10 018
Total 6437 3558 5744
Activation (CPR:3) 768 550 665
Inhibition (CPR:4) 2254 1094 1661

Relations Agonist (CPR:5) 173 116 195
Antagonist (CPR:6) 235 199 293
Substrate (CPR:9) 727 457 644

annotation guidelines considered 10 groups of biological
interactions, which were designated as CPR groups. How-
ever, for this task, only five classes were considered for eval-
uation purposes: activation (CPR:3), inhibition (CPR:4),
agonist (CPR:5), antagonist (CPR:6) and substrate (CPR:9).
Table 1 presents detailed dataset statistics.

One can see from Table 1 that not all abstracts contain
annotated relations, although all abstracts were annotated
with entity mentions. Nevertheless, abstracts without eval-
uated relations are useful as they can be used to create nega-
tive instances for training the system. Only 1525 documents
of 2432 (63%) are annotated with evaluated relations. This
suggests that it could be a reasonable idea to first apply a
document triage step to ignore documents that probably are
not relevant for extracting chemical–protein interactions
(CPIs), reducing the number of false positive relations, while
still considering them for generating negative instances to
feed the deep learning model. Though, we did not follow
this possibility leaving it as possible future work. Similar
binary approaches were followed by Lung et al. [33, 34]
and Warikoo et al. [44] who start by predicting if a CPR
pair is positive.

A more scrupulous analysis of the corpus shows that
there are some relations between overlapped entities (for
example, a protein entity containing a chemical entity),
as well as some cross-sentence relations. However, cross-
sentence relations appear in a very small number and were
deliberately discarded. Also, despite some CHEMPROT
relations were classified with more than one CPR group we
considered only one label, since these are rare, simplifying
the task as a multi-class problem.

Performance evaluation

The BioCreative VI CHEMPROT organizers considered the
micro-averaged precision, recall and balanced micro F1-
score for evaluation purposes [9]. Micro F1-score was the
official metric used to evaluate and compare the teams’

submissions. This metric was integrated in our pipeline,
for measuring the neural network performance at each
training epoch, allowing to develop and select the best
model dynamically for this specific task.

Pre-processing

We pre-processed the entire CHEMPROT dataset using
the Turku Event Extraction System (TEES) [45] applying
a pipeline composed with the GENIA sentence splitter [46],
the BLLIP parser [47] using the McClosky and Charniak
biomedical parsing model [48] and the Stanford depen-
dency parser [49] (version 3.8.0, released on 2017-06-
09). This pre-processing performs sentence splitting, tok-
enization, PoS tagging and dependency parsing. Sentence
splitting is required to obtain all the chemical–protein pair
candidates in the same sentence, since these are the only
ones we considered. The yielded tokens, PoS tags and
dependency labels are encoded using embedding vectors
(more detail in the next sections). The dependency parsing
structure is also used to find the SDP between the two
entities, since previous work had already proven its value
for relation extraction [50].

For every chemical–protein pair in each sentence, we
obtain five sequences using the output of TEES: the SDP
and the sequences containing the left text and the right
text of the chemical and protein entities (Figure 2). Like the
work of Mehryary et al. [29, 30], our system traverses the
SDP always from the chemical entity to the protein entity.
For entities spanning more than one word, we obtain the
shortest path starting from the head word, as indicated by
the TEES result. For each chemical–protein pair candidate
instance, the chemical and protein entities (in cause) are
replaced respectively by the placeholders ‘#chemical’ and
‘#gene’, except when the chemical–protein pair comes only
from a single token (overlapped entities), which in this
case is replaced by ‘#chemical#gene’. While in the SDP the
dependency features were obtained traversing the path, in
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Figure 2. Example illustrating the dependency structure of a sentence from the CHEMPROT training dataset (PMID 10340919). In this example, we

considered the relation between the ‘meloxicam’ chemical mention and the ‘COX’ protein mention. The SDP is highlighted in bold and blue color.

the four left and right sequences the incoming edge of each
token was used as dependency features. If a token did not
have an incoming edge or it was the last token in the SDP
then the dependency feature was set to ‘#none’. Each one
of the five sequences is therefore represented by a sequence
of tokens, PoS tags and dependency edge labels.

