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Photothermal therapy (PTT) that utilizes hyperthermia to ablate cancer cells is a promising
approach for cancer therapy, while the generated high temperature may lead to damage of
surrounding normal tissues and inflammation.We herein report the construction of glucose
oxidase (GOx)-loaded hydrogels with a pH-sensitive photothermal conversion property for
combinational cancer therapy at mild-temperature. The hydrogels (defined as CAG) were
formed via coordination of alginate solution containing pH-sensitive charge-transfer
nanoparticles (CTNs) as the second near-infrared (NIR-II) photothermal agents and
GOx. In the tumor sites, GOx was gradually released from CAG to consume glucose
for tumor starvation and aggravate acidity in tumor microenvironment that could turn on
the NIR-II photothermal conversion property of CTNs. Meanwhile, the released GOx could
suppress the expression of heat shock proteins to enable mild NIR-II PTT under 1,064 nm
laser irradiation. As such, CAG mediated a combinational action of mild NIR-II PTT and
starvation therapy, not only greatly inhibiting the growth of subcutaneously implanted
tumors in a breast cancer murine model, but also completely preventing lung metastasis.
This study thus provides an enzyme loaded hydrogel platform with a pH-sensitive
photothermal effect for mild-temperature-mediated combinational cancer therapy.

Keywords: hydrogels, photothermal therapy, starvation therapy, second near-infrared light, tumor metastasis,
cancer therapy

INTRODUCTION

Photothermal therapy (PTT) that utilizes photoconversion to produce heat for tumor ablation has
been explored as a non-invasive therapeutic strategy for cancer (Cheng et al., 2017; Jung et al., 2018;
Zhao et al., 2018). In view of the high spatiotemporal controllability of light, PTT has the advantages
of high treatment specificity and minimal side effects, which is different from conventional
therapeutic strategies such as radiotherapy and chemotherapy (Liu et al., 2011; Ju et al., 2015; Li
and Pu, 2019; 2020). High temperature (>50°C) is usually required to induce complete tumor cell
death during PTT, which potentially results in damage of surrounding normal tissues and
inflammation (Zhu et al., 2016; Yang et al., 2017; Gao et al., 2019). Therefore, mild PTT
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strategies at a low therapeutic temperature have attracted a great
attention (Zhou et al., 2018; Ding et al., 2020; Yuan et al., 2020).
However, the therapeutic efficacy of mild PTT is often
compromised by the upregulated expression of heat shock
proteins (HSPs) that are associated with hyperthermia-induced
cell damage (Ali et al., 2016; Wang et al., 2016; Wang et al., 2017).
To overcome heat resistance of cancer cells, HSP inhibitors have
been used to amplify the effect of mild PTT (Tang et al., 2018).
Most of existing mild PTT strategies are relied on the first near-
infrared (NIR) light (NIR-I, 650–950 nm) that shows too shallow
tissue penetration depth to deliver sufficient heating to the
internal regions of solid tumors (Gao et al., 2021). Compared
to NIR-I light, the second near-infrared (NIR-II) light
(1,000–1700 nm) has greatly improved penetrating capability
in biological tissues (Li et al., 2021; Luo et al., 2021; Wang
et al., 2021). In this regard, it is highly desired to develop mild
NIR-II PTT for tumor ablation with high safety and efficacy.

Starvation therapy that blocks the energy metabolism of
cancer cells has emerged as an effective therapeutic strategy
for cancer (Guo and Kohane, 2017; Zhang et al., 2017; Zhang
et al., 2019). To date, some strategies such as vascular
embolization, inhibition of glucose transporter, and direct
intratumoral glucose consumption have been adopted to starve
cancer cells (Butler et al., 2013; Liu et al., 2017; Cheng et al., 2019;
Tang et al., 2021). Among them, glucose oxidase (GOx)-based
starvation therapy via catalyzing the oxidation of glucose in
tumor cells has achieved remarkable efficacy in inhibiting
tumor growth (Dinda et al., 2018; Fu et al., 2018; Ranji-
Burachaloo et al., 2019). However, this therapeutic model

often encounters the issues of low therapeutic benefits and
potential systemic toxicity (Ren et al., 2020). In addition,
GOx-mediated tumor starvation can downregulate the
expressions of HSPs due to the blocking of energy supply,
which will contribute to enhanced PTT efficacy (Wang et al.,
2012; Chen et al., 2017; Cao et al., 2020). The combination of PTT
and starvation therapy has been adopted to treat tumors, which
indeed achieves high antitumor efficacy with the neglect of side
effects (Hu et al., 2019; Gao et al., 2020; Wang et al., 2020; He
et al., 2021). Therefore, it is still highly desired to explore new
strategies that integrate PTT and starvation therapy with
combinational action for cancer treatment with high efficacy
and safety.

