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Abstract

With the completion of the human genome sequence, biomedical sciences have entered in the ‘‘omics’’ era, mainly due to
high-throughput genomics techniques and the recent application of mass spectrometry to proteomics analyses. However,
there is still a time lag between these technological advances and their application in the clinical setting. Our work is
designed to build bridges between high-performance proteomics and clinical routine. Protein extracts were obtained from
fresh frozen normal lung and non-small cell lung cancer samples. We applied a phosphopeptide enrichment followed by LC-
MS/MS. Subsequent label-free quantification and bioinformatics analyses were performed. We assessed protein patterns on
these samples, showing dozens of differential markers between normal and tumor tissue. Gene ontology and interactome
analyses identified signaling pathways altered on tumor tissue. We have identified two proteins, PTRF/cavin-1 and MIF,
which are differentially expressed between normal lung and non-small cell lung cancer. These potential biomarkers were
validated using western blot and immunohistochemistry. The application of discovery-based proteomics analyses in clinical
samples allowed us to identify new potential biomarkers and therapeutic targets in non-small cell lung cancer.
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Introduction

Lung cancer is the leading cause of cancer death in the world.

The overall survival rate at 5 years is 15% and has not been

improved for decades. Two thirds of patients are diagnosed with

advanced disease where therapeutic options are palliative, and up

to 55% of patients with limited disease eventually relapse after

radical surgery [1].

Gene expression profiling has led to the identification of groups of

patients with different outcome, thus reflecting the heterogeneity of

this disease [2]. However, gene-level analyses do not detect subtle

changes caused by post-translational modifications of proteins [3]. A

deep understanding of the processes of carcinogenesis, tumor

progression and metastasis requires the analysis of both the genome

and the proteome [4]. Proteomic technologies based on mass

spectrometry (MS) have emerged as preferred components of a

strategy to discover diagnostic, prognostic and therapeutic protein

biomarkers [5]. Continuing advances in this field give this strategy

an enormous potential for such investigations [6,7].

Recent clinical trials demonstrating good response to new

drugs in specific subgroups of patients underline the need for

molecular tests that complement classical histopathological

procedures [8]. In this context, proteomic profiling can provide

valuable biomarker tools for efficient patient stratification and

therapy selection.

Although it is possible to analyze proteins from tissues using

mass spectrometry [3,9], the complexity of the clinical sample and

the amount of available protein are limiting factors. Therefore,

sample enrichment in biologically relevant analytes is required [5].

Most eukaryotic cellular processes are regulated by protein

phosphorylation, and deregulation of this key post-translational

modification is common in cancer and other diseases. This

explains why protein kinases have emerged as the main class of

new drug targets in oncology and other fields [10]. In this work we

have applied phosphopeptide enrichment coupled with label-free

MS techniques to identify already known and new potential

biomarkers in non-small cell lung cancer clinical tissues and

validate them using western blot and immunohistochemistry.
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Materials and Methods

Ethics statement
Institutional approval from our ethical committee was obtained

for the conduct of the study (Comité Ético de Investigación

Clı́nica, Hospital Universitario La Paz). Data were analyzed

anonymously. Patients provided written consent so that their

samples and clinical data could be used for investigational

purposes.

Sample selection
Frozen samples from patients diagnosed with lung cancer were

retrieved from the Department of Pathology of Hospital

Universitario La Paz (Madrid, Spain): 5 lung adenocarcinoma

(AC), 5 lung squamous cell carcinoma (SC) and 5 normal lung

(NL) samples. The histopathological features of each sample were

reviewed by an experienced lung pathologist to confirm diagnosis

and tumor content. At least 50% of a sample had to be made up of

tumor cells for it to be eligible. Samples from patients were kindly

provided by the IdiPAZ Biobank (RD09/0076/00073) integrated

in the Spanish Hospital Biobanks Network (RetBioH; www.

redbiobancos.es). Samples were registered and processed following

current procedures and fixed/frozen immediately after their

reception.