Taking the sentence in Figure 2 as example, and consid-
ering the chemical–protein pair [‘meloxicam’, ‘COX’], the
five extracted sequences (containing the tokens, PoS tags
and dependency edges) are as follows:

1. Shortest dependency path: #chemical/NN/prep_of —
effects/NNS/nsubjpass — compared/VBN/prep_with
— those/DT/prep_of — diclofenac/NN/appos —
inhibitor/NN/nn — #gene/NN/#none;

2. Chemical left text: The/DT/det — effects/NNS/nsubj-
pass — of/IN/#none;

3. Chemical right text: were/VBD/auxpass — com-
pared/VBN/#none — with/IN/#none — those/DT/prep_
with — of/IN/none — diclofenac/NN/prep_of —
,/,/punct — a/DT/det — nonselective/JJ/amod;

4. Protein left text: in this case, it is the same as the
chemical right text;

5. Protein right text: inhibitor/NN/appos —././punct.

The SDP together with the left and right sequences are fed to
the neural network through embedding layers, as explained
in the following subsections.

Word embeddings

For text based tasks, it is necessary to encode the input data
in a way that it can be used by the deep network classifier.
This can be achieved by representing words as embedding
vectors of a relatively small dimension, rather than using the
large feature space resulting from the traditional one-hot
encoding. Word embeddings is a technique that consists in
deriving vector representations of words, such that words

with similar semantics are represented by vectors that are
close to one another in the vector space [51]. This way,
each document is represented by a sequence of word vectors
that are fed directly to the network. Efficient calculation
of word embeddings, such as provided by word2vec [52],
allow inferring word representations from large unanno-
tated corpora.

We applied the word2vec implementation from the Gen-
sim framework [53] to obtain word embeddings from 15
million PubMed abstracts in English language from the
years 1900 to 2015. In previous research we created six
models, with vector sizes of 100 and 300 features and
windows of 5, 20 and 50. The models contain around
775 000 distinct words (stopwords were removed). These
pre-trained word embeddings models showed their value
achieving favorable results both in biomedical document
triage [54] and biomedical WSD [55]. In this work we use
the word embeddings models with a window size of 50,
which are available in our online repository.

Another successor technique for creating word embed-
dings, from large unlabeled corpora, with subword infor-
mation was proposed by Bojanowski et al. [56]. Their
library, fastText, was used by Chen et al. [57] to create
biomedical word embeddings (vector size of 200, and win-
dow of 20) from PubMed articles and MIMIC-III clini-
cal notes [58]. We included these publicly available word
embeddings in our simulations to compare to our own
models.

Furthermore, we created PoS and dependency embed-
dings from the CHEMPROT dataset applying different
vector sizes (20, 50, 100) and windows (3, 5, 10). The
training, development and test sets are used, with 1020,
612 and 800 documents respectively (Table 1). However,
we acknowledge the inclusion of the test set adds a slight
bias. (A lapse that we do not find it worth for repeating all
our simulations.) This could be overcome, possibly improv-
ing the overall results, by including (i) PubMed abstracts
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Figure 3. Neural network structure.

outside the CHEMPROT dataset or (ii) the remaining 2599
abstracts that initially existed, in the test set, to avoid
manual annotations. Based on preliminary experiments on
the training and development sets, we decide to use the pre-
trained embedding vectors, with a window size of 3, which
are kept fixed during training. We tested using randomly
initialized PoS and dependency embeddings being adapted
during training, but the results were similar and the runtime
was higher.

Different tools (Gensim [53], fastText [56] and TEES
[45]) were used for tokenization in the word embeddings
creation and in the CHEMPROT dataset. Therefore, we
created a mapping between the dataset vocabulary and
its embedding vectors: each word of the CHEMPROT
vocabulary was tokenized according to the word embed-
dings vocabulary, and its word vector was calculated
using the L2-normalized sum of the constituent words.
With this approach, the dataset vocabulary was strongly
reduced (the respective PoS tags and dependency edges
were also removed) because some uninformative tokens are
not present in the word embeddings model. Preliminarily,
this showed to be profitable since stopwords or out-of-
vocabulary words were discarded from start.