In this study, we report a GOx-loaded alginate hydrogel with
pH-sensitive NIR-II photothermal effect for treatment of solid
tumors via combinational action at mild-temperature
(Figure 1A). Alginate is used as matrix to construct hydrogels
because of its excellent biocompatibility and degradability (Lee
andMooney, 2012). Alginate hydrogels have unique properties of
good gelling capacity, low toxicity, excellent injectability, and low
cost, and thus have been used for drug delivery, cancer therapy,
molecular imaging and tissue engineering (Ouyang et al., 2019;
Hernández-González et al., 2020; Johnson et al., 2020; Patrick
et al., 2020). The CAG hydrogels containing pH-sensitive charge-
transfer nanoparticles (CTNs) as the NIR-II photothermal agents
and GOx as the starvation therapeutic agents can be locally
formed via Ca2+ coordination in tumor tissues (Wang et al.,
2019; Liu et al., 2021). Glucose was consumed to enable starvation
therapy because of gradual release of GOx from CAG hydrogels,

FIGURE 1 | Design and fabrication of CAG hydrogels for mild-temperature-mediated NIR-II PTT and starvation combinational therapy. (A) Schematic illustration of
the preparation of CAG hydrogels. (B) Schematic illustration of working mechanism of CAG hydrogels for mild-temperature-mediated NIR-II PTT and starvation
combinational therapy.
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which also led to aggravated acidity in tumor microenvironment
and inhibited expression of HSP90. As such, NIR-II PTT effect of
CTNs was activated to mediate effective tumor ablation at a low
temperature. Therefore, CAG-mediated combinational action of
mild NIR-II PTT and starvation therapy afforded much higher
therapeutic efficacy relative to sole treatment (Figure 1B). Such
treatment could not only significantly suppress the growth of
subcutaneous 4T1 tumors in living mice, but also completely
prevent lung metastasis.

MATERIALS AND METHODS

Materials and Reagents
Bovine serum albumin (BSA), 3,3′,5,5′-tetramethylbenzidine
(TMB), silver nitrate (AgNO3) and GOx were purchased from
Sigma-Aldrich (St. Louis, United States). Anhydrous CaCl2 and
sodium alginate were purchased from Aladdin Reagent Co. Ltd.
(Shanghai, China). Cell counting kit-8 (CCK-8) and calcein-AM
and propidium iodide apoptosis detection kit were purchased
from Dojindo Laboratories (Kumamoto, Japan) and Dalian
Meilun Biotech Co. Ltd. (Dalian, China), respectively. RPMI
1640 cell culture medium, fetal bovine serum (FBS), and
penicillin-streptomycin were obtained from Gibco (Grand

Island, NY, United States). TdT-mediated dUTP-biotin nick
end labeling (TUNEL) kit was obtained from Roche (Sweden).
Ultrapure water used in this study was prepared via a water
purification system (PALL Cascada, MI, United States).

Synthesis of Charge-Transfer
Nanoparticles
To synthesize pH-sensitive CTNs, 4.8 mg TMB dissolved in
anhydrous ethanol was added into 2 ml solution containing
1.7 mg AgNO3 and 3.4 mg BSA under ultrasonic oscillation at
room temperature for 30 min. The products were purified by
dialysis using a dialysis bag (molecular weight cut-off � 3 kDa) for
4 days to obtain CTNs.

Synthesis of CAG Hydrogels
To synthesize CAG hydrogels, 1 mg GOx and 200 mg sodium
alginate were co-dissolved in 15 ml phosphate buffer saline (PBS)
and then mixed with CTNs at a final concentration of 20 mg/ml.
The mixed solution was then injected into 12 ml Ca2+ solution
(1.8 mM) in a crystal bottle, forming CAG hydrogels. Similarly,
CA hydrogels without GOx loading were synthesized via injecting
CTN solution into 12 ml Ca2+ solution (1.8 mM) and the formed
CA hydrogels were used as control.