Total protein extraction, solubilization and digestion
Samples were cut in a Leica CM3050S cryostat, obtaining 10

sections of 10 microns thickness each. Tissue was processed with

TRIzol reagent (Invitrogen) following the manufacturer’s instruc-

tions. For MS analyses, protein pellets were resuspended in

guanidine hydrochloride 6 M and heated 10 minutes at 95uC with

agitation. Subsequently, 950 ml of 50 mM ammonium bicarbon-

ate (pH 7–9) per sample were added. Protein sample concentra-

tion was measured by MicroBCA Protein Assay Kit (Pierce-

Thermo Scientific). Trypsin MS Grade Gold (Promega) was added

to each sample to a 1:50 relation. Digestion was carried out

overnight at 37uC. The digested sample was divided into two

aliquots.

Parallel IMAC (PIMAC)
Phosphopeptide enrichment was carried out as described

previously [11]. Briefly, Fe(III)-based IMAC was performed in

one aliquot of digested protein using the PHOS-Select Iron

Affinity Gel (Sigma-Aldrich) following the manufacturer’s instruc-

tions. Ga(III)-based IMAC was performed in another aliquot of

digested protein using the Phosphopeptide Isolation Kit (Pierce-

Thermo Scientific) following the manufacturer’s instructions.

Eluates were mixed, vacuum-dried and stored at 220uC for later

MS analysis.

LC-MS/MS analyses
Peptide mixtures were subjected to nano-liquid chromatogra-

phy coupled with MS for protein identification. Peptides were

injected into a C-18 reversed phase (RP) nano-column (100 mm

I.D. and 12 cm, Mediterranea sea, Teknokroma) and analyzed in

a continuous acetonitrile gradient consisting of 0–40% B in

90 min, 50–90% B in 20 min (B = 95% acetonitrile, 0.5% acetic

acid). At the end of the gradient, the column was washed with 90%

B and equilibrated with 5% B for 20 min. A flow rate of 300 nl/

min was used to elute peptides from the RP nano-column to an

emitter nanospray needle for real time ionization and peptide

fragmentation on an LTQ-Orbitrap XL mass spectrometer

(Thermo-Fisher). An enhanced FT-resolution spectrum (resolu-

tion = 60000) followed by the MS/MS spectra from the five most

intense parent ions were analyzed along the chromatographic run

(130 min). Dynamic exclusion was set at 1 min. For protein

identification fragmentation spectra were searched against the

MSDB database (version 091509) using the Mascot 2.1 program

(Matrixscience). Two missed cleavages were allowed, and an error

of 10 ppm or 0.8 Da was set for full MS or MS/MS spectra

searches, respectively. All identifications were performed by

Proteome Discoverer 1.0 software (Thermo-Fisher). Decoy

database search for false discovery rate analysis was set at 0.05

by applying corresponding filters. Raw data files were processed

and compared with SIEVE version 1.2 (Thermo-Fisher). Protein

identifications were validated using the BLAST tool from the

blastp suite (http://blast.ncbi.nlm.nih.gov). For detailed peptide

mass fingerprint and protein identification settings, see Table S4.

Inmunoblotting assays
For inmunoblotting assays, protein pellets were resuspended in

2% SDS and heated 10 minutes at 95uC with agitation. Protein

sample concentration was measured by MicroBCA Protein Assay

Kit (Pierce-Thermo Scientific).Western blots were performed

using WesternDot system (Invitrogen) in a SNAP i.d. device

(Millipore). MIF antibody 1: 250 dilution (R&D Systems) and

PTRF antibody 1:125 dilution (BD Biosciences) were used.

Densitometry analyses were performed using ImageJ 1.38e

software (http://rsb.info.nih.gov/ij/) to measure the intensity of

bands. For western blot normalization, total protein loading was

measured using the Novex Reversible Membrane Stain Kit

(Invitrogen).

Immunohistochemistry
Formalin-fixed, paraffin-embedded tissue blocks, representative

of normal lung and non-small cell lung cancer diagnosis, were

retrieved following routine histopathological assessment. Sections

were processed using a Dako Autostainer universal staining system

(Dako). For this study, 3.5-mm sections were immunostained with

anti-MIF 1:2000 (R&D Systems) or anti-PTRF 1:100 (BD

Biosciences). Images were obtained in a Leyca microscope with

magnification 640. The percentage of stained tissue and the stain

intensity (0, +, ++ or +++) was obtained for each sample and

marker evaluated. IHC staining was considered positive when at

least 50% of the tissue (normal or tumoral) was stained with at

least ++.