We chose a fixed maximum length of 10 tokens (or 9
hops) for the SDP, and a maximum length of 20 tokens
for each of the left and right sequences. These values were
manually chosen according to the distribution of maximum
lengths in the training set. We had tested using the length
of the longer sequence, but this did not show to be advan-
tageous since results were not better and implied a much
higher training time. In the few cases in which the distance

between the two entities is too long causing the extracted
sequences to have more tokens than the pre-defined maxi-
mum, the sequences are truncated (the remaining tokens are
discarded). In the opposite case, when there are less tokens
than the maximum length allowed, the input vectors are
padded with zeros to keep the same input vector size.

Deep neural network

Figure 3 shows the general structure of the neural network
used in this work. Similarly to other works in relation
extraction [20, 25, 30], the different representations of a
relation instance, namely the linear and SDP representa-
tions, are handled by two separate sub-networks, the results
of which are concatenated at later stages.

Initially, each token in each one of the five extracted
sequences (SDP, left and right texts) is represented by the
concatenation of the embedding vectors from the word,
PoS and dependency embedding matrices. Furthermore, the
four left and right sequences corresponding to the linear
representation are concatenated into a single input. For each
of these two inputs (SDP and linear), Gaussian noise is
added up, followed by a BiLSTM model or a CNN model
(several convolution layers with multiple window sizes
followed by global max pooling). Then, the two obtained
outputs are concatenated and dropout is applied. At the
final stage, a fully connected layer with softmax activation
outputs the prediction probabilities. As can be seen in
Figure 3, the neural network model only differs in an inter-
mediate step (BiLSTM or CNN). We implemented these
deep learning models in the Keras framework [59] and the
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Table 2. System parameters

Gaussian noise standard deviation 0.01

LSTM units 128
LSTM recurrent dropout 0.4
LSTM dropout 0.4
Convolution filters 64
Convolution window sizes [3, 4, 5]
Dropout rate 0.4

Optimizer RMSprop [66]
Loss Categorical cross entropy

Batch size 128
Maximum number of epochs 500
Early stopping patience 30
Early stopping monitor Validation F1-score
Validation split 0.3

TensorFlow backend [60] using the Python programming
language [61].

An important consideration when defining and training
deep network models is related to overfitting, which means
that the network learns the ‘best’ data representation but is
not able to generalize to new data. Various strategies have
been proposed and are commonly employed to address this
problem. In our experiments, we applied common strategies
to avoid overfitting, namely random data augmentation
(Gaussian noise addition), dropout and early stopping.
Early stopping looks at the value of a specific evaluation
metric in a validation subset and stops the training process
when this value stops improving for a pre-specified number
of training epochs (patience value). Also, early stopping
brings a gain in total training time since the ‘best’ model
is usually selected after a few epochs instead of training
for a fixed, usually larger, number of epochs. This is an
important aspect especially when running several simula-
tions to test different network structures and parameters.
According to preliminary results, we decided to fix 30% of
the training data as validation subset, and calculated the F1-
score at each epoch for monitoring the quality of the model.
Similarly, when creating the final model to apply to the test
data, we merged the training and development sets and used
respectively 70% for training and 30% for validation and
early stopping.

Table 2 shows the network hyper-parameters and other
variables used in our system (default values were used in
unmentioned parameters). Despite we did not perform an
exhaustive grid-search for the best parameters, these were
iteratively adjusted according to several experiments using
the training and development sets. Class weights inversely
proportional to their frequency in the training set were used
to weight the input instances.

Additional methods

To improve the generalization ability of our system and to
reduce the fluctuation of the results due to the random
initialization, all the results were obtained by averaging
the prediction probabilities of three simulations using dif-
ferent random states. The use of a different random state
means that a different random initialization was made in
the neural network weights, and that distinct subsets of
the training data were effectively used for training and
validation.