FIGURE 2 | Characterization of CAG hydrogels. (A) UV-vis absorption spectra of CTN at different pH conditions. (B) Representative SEM images of CA and CAG
hydrogels. (C) Photographs of CA and CAG hydrogels after injecting alginate solution (5 mg/ml) containing CTN or CTN and GOx into aqueous solution at the Ca2+

concentration of 1.8 mM. (D) Temperature changes of aqueous solution containing CA or CAG under 1,064 nm laser irradiation at the powder density of 1 W/cm2 for
different time. (E) Evaluation of photothermal stability of CA and CAG hydrogels after five cycles of laser on/off. (F) Release profile of GOx from CAG hydrogels after
incubation at 37°C for different time.
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Characterization Techniques
Dynamic light scattering (DLS) and zeta potential measurements
of CTNs were used a Zetasizer Nano-series (Nano-ZS90,
Malvern, United Kingdom). UV-vis-NIR absorption spectra of
CTNs at different pH conditions were recorded on a Persee
spectrophotometer (TU-1810, Beijing, China). Scanning electron
microscopy (SEM) images of formed hydrogels were observed
using a SEM (SU8010, HITACHI, Tokyo, Japan).

Photothermal Effect Evaluation
The photothermal properties of CA and CAG hydrogels were
evaluated by exposing samples under 1,064 nm laser at the power
density of 1W/cm2 for different time. In a typical experiment, the
mixture of 20 μl CTN (0.96 mg/ml), 50 μL alginate (10 mg/ml) and
1 μl GOx (1mg/ml) was added in a 96-well plate containing 30 μl
Ca2+ aqueous solution. The temperature of mixed solution under
laser irradiation was recorded using a Fotric 220s photothermal
camera. Furthermore, the photothermal stability of hydrogels was
investigated by turning on/off the laser for five cycles.

Evaluation of Glucose Oxidase Release
From Hydrogels
CAG hydrogels were prepared as above described, and the
formed CAG hydrogels were put in 5 ml PBS solution under
shaking at 37°C. After incubation for different time, supernatant
was collected and then centrifugated for absorption measurement
to confirm the release of GOx.

In vitro Cell Apoptosis Analysis
To evaluate the in vitro therapeutic efficacy of hydrogels, cell apoptosis
analysis was conducted. 4T1 cancer cells were seeded in 6-well plates
(1 × 105 cells/well) and incubated at 37°C for 24 h. Then the cells were
treated with PBS, CA, or CAG hydrogels for 24 h, followed by
1,064 nm laser irradiation at the power density of 1W/cm2 for
15min. After culture for 12 h, the cells were incubated in cell
culture medium containing calcein-AM/PI mixed solution for
another 30min. Fluorescence images of stained cells were captured
using a fluorescence microscope (Leica DMi8, Germany). The green
and red fluorescence area ratios were quantified using ImageJ
software. For CCK-8 assay, 4T1 cancer cells were seeded in 96-well
plates (1× 104 cells/well) and incubated at 37°C for 24 h. Then the cells
were treated with PBS, CA, or CAG at different CTN concentration
for 24 h. The treated cells were irradiated by 1,064 nm laser (1W/cm2)
for 5min. The cells without laser irradiation were used as the control.
After laser irradiation, the cells were cultured for 12 h, and then the cell
culture medium was carefully removed and fresh medium containing
CCK-8 agent was added into each well. After culture for another 2 h,
the absorbance of each well at 450 nm was measured using a Bio-Tek
ELX800 spectrophotometric microplate reader (Vermont, America).
The absorbance was used to calculate the cell viability.