Statistical Analyses
Expression values between sample groups were compared using

a Kruskal-Wallis test (Gaussian Approximation). To assess

differences between pairs of groups Dunn’s Multiple Comparison

Test was used. A p-value ,0.05 was considered significant. SIEVE

and densitometry values were compared using Pearson’s correla-

tion coefficient.

Bioinformatics
Protein lists were processed using The Database for Annotation,

Visualization and Integrated Discovery (DAVID) version 2.0

(http://david.abcc.ncifcrf.gov/home.jsp) [12,13]. To identify un-

der- and over-represented functional categories we used Protein

ANalysis THrough Evolutionary Relationships (PANTHER)

database v 6.1 (www.pantherdb.org) [14]. Tumor protein list

were compared to the normal lung list using the binomial test [15]

for each molecular function, biological process or pathway term in

PANTHER. Protein-protein interactions were obtained from the

Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING) database v9.0 containing known and predicted physical

PTRF and MIF Identified as NSCLC Biomarkers
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and functional protein-protein interactions [16]. STRING in

protein mode was used, and only interactions based in

experimental protein-protein interaction and curated databases-

with confidence levels over 0.5- were kept.

Results

In this study, we assessed differences at the protein level between

non-small cell lung cancer (NSCLC) and lung normal tissue using

a phosphopeptide enrichment strategy and a label-free approach.

Samples were analyzed on a LTQ-Orbitrap XL after being

subjected to liquid chromatography. Since it is known that

different techniques isolate distinct and overlapping segments of

the phosphoproteome [17], including Fe(III) and Ga(III) IMAC

[18], we mixed the Fe(III) and Ga(III) IMAC fractions from each

sample and analyzed them together.

We evaluated the number of unique peptides and their

corresponding proteins, as well as phosphopeptides and their

corresponding phosphoproteins, identified in lung adenocarcino-

ma (AC), lung squamous cell carcinoma (SC) and normal lung

(NL) samples applying a decoy database search at false discovery

rate,0.05. The extensive analysis performed in NSCLC and NL

samples using LC-MS/MS allowed us to identify a mean of 381

unique peptides per sample, of which a mean of 56 were

phosphopeptides. These peptides corresponded to a mean of 138

unique proteins identified per sample, of which a mean of 39 were

phosphorylated. The fraction of phosphopeptides identified

(number of phosphorylated peptides*100/number of identified

peptides) was 19.9%.

Gene ontology analyses were performed using all identified

proteins. The tumor protein list was compared to the normal lung

protein list for each molecular function (Figure S1), biological

process (Figure S2), or pathway (Figure 1) terms using PANTHER.

This approach showed significant differences between normal lung

and tumor samples (complete analyses are provided in Table S1).

Differences in molecular functions are mainly related to the

interaction with nucleic acids and the regulation of protein

synthesis and activity. Processes controlling exocytosis, immune

response, response to stimulus, response to stress and transport

were significantly under-represented in tumors, whereas categories

related to cell-matrix adhesion or response to toxin were over-

represented. On the other hand, homeostasis categories were

under-represented, whereas categories related with energy pro-

duction and cell proliferation were over-represented in tumors.

Remarkable differences in pathway analysis appeared in categories

related with signal transduction control. While cytoskeletal

regulation by Rho GTPase, inflammation mediated by chemokine

and cytokine signaling pathway, integrin signaling pathway and

Wnt signaling pathway were under-represented in tumor samples,

EGF receptor signaling pathway, Glycolysis, p53 pathway and PI3

kinase pathway were over-represented.

Differential expression analysis between NSCLC vs. normal

lung was performed using SIEVE 1.2 software. A total of 296

differentially expressed m/z peaks were found, 115 of which had

available MS2 spectra, leading to the identification of proteins

differentially expressed between normal lung and NSCLC samples

(Table 1). All data obtained from SIEVE analyses, including

relative expression values, are provided in Table S2.