Another crucial method in our system is the balancing
between precision and recall to maximize the F1-score,
achieved by adjusting the classification threshold at each
training epoch. The training data is used in this process
to avoid biasing the test results. A similar experiment was
performed by Corbett et al. [28] where they also used a
threshold value to maximize the F1-score on the develop-
ment set.

Additionally, we pre-processed an external dataset from
the BioGRID database [62] containing CPIs. This dataset
supplied further 1102 PubMed abstracts for training, anno-
tated with 2155 chemicals, 2190 proteins and 2277 rela-
tions between them.

In the next section we present and discuss the obtained
results using the methods mentioned in this section.

Results

As noted in the previous section, the use of different ran-
dom states generates different training and validation sub-
sets, which in turn results in different trained models (net-
work weights and optimal classification threshold). This
approach allows using a large amount of data for early
stopping, which in our preliminary experiments proved
important for improving generalization, while still using
most of the available data for training. Thereby, the results
presented in this section are obtained by averaging the
probabilities from three simulations.

Table 3 presents a detailed gathering of results obtained
on the development set by the BiLSTM and CNN models
combining different inputs: sequences (SDP, left and right
sequences), features (words, PoS, dependencies) and embed-
ding models. The three best results on the development
set (F1-scores: 0.6496, 0.6473 and 0.6385) were obtained
by the BiLSTM model using only the SDP with word and
dependency features where different embedding models are
used, being the highest result achieved with the biomedical
word embeddings created by Chen et al. [57].

The results show that, in general, the left and right
sequences generated much lower results, and when combin-
ing them with the SDP, the results were worse than using
only the SDP. We believe this may be due to the way the
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Table 3. F1-score results on the CHEMPROT development set using the BiLSTM and CNN models. WS: word embeddings size.

PS: part-of-speech embeddings size. DS: dependency embeddings size. SDP: shortest dependency path sequence. LR: left and

right sequences. NN: neural network. W: words. P: part-of-speech tags. D: dependency edges. The highest value in each row

is highlighted in bold; the best overall value is underlined

(WS, PS, DS) Features NN W P D W+P W+D P+D W+P+D

(100, 20, 20)a

SDP
BiLSTM 0.6007 0.1695 0.2609 0.5971 0.6385 0.2991 0.6351

CNN 0.5594 0.1628 0.2832 0.5622 0.5978 0.3102 0.6010

LR
BiLSTM 0.4967 0.2003 0.2059 0.4906 0.5149 0.2106 0.5043

CNN 0.4371 0.1902 0.1635 0.4131 0.4193 0.1683 0.3984

SDP+LR
BiLSTM 0.5857 0.2271 0.3044 0.5776 0.6000 0.2807 0.5979

CNN 0.5243 0.2332 0.2594 0.5268 0.5381 0.2361 0.5403

(300, 100, 100)a

SDP
BiLSTM 0.6161 0.1601 0.2920 0.6002 0.6473 0.3228 0.6310

CNN 0.5642 0.1595 0.3019 0.5782 0.6141 0.2991 0.6092

LR
BiLSTM 0.5135 0.2093 0.1910 0.5133 0.5209 0.1847 0.5227
CNN 0.4293 0.1962 0.1550 0.4576 0.4321 0.1448 0.4216

SDP+LR
BiLSTM 0.5914 0.2176 0.2873 0.5812 0.6036 0.2692 0.6015

CNN 0.5572 0.2152 0.2519 0.5618 0.5672 0.2340 0.5819

(200, 50, 50)b

SDP
BiLSTM 0.6229 0.1530 0.2806 0.6192 0.6496 0.3087 0.6453

CNN 0.5804 0.1555 0.2867 0.5841 0.6259 0.3182 0.6205

LR
BiLSTM 0.5030 0.2353 0.2096 0.5158 0.5060 0.2166 0.4849

CNN 0.4813 0.1827 0.1681 0.4504 0.4201 0.2130 0.4291

SDP+LR
BiLSTM 0.5943 0.2428 0.2918 0.5993 0.6126 0.2715 0.5824

CNN 0.5690 0.1966 0.2413 0.5440 0.5760 0.2645 0.5605

aOur PubMed-based word embeddings.
bWord embeddings by Chen et al. [57].

left and right sequences are combined and encoded into
the neural network, and also because the larger number of
tokens (80 versus 10 in the SDP) may contribute with more
noise by means of uninformative tokens. It is possible that
different approaches for incorporating the linear sequence
information could improve the final results.