In vivo Evaluation of HSP90 Expression
During Photothermal Therapy
The animal procedures were approved by the Animal Care and Use
Committee of Donghua University. Male 4–6 week-old BALB/c

nude mice (∼20 g) were purchased from Shanghai SLAC
Laboratory Animal Co., Ltd. 4T1 tumor-bearing mice were
established by subcutaneously injecting 4T1 cancer cells (2 × 106

cells/mouse) into the right flank of each mouse. The 4T1 tumor-
bearing nude mice were randomly divided into six groups when the
tumor volume reached ∼100mm3. The tumors were treated with
PBS, CA, or CAG for 12 h, and then exposed under 1,064 nm laser
irradiation (1W/cm2) for 10min in a discontinuous manner. The
temperature of tumor sites during laser irradiation was monitored
using an IR thermal camera and controlled to be lower than 45°C.
After treatment for 1 day, the mice were euthanized, and tumors
were collected and used for immunofluorescent staining of HSP90.
The fluorescence staining images of tumor sections were captured
using a fluorescence microscope (Leica DMi8, Germany). The mean
fluorescence intensity (MFI) of HSP90 staining was quantified using
the ImageJ software.

In vivo Antitumor Efficacy Evaluation
The 4T1 tumor-bearing nude mice were treated with PBS, CA, or
CAG without or with 1,064 nm laser irradiation (1W/cm2) for
10 min in a discontinuous manner to control tumor temperature
below 45°C. After different treatments, a caliper was used tomeasure
the tumor sizes every 2 days for 20 days. Tumor volumes were
calculated as follows: volume � (length) × (width)2/2, and relative
tumor volume was calculated as V/V0 (V0 was the initial tumor
volume). After treatments for 20 days, themice were euthanized, and
the tumors were extracted and weighed to evaluate tumor inhibition
ratios. The tumors were collected for hematoxylin and eosin (H&E)
and immunohistochemical TUNEL and Ki67 staining.

In vivo Anti-metastasis Efficacy Evaluation
After different treatments for 20 days, in vivo anti-metastasis
efficacy was evaluated. The treated mice were intraperitoneally
injected with 0.15 ml D-luciferin (20 mg/ml) and the peritoneum
was opened to expose lungs. The lungs were then used for
bioluminescence imaging using in vivo imaging system
(VISQUE Invivo Smart-LF, Vieworks, Korea). Bioluminescence
intensities of lungs were quantified using a Living Image software.
To further assess the anti-metastasis efficacy of different
treatments, the lungs were collected and washed with PBS,
and the numbers of metastatic tumor nodes were counted.
The collected lungs were then used for H&E staining to
observe tumor metastasis.

In vivo Biocompatibility Evaluation
After different treatments, the body weights of 4T1 tumor-
bearing nude mice were measured every 2 days for 20 days to
evaluate the in vivo biocompatibility. After treatments for
20 days, the mice were euthanized and heart, liver, spleen, and
kidney were collected and used for H&E staining.

Statistical Analysis
The significant difference between the experimental statistics is
analyzed by One-way ANOVA and Tukey’s multiple comparison
tests. When the p-values were <0.05, the values were statistically
regarded to be significantly different. p < 0.05 was indicated by
(*), p < 0.01 by (**) and p < 0.001 by (***).
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RESULTS AND DISCUSSION

Synthesis and Characterization of
Hydrogels
To construct GOx-loaded pH-sensitive photothermal hydrogels,
pH-sensitive CTNs with activatable NIR-II photothermal
conversion property were first synthesized. Hydrodynamic
diameter of CTNs was measured to be 14.7 nm
(Supplementary Figure S1, Supporting information). The
surface zeta potential of CTNs was around -22.2 mV
(Supplementary Figure S2, Supporting information). The
characteristic absorption of CTNs at different pH conditions
was different and higher absorption in the NIR-II regions
could be observed at acidic conditions (Figure 2A). The color
of CTN solution gradually changed from blue to gray as the
increase of pH from 5 to 9 (Supplementary Figure S3,
Supporting information). The photothermal property of CTN
solutions was different at pH � 5, 7, or 9 under 1,064 nm laser
irradiation. The temperature rise of CTNs at pH � 5 was much
faster than those at pH � 7 and 9 (Supplementary Figure S4,
Supporting information). These results indicated that the

synthesized CTNs were pH-sensitive photothermal agents. The
pH-responsive photothermal property of CTNs may be due to
different charge-transfer efficiency between the components
within nanoparticles at different pH conditions (Wang et al.,
2019).