PTRF/cavin-1 and MIF outstand among the differentially

expressed biomarkers between NSCLC and normal lung samples

in label-free analyses as the most down-regulated and up-regulated

respectively (Figure 2). PTRF/cavin-1 showed loss of expression in

both adenocarcinoma and squamous cell carcinoma samples. On

the other hand, MIF showed an increased expression in these

Figure 1. Analysis of differences in GO Pathways between NSCLC and normal lung. Comparison of number of proteins assigned to each
GO pathway category. Normal tissue sample categories are represented as fold-change in relation to this category. Statistical significance is tested
using the binomial test. Only significant categories (p,0.05) are shown.
doi:10.1371/journal.pone.0033752.g001

PTRF and MIF Identified as NSCLC Biomarkers
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Table 1. Differentially expressed peptides.

Peptide m/z GeneID Gene Symbol
Ratio
TvsN P Value

Peptides down-regulated in tumor samples

FKDLGEENFK 409.54 213 ALB 0.55 0.039

VLSPADKTNVK 586.34 3040 HBA2 0.10 0.016

VGAHAGEYGAEALER 765.37 3040 HBA2 0.19 0.000

TYFPHFDLSHGSAQVK 917.45 3040 HBA2 0.26 0.000

TYFPHFDLSHGSAQVK 611.97 3040 HBA2 0.33 0.000

EFTPQVQGAFQK 690.36 3043 HBB 0.23 0.010

VVAGVANALAHKYH 725.40 3043 HBB 0.24 0.003

VLGAFSDGLAHLDNLK 835.45 3043 HBB 0.24 0.019

LHVDPENFR 563.79 3043 HBB 0.25 0.008

VVAGVANALAHK 575.34 3043 HBB 0.29 0.003

KVLGAFSDGLAHLDNLK 600.00 3043 HBB 0.29 0.005

VNVDEVGGEALGR 438.89 3043 HBB 0.32 0.000

VNVDEVGGEALGR 657.84 3043 HBB 0.33 0.000

VLGAFSDGLAHLDNLK 557.30 3043 HBB 0.34 0.007

SLKESEALPEK 615.83 284119 PTRF 0.06 0.004

SLKESEALPEK 410.89 284119 PTRF 0.12 0.004

Peptides up-regulated in tumor samples

VAPEEHPVLLTEAPLNPK 652.03 60 ACTB 2.32 0.026

MQKEITALAPSTMK 516.94 60 ACTB 2.40 0.032

IWHHTFYNELR 505.92 60 ACTB 2.50 0.024

IMFVDPSLTVR 639.35 10551 AGR2 4.70 0.024

LPQTLSR 407.74 10551 AGR2 5.99 0.021

KLNQALLDLHALGSAR 574.00 2512 FLP 5.93 0.047

PPYTVVYFPVR 669.31 2950 GSTP1 2.64 0.039

VGVNGFGR 403.22 2597 GAPDH 3.67 0.005

GALQNIIPASTGAAK 706.40 2597 GAPDH 7.52 0.009

DNIQGITKPAIR 442.59 8294, 8359, 8364, 8367 HIST1H4A, HIST1H4C, HIST1H4E,
HIST1H4I

2.36 0.001

AGLQFPVGR 472.77 3012, 3013, 3014, 3015, 8329, 8331, 8334,
8337, 92815, 94239, 55766, 85235, 221613

HIST1H2AA, HIST1H2AC, HIST1H2AD,
HIST1H2AE, HIST1H2AH, HIST1H2AI,
HIST1H2AJ, HIST2H2AA3, H2AFJ,
H2AFV, H2AFX, H2AFZ, HIST3H2A