As expected, words were the more informative type
of feature, while the PoS tags were the less informative
being worthless in some configurations. For example, in the
majority of the cases, combining the PoS tags with words
and dependencies worsened results. Interestingly, the depen-
dency edge labels showed to be much more informative than
the PoS tags, effectively improving performance in several
configurations. Essentially, the highest results were achieved
by combining words and dependency features.

Different embedding models were also explored (Table 3).
We used larger embedding sizes for words, giving greater
importance to word semantics, and smaller embedding sizes
for PoS tags and dependency labels. The results show, in
the case of our PubMed-based word2vec embeddings, that
using larger encoding vectors ((300, 100, 100) versus (100,

20, 20)) leads to slightly improved results. Nonetheless,
the best overall results were obtained with the fastText
embeddings by Chen et al. [57], although these use a smaller
vector size. This result highlights that the incorporation of
subword information in the embedding vectors is beneficial
for biomedical information extraction.

For collecting the final results (on the test set) we applied
our described approach, but with two additional arrange-
ments: (i) adding BioGRID external training data, and (ii)
using no validation data (the validation split was set to
0.0). Table 4 presents these results using the best configu-
ration based on the results obtained on the development
set (Table 3), which consisted in using the SDP with word
embeddings of size 200 (fastText model by Chen et al. [57])
and dependency features encoded by embedding vectors of
size 50. For better comparison we also include in Table 4
the results of our best official run and the baseline results
using our PubMed-based word embeddings.

Inclusion of the BioGRID dataset as additional training
data deteriorated F1-score results when compared to
not using it, in both BiLSTM (development: 0.5871
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Table 4. Detailed results on the CHEMPROT development and test sets using distinct approaches. The best configuration from

the results in the development set (Table 3) was employed. WS: word embeddings size. PS: part-of-speech embeddings size.

DS: dependency embeddings size. P: precision. R: recall. F: F1-score. The highest value in each column is highlighted in bold

Development Test

(WS, PS, DS) P R F P R F

(300, 200, 300)a,b Best official run 0.4999 0.6074 0.5470 0.5738 0.4722 0.5181

(300, 100, 100)b Baselined
BiLSTM 0.6737 0.6229 0.6473 0.7089 0.5480 0.6182

CNN 0.7059 0.5435 0.6141 0.7423 0.4939 0.5932

(200, 50, 50)c

Baselined
BiLSTM 0.6908 0.6130 0.6496 0.6812 0.5870 0.6306

CNN 0.7252 0.5505 0.6259 0.7182 0.5093 0.5959

BioGRIDe
BiLSTM 0.5337 0.6523 0.5871 0.5881 0.6050 0.5964

CNN 0.5913 0.5642 0.5774 0.6323 0.5191 0.5701

No validationf
BiLSTM 0.6867 0.6068 0.6443 0.6791 0.5980 0.6360

CNN 0.6247 0.4988 0.5547 0.6091 0.5160 0.5586

aOur official evaluated run [9, 10].
bOur PubMed-based word embeddings.
cWord embeddings by Chen et al. [57]
bResults on the development set are the same as reported in Table 3.
e30% of the training data (BioGRID excluded) used for validation.
fModel trained during 500 epochs (without monitoring).