As shown in Figure 2B, CA hydrogels with loading of CTNs
and CAG hydrogels with loadings of CTNs and GOx could be
formed via coordination reaction of alginate with Ca2+. SEM
images showed that the morphologies of CA and CAG were
similar (Figure 2C), indicating that loading of CTNs and GOx
did not affect the morphology of hydrogels. The photothermal
performances of CA and CAG hydrogels were evaluated under
1,064 nm laser irradiation. Heating curves and thermal images
showed that the temperatures increased rapidly for solutions
containing CA and CAG hydrogels under 1,064 nm laser
irradiation at the power density of 1 W/cm2 for 5 min
(Figure 2D and Supplementary Figure S5, Supporting
information).There was no significant difference in the aspect
of photothermal property between CA and CAG hydrogels,
suggesting the loading of GOx showed neglectful influence on
the photothermal effect of hydrogels. Moreover, the temperature

FIGURE 3 | Evaluation of in vitro therapeutic efficacy of hydrogels. (A) Fluorescence images of live (green) and dead (red) 4T1 cancer cells after incubation with PBS,
CA or CAG hydrogels without or with 1,064 nm laser irradiation (1 W/cm2) for 15 min. (B) Quantification of fluorescence intensity of 4T1 cancer cells after different
treatments. (C)Cell viability of 4T1 cancer cells after incubation with PBS, CA or CAG hydrogels at different CTN concentrations without or with 1,064 nm laser irradiation
(1 W/cm2) for 5 min.
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increase of hydrogels did not have obvious changes after five
cycles of laser on/off, indicating that CA and CAG hydrogels had
good photothermal stability (Figure 2E). The release profile
showed that GOx was gradually released form CAG hydrogels,
and the cumulative release ratio could reach 76.0% after
incubation at 37°C for 24 h (Figure 2F).

Evaluation of in vitro Therapeutic Efficacy to
4T1 Cancer Cells
In vitro therapeutic efficacy of CA and CAG hydrogels was
evaluated using 4T1 cancer cells. Fluorescence images showed
that obvious dead cells (red fluorescence signals) were observed
in CA and CAG groups after 1,064 nm laser irradiation at the
power density of 1W/cm2 for 15min, while almost no dead cells
were found in control and the other treatment groups (Figure 3A).
The quantitative assay of fluorescence intensity indicated that the
percentage of apoptotic cells was 79.0 and 97.8% for CA and CAG
treatment and laser irradiation, respectively, while the percentage
of apoptotic cells was less than 2% in the other groups (Figure 3B).
Moreover, the therapeutic efficacy was evaluated by measuring the
cell viability of 4T1 cancer cells after different treatments. Without
laser irradiation, the cell viability of both CA and CAG treated cells

at different CTN concentrations was higher than 90%, which
indicated there was no obvious cytotoxicity for hydrogels.
However, after 1,064 nm laser irradiation at the power density
of 1W/cm2 for 5 min, the cell viability was decreased with the
increase of CTN concentrations (Figure 3C). At the same CTN
concentrations, the cell viability of 4T1 cancer cells after CAG
treatment plus laser irradiation was lower relative to that after CA
treatment with laser irradiation. These results suggested that CA
and CAG could kill cancer cells via PTT effect, and the therapeutic
efficacy of CAG was higher than that of CA.

Evaluation of HSP90 Expression During
Photothermal Therapy
4T1 tumor-bearing mice were used as models to investigate the
therapeutic efficacy of hydrogels. To achieve mild NIR-II PTT
and starvation combinational therapy, the temperature of
tumors during PTT should be controlled below 45°C. After
treatment with PBS, CA or CAG, tumors were irradiated with
1,064 nm laser in a discontinuous manner and the tumor
temperatures were monitored. During laser irradiation, the
temperatures of tumor sites for CA and CAG treated mice
gradually increased, and similarly reached around 44°C after

FIGURE 4 | Evaluation of mild NIR-II PTT and intratumor expression of HSP90. (A) In vivo Thermal imaging of 4T1 tumor-bearingmice after treatment with PBS, CA,
or CAG hydrogels under 1,064 nm laser irradiation at the powder density of 1 W/cm2 for 10 min. (B) Temperature changes of tumor sites of 4T1 tumor-bearingmice after
different treatments under 1,064 nm laser irradiation (1 W/cm2) for different time. (C) Immunofluorescence HSP90 staining of tumors after different treatments. The blue
fluorescence signals indicated cell nucleus stained by 4′,6-diamidino-2-phenylindole (DAPI), and the red fluorescence signals indicated HSP90 stained by
antibody. (D) Mean fluorescence intensity (MFI) of HSP90 staining in different groups.
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3 min of laser irradiation and maintained at this temperature
for another 7 min (Figures 4A,B). The tumor temperature for
mice after treatment with PBS only reached around 39°C after
10 min of laser irradiation.