2.52 0.001

TVTAMDVVYALKR 489.61 8294, 8359, 8364, 8367 HIST1H4A, HIST1H4C, HIST1H4E,
HIST1H4I

2.68 0.009

DNIQGITKPAIR 663.38 8294, 8359, 8364, 8367 HIST1H4A, HIST1H4C, HIST1H4E,
HIST1H4I

2.73 0.004

YHTSQSGDEMTSLSEYVSR 726.32 3326 HSP90AB1 3.36 0.002

ALLFIPR 415.27 3326 HSP90AB1 4.50 0.004

SNMDNMFESYINNLRR 668.64 3856 KRT8 2.63 0.041

TKFETEQALR 408.22 3872/3880 KRT17/KRT19 1.78 0.027

LLEGEDAHLTQYK 506.26 3872/3881 KRT17/KRT19 2.67 0.007

VLDELTLAR 515.30 3872/3882 KRT17/KRT19 2.75 0.004

PMFIVNTNVPR 644.35 4282 MIF 21.37 0.000

LRTLNLGGNALDR 706.90 60506 NYX 4.99 0.008

WFYIASAFR 580.80 5005 ORM2 3.08 0.015

ALESPERPFLAILGGAK 590.34 5230 PGK 5.51 0.003

SLPNEEIVQK 578.82 182465 SON 13.52 0.004

GYPTLLWFR 576.81 81567 TXNDC5 3.78 0.032

TLMNLGGLAVAR 608.35 8407 TAGLN2 2.97 0.035

PTRF and MIF Identified as NSCLC Biomarkers
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samples. In order to avoid false positive identifications, more than

twenty MS2 spectra for each MIF and PTRF/cavin-1 peptides

were evaluated manually (Figures S3 and S4 and Table S3).

Changes in PTRF/cavin-1 and MIF expression in NSCLC

samples were validated using immunohistochemistry (IHC) and

western blot analyses. The same samples used for MS/MS

analyses and nine additional samples of adenocarcinoma,

squamous cell carcinoma and normal lung were evaluated for

MIF and PTRF using western blot. Five additional samples of

adenocarcinoma, squamous cell carcinoma and normal lung were

evaluated for MIF and PTRF using IHC. All tumours show

positive staining for MIF and negative staining for PTRF, while all

normal tissues were negative for MIF and positive for PTRF

staining. MIF over-expression in tumor tissues was confirmed both

by IHC and western blot (Figures 3 and 4). On the other hand,

tumor samples confirmed loss of PTRF/cavin-1 expression when

compared with normal lung (Figures 3 and 4) using both

techniques. Pearson’s correlation between Sieve label-free expres-

sion values and western blot quantification was r = 0.723 and

r = 0.754 (p,0.005) for MIF and PTRF/cavin-1 respectively.

We searched in the STRING database for interactomic

connections of MIF and PTRF. In order to minimize the rate of

false positives, we eliminated partners using stringent criteria, and

only experimental protein-protein interactions and pathways from

curated databases were taken into account. PTRF is included in

the RNA transcription pathway, and physically interacts with

TTF1. Other PTRF interactions comprise proteins involved in

transcription regulation and EGFR (Figure 5). MIF is related to

the phenylalanine metabolism pathway, and interacts with p53

and proteins of the COP9 signalosome complex, a complex

involved in various cellular and developmental processes,

including p53 phosphorylation-mediated degradation [19]. Other

interactions comprise proteins related with cell death regulation

and inflammatory process (Figure 6).

Discussion

Proteomics in general and phosphoproteomics in particular are

becoming the preferred methods of protein discovery-based

analyses. The use of label-free, discovery-based approaches may

help discover unexpected biological connections due to the

absence of previous knowledge bias. Bioinformatics tools, such as

gene ontology and interactome analyses, applied on clinical

samples have great potential to identify pathways and molecules

with implication at the therapeutic level and may offer clues to the

genesis of diseases and their underlying molecular alterations.

However, both the technology itself and data analysis tools should

be further refined before their entry into the clinic.

Phosphopeptide enrichment of samples prior to MS analysis

using PIMAC worked reasonably well, as 20% of measured

peptides were phosphorylated. Previous studies have shown an

enrichment of phosphopeptides of approximately 50% using an

IMAC protocol similar to ours on tryptic digest of a mixture of

several reference proteins [20]. Considering that our samples were

very complex and that we did not use any fractionation step,

phosphopeptide enrichment was successful and comparable with

that obtained in previous works [21,22]. However, most of the

spectra showing a phosphate loss presented a poor fragmentation,

and no peptide identification was generated. The use of new

fragmentation techniques, as higher energy collisional dissociation,

improve the quality of fragmentation spectra [23], allowing to

perform large-scale phosphoproteome analysis.

Table 1. Cont.