Table 5. Comparison between participating teams in the CHEMPROT challenge (F1-score results on the test set)

Ranka Work Classifiers Challenge Post-challengeb

1 Peng et al. [24, 25] SVM, CNN and RNN 0.6410
2 Corbett et al. [27, 28] RNN and CNN 0.6141 0.6258
3 Mehryary et al. [29, 30] SVM and RNN 0.6099 0.6310
4 Lim et al. [31, 32] Tree-structured RNN 0.5853 0.6410
5 Lung et al. [33, 34] Traditional ML 0.5671
6 Our work [10] RNN and CNN 0.5181 0.6306
7 Liu et al. [35, 36] CNN and attention-based RNN 0.4948 0.5270
8 Verga et al. [37] Bi-affine attention network 0.4582
9 Wang et al. [67] RNN 0.3839
10 Tripodi et al. [68] Traditional ML and neural networks 0.3700
11 Warikoo et al. [44, 69] Tree kernel 0.3092 0.3654
12 Sun [9] 0.2195
13 Yüksel et al. [70] CNN 0.1864

aTeams ranked according to the official evaluation.
bImproved results due to post-challenge enhancements.

versus 0.6496, test: 0.5964 versus 0.6306) and CNN
models (development: 0.5774 versus 0.6259, test: 0.5701
versus 0.5959). This suggests that these data diverge
from the CHEMPROT guidelines and that some kind of
heuristics would be required to decide which instances to
include. Other approaches such as multi-instance [63] or
adversarial learning [64] could also be applied.

Inspection of the training and validation F1-score for
each epoch indicates that the BiLSTM model suffered less
from overfitting than the CNN model. Therefore, we per-
formed an experiment where models were trained for 500

epochs without early stopping, since this has the advantage
of training each model (in the three simulations) using all
the available training data. Overall, the highest F1-score on
the test set was achieved following this approach (0.6360
versus 0.6306 in the baseline) showing that the BiLSTM
model was in fact very resistant to overfitting. Conversely,
the CNN performed much worst when early stopping,
and therefore validation data, was not used (0.5586
versus 0.5959). Even when trained with the BioGRID
external dataset, where validation data was used, the CNN
model obtained better results compared to those obtained
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Table 6. Confusion matrix in the CHEMPROT test set (F1-score 0.6306) obtained by the BiLSTM model that achieved the

highest F1-score in the development set, as reported in Table 4. Green cells show correct classifications (true positives); pink

cells show false positives; yellow cells show false negatives (first line) and misclassifications between classes. Differences to

the best results obtained during the challenge are shown in parentheses

without validation monitoring (0.5701 versus 0.5586).
Despite 0.6360 being the highest F1-score in the test
set, we consider our best F-score is 0.6306 since it is
selected according to the best method in the development
set (Table 4), which represents an improvement of 11
percentage points compared to our best official F1-score
(0.5181).

From the results in Tables 3 and 4, we conclude that
a solid benefit of our approach is that the best method
uses at most 10 tokens from the SDP to classify the CPR,
using a small representation vector and therefore reducing
training time. For instance, on an Intel i3-4160T (dual-
core, 3.10 GHz) CPU, training the BiLSTM and CNN
models for one epoch with 70% of the training set (word
and dependency embeddings with sizes 100 and 20) takes
respectively around 5 and 2 seconds (the additional cost of
balancing precision and recall is excluded). Also, another
positive remark is that our BiLSTM model is resistant
to overfitting, since the results obtained in the baseline
approach are similar to those reported without using val-
idation data, and the results in the development and test

sets are similar. On the other hand, overfitting is evident
when using the CNN model, since training it for 500 epochs
grossly declined the results (development: 0.6259 versus
0.5547, test: 0.5959 versus 0.5586). This overfitting also
helps explain the higher precision seen for the CNN model
as compared to the BiLSTM model, since the network is
better capable of identifying with high confidence those
test instances that are very similar to instances seen during
training.

Comparison with other participating teams

Table 5 compares our results with other works presented
during the CHEMPROT challenge as well as post-challenge
improvements. All the top performing teams used RNNs
showing their strength in this CPR extraction task. Also,
SVMs and CNNs are among some of the classifiers used by
other works.

Similarly to our work, Corbett et al. [26, 28] used
LSTM and CNN layers. They achieved a best F1-score of
0.6258 on the test set, which is in line with our result
(0.6306). However, their network structure is larger being
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Table 7. Heatmap representing the precision values obtained by the BiLSTM model (the best in the development set) applied

to the CHEMPROT test set. True positives (TP) and false positives (FP) are displayed as TP
FP . X-axis: number of gold-standard

entities per sentence. Y-axis: number of gold-standard evaluated relations per sentence. Axes are truncated for conciseness.