The expressions ofHSP90 in tumor tissues after different treatments
were then evaluated. As shown in the immunofluorescence staining
images, the strongest staining signal was detected for the tumors after
treatment with CA plus 1,064 nm laser irradiation, suggesting PTT
upregulated the expression of HSP90 (Figure 4C). Compared to the
PBS control group, the staining signals for CAG treated tumors
regardless of laser irradiation were much weaker. Quantitative assay
showed that the tumors after CA treatment plus laser irradiation had
the highest expression level of HSP90, while the expression level of
HSP90 in tumors after CAG treatment plus laser irradiation was
reduced (Figure 4D). This indicated that CAG treatment could
greatly inhibit the expression of HSP90 due to gradual release of
GOx from hydrogels.

In vivo Antitumor Efficacy Evaluation
To evaluate the antitumor efficacy of hydrogels, 4T1 tumor-
bearing mice were treated with PBS, CA, or CAG hydrogels,
followed by 1,064 nm laser irradiation for 10 min in a
discontinuous manner to maintain the maximum tumor

temperature below 45°C. Compared to the PBS control group,
only the growths of tumors from SA and SAC treated mice with
laser irradiation were inhibited, suggesting the effective
therapeutic efficacy (Figure 5A). The slight inhibition of
tumor growth for CA treated and laser irradiated mice should
be due to sole mild NIR-II PTT. The relative tumor volume in the
SAC treated and laser irradiated mice were much lower than that
for the mice after treatment with CA plus laser irradiation. Such a
higher therapeutic efficacy for CAG was attributed to the
combinational action of mild NIR-II PTT and starvation
therapy. Tumor weights in CA and CAG-mediated treatment
groups were lower than those in the other groups (Figure 5B). In
particular, the tumor weight for CAG treated and laser irradiated
mice were 5.7-fold lower relative to that for CAG treated mice
without laser irradiation. The tumor inhibition rate for CAG
treatment plus laser irradiation was calculated to be 83.0%, which
was 1.7 and 6.4-fold higher than that for CA plus laser treatment
and sole CAG treatment, respectively (Figure 5C).

To further investigate the therapeutic efficacies of
hydrogels, histological staining of tumors was performed.
As shown in H&E staining images, necrotic tumor cells
were clearly observed in the CA and CAG treated and laser
irradiated groups, while which were almost not found in

FIGURE 5 | Evaluation of in vivo antitumor efficacy of hydrogels. (A) Relative tumor volumes of 4T1 tumor-bearing mice after treatment with PBS, CA, or CAG
hydrogels under 1,064 nm laser irradiation at the powder density of 1 W/cm2 for 10 min. (B) Tumor weights of 4T1 tumors of mice after different treatments. (C) Tumor
inhibition ratio of 4T1 tumors in tumor-bearing mice after different treatments. (D) H&E, TUNEL and Ki67 staining of 4T1 tumors from mice after different treatments.
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tumors after the other treatment (Figure 5D). The necrosis in
CAG treated and laser irradiated tumors was much more
conspicuous than that in CA treated and laser irradiated
tumors. The results of immunohistochemical TUNEL
staining also indicated that obvious staining of necrotic cells
could be found in CA and CAG treated tumors with laser
irradiation, while nearly no cell necrosis was observed in the
other treatment groups. The staining signal of necrotic cells in
CAG treated and laser irradiated group was stronger than that
in CA treated and laser irradiated group. Furthermore, the
tumors after treatment with CA and CAG plus laser irradiation
showed lower expressions of Ki67 as compared to the control
group, indicating CA and Cag-mediated therapy could inhibit
the proliferation of tumor cells. The inhibitory efficacy for
CAG-mediated therapy was higher than that of CA-mediated
treatment. The histological staining results were consistent
with the tumor growth results, further confirming that CAG
exhibited higher antitumor efficacy than CA.