Peptide m/z GeneID Gene Symbol
Ratio
TvsN P Value

QMEQISQFLQAAER 560.28 8407 TAGLN2 3.31 0.012

DDGLFSGDPNWFPKK 574.94 8407 TAGLN2 3.64 0.020

DDGLFSGDPNWFPK 797.86 8407 TAGLN2 4.78 0.035

LAVNMVPFPR 572.32 203068 TUBB 3.23 0.010

LHFFMPGFAPLTSR 540.95 203068 TUBB 4.53 0.003

Differentially expressed peptides between NSCLC and normal lung samples identified using SIEVE 1.2 software. Peptides presenting different m/z values have been
identified with various charge states.
doi:10.1371/journal.pone.0033752.t001

Figure 2. PTRF/cavin-1 and MIF label-free expression values by SIEVE. Boxplots represent mean and 25th–75th percentile; whiskers
represent minimun and maximun. Measurements were obtained from five different samples in each condition. Kruskall-Wallis test p-values are
shown. AC: Adenocarcinoma; SC: Squamous cell carcinoma; NL: Normal lung.
doi:10.1371/journal.pone.0033752.g002

PTRF and MIF Identified as NSCLC Biomarkers
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Gene ontology analyses of biological process and pathways

showed an increase in categories related to energy production in

cells, such as glycolysis and generation of precursor metabolites

and energy. These differences in energy metabolism between

normal and tumor cells are known as Warburg effect [24]. From

the signaling pathways under-represented in NSCLC tissues,

chemokine- and cytokine-mediated inflammation has been

previously shown to be under-represented in NSCLC [25]. It is

remarkable the over-representation of proteins belonging to

EGFR signaling pathway, in a context where the clinical use of

EGFR inhibitors has become the paradigm of personalized

therapy for NSCLC [26,27,28].

Figure 3. Validation of PTRF/cavin-1 and MIF expression changes using IHC and western blot. a) Western blot of total protein extracted
from indicated samples, using anti-MIF and anti-PTRF/cavin-1 primary antibodies. b) Densitometric analyses of western blot. ImageJ 1.38e software
was employed to measure the intensity of bands. All values in arbitrary units. c) Immunohistochemistry of indicated samples, using anti-MIF and anti-
PTRF/cavin-1 primary antibodies. AC: Adenocarcinoma; SC: Squamous cell carcinoma; NL: Normal lung.
doi:10.1371/journal.pone.0033752.g003

PTRF and MIF Identified as NSCLC Biomarkers
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More than 10% of detected peptides showed a differential

expression between normal and tumor samples. The percentage of

differential peptides was less than 2% when comparing adenocar-

cinoma and lung squamous cell carcinoma samples, but still there

were substantial differences between these two NSCLC histolog-

ical subtypes, as we have previously demonstrated [11].

We were able to validate NSCLC potential biomarkers

identified in shotgun proteomics analyses using IHC and western

blot approaches. MIF (macrophage migration inhibitory factor)

discriminated between normal lung and NSCLC samples. This

well known factor is a proinflammatory cytokine capable of acting

as soluble growth factor, expressed and secreted in response to

mitogens and integrin-mediated signals. MIF protein is involved in

many malignancies, as it promotes cellular transformation, inhibits

cytolytic immune response against tumor cells and promotes

neovascularization [29]. Interactome analyses revealed a close

relation between cell death regulation and MIF, and it is not

surprising that MIF over-expression was described in many types

Figure 4. Validation of PTRF/cavin-1 and MIF expression changes by western blot using a new cohort. Box-Plot graphs showing PTRF
and MIF western blot quantification using ImageJ 1.38e software. All values in arbitrary units. Each Box includes values from nine different samples.
Differences between normal and tumoral samples were p,0.005 in both cases (Kruskall-Wallis test).
doi:10.1371/journal.pone.0033752.g004

Figure 5. PTRF interactome network. A graph of PTRF network built using STRING v9.0 is shown. Different line colours represent the types of
evidence for the association: pink for experiments and blue for databases.
doi:10.1371/journal.pone.0033752.g005

PTRF and MIF Identified as NSCLC Biomarkers
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of cancer, including colorectal, breast, prostate, skin and lung

cancer [30,31], having a major role in the development of tumors

in the central nervous system [32]. Tumors co-expressing MIF and

its membrane receptor (CD74 protein) have increased vascular-

ization [33]. Although there are several molecules that inhibit

enzymatic activity of MIF, its high IC50 has limited its clinical use

so far [34], but new molecules are under current development

[35]. Our results show an increased expression of MIF in NSCLC

samples by label-free proteomics, confirmed by both western blot

and immunohistochemistry.