GS: gold-standard

composed of more layers. Mehryary et al. [29] applied a
similar pre-processing pipeline as described in this work,
using the TEES tool to perform tokenization, PoS tagging
and dependency parsing. They achieved a top F1-score of
0.6099 with a combination of SVMs and LSTM networks.
This result was improved to 0.6310 following the challenge
[30]. Using the ANN alone, with whole sentence tokens and
features from the SDP, they achieved an F1-score of 0.6001
in the test set, while our BiLSTM model achieves an F1-
score of 0.6306 by only using features from the SDP. Lim
et al. used a tree-structured RNN exploiting syntactic parse
information [31, 32] and obtained an F1-score of 0.6410,
equalling the best official result.

Differently from the works cited above, Lung et al. [34]
used traditional machine learning algorithms with hand-
crafted features, achieving an F1-score of 0.5671. As part
of their approach, the authors manually built a dictionary
with 1155 interaction words, which where mapped to the
corresponding CPR type, to create CPI triplets.

Discussion

In this section we evaluate, making a detailed error anal-
ysis, the predictions obtained in the test set using the
baseline approach with the fastText word embeddings and
the BiLSTM model (Tables 6, 7, 8 and 9). The confusion
matrix, presented in Table 6, follows the official evaluation
script and reflects the same results reported in Table 4. The
improvements in comparison to our best official run are
also indicated, showing that our current system predicted
more correct cases except for the ‘antagonist’ relation class
where 21 more cases were missed. The number of false pos-
itives was significantly reduced for all the classes, while the
number of false negatives diminished overall but increased
for the ‘antagonist’ relation class. The ‘activation’ and ‘inhi-
bition’ relation classes were the ones most difficult to dis-
criminate, with 19 ‘inhibition’ relations predicted as ‘activa-
tion’ and 45 ‘activation’ relations predicted as ‘inhibition’.

Tables 7 and 8 show, respectively, heatmaps of the pre-
cision and recall values in function of the numbers of
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Table 8. Heatmap representing the recall values obtained by the BiLSTM model (the best in the development set) applied to

the CHEMPROT test set. True positives (TP) and false negatives (FN) are displayed as TP
FN . X-axis: number of gold-standard

entities per sentence. Y-axis: number of gold-standard evaluated relations per sentence. Axes are truncated for conciseness.

GS: gold-standard

gold-standard entities per sentence and gold-standard rela-
tions per sentence. Numbers in the cells show the amount
of correct classifications (true positives) and incorrect (false
positives) or missed classifications (false negatives). This
representation makes it easier to understand which type of
sentences are more difficult for our model to ‘interpret’.
In Table 7 we see a clear and somewhat expected trend
with lower precision when the number of entities in a
sentence is high but the number of existing relations in
that sentence is low. This is intuitive since many chemical–
protein pair candidates are generated, potentially leading
to several false positive relations. From Table 8 we verify
that the majority of the sentences in the corpus have only a
few number of entities and relations. Sentences with many
entities are rare, and these may have few or many relations.
Interestingly, the results in Table 8 indicate that, although
the worst results in terms of recall are obtained for sentences
containing many entities, there is a considerable number of
unidentified relations from sentences containing up to four
entities.

Error analysis

We present a detailed error analysis showing concrete cases
where the model failed to predict (Table 9). A comprehen-
sive list with all the predictions can be found in the online
repository. We enumerate different causes for the analyzed
frequent errors:

1. Limited or incorrect instance representation. Informa-
tion obtained exclusively from the SDP is, often, insuf-
ficient or faulty since essential words may be lacking or
misleading words may be present. Examples 1, 2 and
3 in Table 9 show cases where crucial terms such as
‘agonistic’ and ‘antagonist’ are not included in the SDP.
On the other hand, examples 4, 5, 6 include words,
such as ‘downregulation’, ‘activation’ and ‘inhibition’,
that are frequently related with other relation classes
and caused incorrect classification in these cases.