The body weights of 4T1 tumor-bearing mice after different
treatments for 20 days were almost the same as that of control mice
(Supplementary Figure S6, Supporting information). H&E staining
images of heart, liver, spleen and kidney from 4T1 tumor-bearing
mice showed that no abnormal morphologies were found for these

tissues after CA andCAG treatments plus 1,064 nm laser irradiation
(Supplementary Figure S7, Supporting information). These results
demonstrated that CA and CAG-mediated therapy did not cause
obvious systematic toxicity.

In vivo Anti-metastasis Efficacy Evaluation
In addition to inhibition of tumor growth, prevention of tumor
metastasis is necessary to achieve ideal treatment of tumors.
Bioluminescence imaging was conducted to evaluate the anti-
metastasis efficacy of hydrogels. Obvious bioluminescence signals
were observed in lungs of mice after treatments with PBS, CA, or
CAG without 1,064 nm laser irradiation and mice treated with
PBS plus laser irradiation (Figure 6A). The bioluminescence
signals in lungs of CA or CAG hydrogel-treated and laser
irradiated mice were much lower than those in the other
groups. More importantly, nearly no bioluminescence signal
could be detected for mice after treatment with CAG
hydrogels with 1,064 nm laser irradiation. The quantitative
analysis showed that the bioluminescence intensity for CA or
CAG treated mice with laser irradiation was much lower relative
to those for the other treated mice (Figure 6B). The lowest
bioluminescence intensity was found in lungs of mice after
CAG treatment plus laser irradiation.

FIGURE 6 | Evaluation of in vivo anti-metastasis efficacy of hydrogels. (A) Bioluminescence images of lung from 4T1 tumor-bearing mice after treatment with PBS,
CA, or CAG hydrogels under 1,064 nm laser irradiation at the powder density of 1 W/cm2 for 10 min. (B) Bioluminescence intensity of lung from 4T1 tumor-bearing mice
after different treatments. (C) Photographs and H&E staining images of lung from mice after different treatments. Red circles indicate the metastatic tumor nodes. (D)
Number of metastatic tumor nodes of lungs from mice after different treatments.
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H&E staining was also used to evaluate the lung metastasis after
different treatments. As shown in the photographs and H&E
staining images, metastatic tumor nodes were not observed in
the lungs of mice after treatment with CAG hydrogels plus laser
irradiation, which however were clearly observed in lungs of mice
in the other treated groups (Figure 6C). The treatment of CA or
CAG hydrogels plus laser irradiation greatly reduced the numbers
of metastatic tumor nodes as compared to the treatments of PBS,
CA, or CAGwithout laser irradiation and PBS plus laser irradiation
(Figure 6D). In particular, the number of tumor metastasis in
lungs of CAG treated and laser irradiated mice was significantly
lower than that in lungs of CAG treated mice without laser
irradiation. These results suggested that CAG-mediated therapy
greatly prevented lung metastasis of 4T1 tumors.

CONCLUSION

We have constructed a GOx-loaded smart hydrogel with pH-sensitive
photothermal conversion property for combinationalNIR-II PTT and
starvation therapy of solid tumors atmild-temperature. The hydrogels
(CAG) were locally formed after intratumoral injection of alginate
solution containing CTN and GOx, which enabled gradual release of
GOx into tumor sites. Through consuming glucose, CAG mediated
starvation therapy, which not only led to exhaustion of tumor cells, but
also resulted in aggravated acidity in tumor microenvironment and
downregulated expression of HSP90. The NIR-II photothermal
conversion property of CTNs was activated in acidic condition,
which allowed for mild NIR-II PTT with a high efficacy due to
the inhibited expression of HSP90. Via the combinational action of
mild MIR-II PTT and starvation therapy, CAG was able to greatly
suppress the growth of subcutaneously implanted tumors and
completely prevent lung metastasis in a breast cancer murine
model, while sole mild MIR-II PTT failed to do so. To the best of
our knowledge, this study reports the first smart hydrogel platform
with pH-sensitive NIR-II photothermal effect for mild-temperature-
mediated combinational cancer therapy.
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