PTRF (Polimerase I and Transcript Release Factor), also

known as cavin-1, is a protein essential for RNA transcription

[36] and caveolae formation [37]. These invaginations of the cell

surface are associated with processes of vesicular transport,

cholesterol homeostasis, signal transduction [38] and lipolysis

control [39]. Therefore, it is not surprising that PTRF/cavin-1

mutations are associated with congenital generalized lipodystro-

phy, type 4 in humans [40]. PTRF/cavin-1 colocalizes with

caveolin 1 (CAV1) within caveolae [41], and positively modulates

its expression [42]. Interactome analyses suggest that PTRF

harbors unknown functions beyond some recently described

[43,44,45]. Loss of PTRF/cavin-1 expression in prostate cancer

has been related with progression [46], and it has been

demonstrated that its expression decreases the migration of

PTRF/cavin-1-deficient prostate cancer cells [47]. The loss of

PTRF/cavin-1 expression in tumorigenic HBE cells as compared

with normal human bronchial epithelial cells has been proved

recently [48]. Bai and colleagues have reported recently that

PTRF protein was down-regulated in breast cancer cell lines and

breast tumor tissue, and that down-regulation of PTRF in breast

cancer cells was associated with the promoter methylation [49].

PTRF/cavin-1 phosphorylated species have been described in

cells that over-express EGFR, which suggests a function in this

signaling pathway [50]. Our label-free proteomics results indicate

that PTRF expression is lost in NSCLC samples. These results

were confirmed using both western blot and immunohistochem-

ical staining. This is the first study showing PTRF/cavin-1 loss of

expression in NSCLC tumor tissue at the protein level. This loss

of expression, along with PTRF-EGFR interaction and EGFR

pathway deregulation in NSCLC samples, suggests a role of

PTRF in NSCLC development.

Our work demonstrates that it is possible to identify potential

biomarkers using a label-free differential proteomics strategy on

real clinical samples. We identified several differential markers,

two of which were validated by alternative classical proteomic

methods. Moreover, we show that gene ontology and interaction

analyses can identify pathways and processes altered on tumor

tissue, which may provide clues to the genesis of the disease and its

underlying molecular alterations, and could be susceptible to

therapeutic intervention. In this sense, this work indicates that

PTRF role in NSCLC and its relationship with EGFR pathway

deserves further exploration.

Figure 6. MIF interactome network. A graph of MIF network built using STRING v9.0 is shown. Different line colours represent the types of
evidence for the association: pink for experiments and blue for databases.
doi:10.1371/journal.pone.0033752.g006
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Supporting Information

Figure S1 Analysis of differences in GO Molecular
Function between NSCLC and normal lung. Comparison

of number of proteins assigned to each GO pathway category.

Normal tissue sample categories are represented as fold-change in

relation to this category. Statistical significance is tested using the

binomial test. Only significant categories (p,0.05) are shown.

(TIF)

Figure S2 Analysis of differences in GO Biological
Process between NSCLC and normal lung. Comparison

of number of proteins assigned to each GO pathway category.

Normal tissue sample categories are represented as fold-change in

relation to this category. Statistical significance is tested using the

binomial test. Only significant categories (p,0.05) are shown.

(TIF)

Figure S3 Fragmentation spectra from PTRF SLKE-
SEALPEK tryptic peptide. Diagram shows fragment ions

corresponding to main fragmentation series (b-amino and y-

carboxy). * indicates water loss; 2+, doubly charged fragment.

Parental ion is marked with an arrow.

(TIF)

Figure S4 Fragmentation spectra from MIF
PMFIVNTNVPR tryptic peptide. Diagram shows fragment

ions corresponding to main fragmentation series (b-amino and y-

carboxy). * indicates water loss. Parental ion is marked with an

arrow.

(TIF)

Table S1 Gene Ontology analyses performed with
PANTHER. Normal lung protein list was used as reference list.

(PDF)

Table S2 SIEVE label-free quantification. Data obtained

from SIEVE analyses, including relative expression values.

(PDF)

Table S3 PTRF and MIF MS2 spectra.

(PDF)

Table S4 Peptide Mass Fingerprint and Protein Identi-
fication settings.

(DOC)
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