2. Misinterpretation of negation. In some cases, there
is a term giving the opposite meaning to the textual
sequence. However, these terms are not correctly han-
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Table 9. Error analysis: examples of incorrect predictions in the CHEMPROT test set obtained by the BiLSTM model (the

best in the development set). The chemical–protein pairs are presented with information from the sentence and the shortest

dependency path (SDP). The chemical and protein named entities are shown in italic and annotated with the [chemical] and

[gene] tags. For simplicity, the chemical and gene placeholders were omitted in the list of words from the SDP.

Example Correct Predicted Full sentence Words in the SDP

1 Agonist Activation The introduction of the amino [chemical] group resulted in not only
improved water solubility but also enhanced TLR7 [gene] agonistic activity.

Group introduction
resulted activity

2 Agonist Inhibition Our work shows that sulfonylureas [chemical] and glinides additionally
bind to PPARgamma and exhibit PPARgamma [gene] agonistic activity.

Exhibit activity

3 Antagonist Agonist In guinea pigs, antagonist actions of yohimbine [chemical] at 5-HT(1B)

[gene] receptors are revealed by blockade of hypothermia evoked by the
5-HT(1B) agonist, GR46,611.

Receptors

4 Activation Inhibition Impaired expression of the uncoupling protein-3 gene in skeletal muscle
during lactation: fibrates and troglitazone [chemical] reverse
lactation-induced downregulation of the uncoupling protein-3 [gene] gene.

Reverse
downregulation
gene

5 Inhibition Activation Geldanamycin [chemical] also disrupts the T-cell receptor-mediated
activation of nuclear factor of activated T-cells [gene] (NF-AT).

Disrupts activation

6 Substrate Inhibition Blockade of LTC4 [chemical] synthesis caused by additive inhibition of
gIV-PLA2 [gene] phosphorylation: effect of salmeterol and PDE4
inhibition in human eosinophils.

Synthesis caused
inhibition
phosphorylation

dled by our model. For example, cases 4 and 5 have, in
the SDP, the expressions ‘reverse downregulation’ and
‘disrupts activation’, which should direct to the true
relation classes, namely activation and inhibition.

3. Complex sentences, requiring expert interpretation.
Some cases, as in example 6, are not easily interpreted
without domain knowledge or more context.

To counteract these errors, we hypothesize that improved
feature representations and more training data may allevi-
ate these issues. Also, we suspect that building a system for
multi-label classification would improve recall, and could
improve the final results, since there are failed predicted
relations that count simultaneously as a false positive and a
false negative.

Another limitation of our model is that for each chem-
ical–protein pair only information from the respective sen-
tence is being used. We suspect more context would prove
helpful, and could facilitate possibility of extraction of
cross-sentence relations.

Conclusions and future work

This paper describes neural network architectures for
CPI extraction and the improvements we accomplished
following our participation in the CHEMPROT task of the
BioCreative VI challenge (Track 5). Our methods consist of
using deep learning classifiers with input features encoded
by embedding vectors. We use word embeddings pre-
trained in biomedical data, while PoS and dependency
embeddings were pre-trained from the CHEMPROT

dataset. Our best proposed models, BiLSTM and CNN,
achieved top F-scores of 0.6306 and 0.5959 on the test set,
respectively. The BiLSTM model showed its convenience
being more resistant to overfitting than the CNN model.

We mapped CPIs from the BioGRID interaction reposi-
tory to CHEMPROT classes, to add as additional training
data. However, inclusion of these data did not improve
results, and we believe that a more accurate handling of
these data could prove effective. The use of other external
resources such as knowledge bases, datasets or repositories
should also be considered.

Although we applied these methods to relations between
chemical and protein entities, the methods are general and
can be applied to any relation type for which a training
corpus is available. As such, as future work we aim to
apply a similar approach for extracting different biomedical
relations such as drug–drug, PPIs and chemical–disease
relations. Additionally, we are interested in exploring differ-
ent network architectures such as tree-structured networks
[65], hierarchical networks [20, 40] and attention mecha-
nisms [38, 39].
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