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Abstract: DNA vaccines are stable, safe, and cost effective to produce and relatively quick and
easy to manufacture. However, to date, DNA vaccines have shown relatively poor immunogenicity
in humans despite promising preclinical results. Consequently, a number of different approaches
have been investigated to improve the immunogenicity of DNA vaccines. These include the use of
improved delivery methods, adjuvants, stronger promoters and enhancer elements to increase antigen
expression, and codon optimization of the gene of interest. This review describes the creation and use
of a DNA vaccine vector containing a porcine circovirus (PCV-1) enhancer element that significantly
increases recombinant antigen expression and immunogenicity and allows for dose sparing. A 172 bp
region containing the PCV-1 capsid protein promoter (Pcap) and a smaller element (PC; 70 bp) within
this were found to be equally effective. DNA vaccines containing the Pcap region expressing various
HIV-1 antigens were found to be highly immunogenic in mice, rabbits, and macaques at 4–10-fold
lower doses than normally used and to be highly effective in heterologous prime-boost regimens. By
lowering the amount of DNA used for immunization, safety concerns over injecting large amounts of
DNA into humans can be overcome.
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1. Introduction

DNA vaccines were hailed as long ago as the 1990s as the next best thing in vaccines: Plasmid-based
DNA vaccines are relatively easy and affordable to produce, sharing a common production method
for all vaccines; they are thermostable and safe with no risk of virulence or apparently of anti-vector
immunity, can be administered to immunocompromised individuals, and multiple plasmids can be
mixed and used as a broad spectrum combination vaccine. DNA vaccines elicit mainly cell-mediated
immune responses due to presentation of expressed antigens via major histocompatibility complex
class I (MHC-I) presentation, which is similar to viral pathogens and a desirable feature of a vaccine [1].
One important drawback to DNA vaccines, however, is their lack of immunogenicity compared to
protein-based or whole virus vaccines: Humoral responses are generally weak if not lacking altogether,
and high, repeated doses of DNA are needed in order to obtain reasonable response rates in animal
models. Additionally, results in small experimental animals have not translated well into human clinical
trial results, and there are concerns over the safety of injecting large amounts of DNA (milligrams) into
humans [2].
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2. A Novel Enhancer Sequence for DNA Vaccine Antigen Expression

Our group therefore previously investigated the potential of short enhancer sequences derived
from a mammalian single-stranded DNA virus—porcine circovirus type I (PCV-1)—for dose-sparing
potential and immunogenicity enhancement in a clinically trialed HIV-1 subtype C DNA vaccine [3].
The plasmid vector (pTH) has been well used in preclinical and clinical studies [4–6] and is regarded
as being a high-potency vaccine antigen vector for HIV and other agents. It relies on the human
cytomegalovirus immediate/early promoter (CMV I/E) enhancer element constituting the promoter
Pcmv [7], one of the strongest known promoters in mammalian expression systems, driving in vivo
antigen expression with the help of the CMV intron A and the bovine growth hormone polyadenylation
signal. It has been used to vector the synthetic HIV-1 subtype C vaccine antigen GrttnC, a polyprotein
incorporating Gag, reverse transcriptase (RT), Tat, and Nef sequences, in studies in mice, guinea pigs,
monkeys, and humans [8–12].

PCV-1, like all circoviruses, has a compact, genetically dense, bi-directionally transcribed genome
of 1759 bp that encodes only a viral capsid protein (cap gene) and the replication-associated proteins
Rep and Rep′, which derive by alternative splicing from one open reading frame (ORF) (rep) (Figure 1).
Bidirectional transcription of the two genes originates in the origin of replication (Ori) for rep, and in
an intron within rep for cap [13]. In vitro expression studies in human embryonic kidney 293 (HEK293)
cells with various constructs derived from the PCV-1 genomes showed that enhancement activity
resided in a 70 base pair “core sequence” (C) of the 172 base pair (bp) capsid promoter, Pcap, that
includes a putative composite transcription factor binding site comprising CCAAT/enhancer-binding
protein beta (C/EBPb), GATA-1, and cAMP response element-binding protein (CREB) sites, as well
as a 47 bp conserved late element, or CLE. Inclusion of the 70 bp sequence in the reverse orientation
immediately upstream of the Pcmv sequence in pTHgrttnC (yielding pTHCRgrttnC) resulted in
2.4-fold enhancement of polyprotein expression level in vitro following transfection of HEK293 cells,
as assessed by Gag p24 ELISA. The cognate sequence from the related PCV-2 was equally effective.
The 172 bp Pcap sequence also enhanced luciferase expression in HEK293 cells three-fold when
inserted in reverse orientation upstream of the simian virus 40 (SV40) promoter in the commercial
pGL vector [3]. Accordingly, we tested the enhancement of immunogenicity in vivo by intramuscular
injection of mice with a variety of pTHgrttnC constructs with additives from PCV-1 (Figure 1C): The
best enhancement over pTHgrttnC, as assayed by interferon-gamma enzyme-linked immune absorbent
spot (IFN-γ ELISPOT) responses to a RT CD8+ peptide, was obtained using the Pcap (172 bp) insert,
after two intramuscular inoculations of 100 µg of pTHPcapRgrttnC DNA (five-fold increase in spot
forming units (sfu)/106 splenocytes). Moreover, two inoculations of 10 µg of pTHPcapgrttnC DNA
was significantly more immunogenic (3.5-fold) than pTHgrttnC and boosting with 104 plaque forming
units (pfu) of modified vaccinia Ankara (MVA) vectoring Grttn showed the same trend (Figure 2). The
response to the 10 µg of pTHPcapgrttnC DNA alone was also equivalent to or higher than to 100 µg of
pTHgrttnC, indicating that significant dose sparing (10-fold) was possible for the same priming effect
for a vaccine-relevant antigen. This proof that a simple enhancement could dramatically improve the
functionality of a DNA vaccine vector led to its being employed in subsequent studies in our HIV
vaccine research program.
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Figure 1. Porcine circovirus type-1 (PCV-1) genome arrangement. (A) Diagram of the linearized PCV-1
genome, depicted in the orientation cloned into pTHCapgrttnC. The rep intron is enlarged and the
capsid gene promoter (Pcap) indicated. The core and conserved late elements (CLE) components of
Pcap are shown. rep = replication associated protein gene, cap = capsid protein gene, Prep = rep gene
promoter, Ori = origin of replication, core = composite host transcription factor binding site. (B) DNA
sequence of 172 bp PcapR fragment. Putative host transcription factor binding sites are indicated
and underlined, CLE motifs are in bold and the minimal PcapR sequence (1252–1238; as identified by
Mankertz and Hillenbrand [13]) is highlighted in gray. PCV-1 accession number Y09921. (C) Schematic
diagrams of plasmids showing assembly of PCV elements. Pcmv = Cytomegalovirus (CMV) promoter,
grttnC = gene encoding polyprotein of HIV-1 Gag, reverse transcriptase (RT), Tat and Nef, C = 70 bp
Pcap core. Figure reproduced from Tanzer et al. [3] under the Creative Commons Attribution (CC-BY)
license as specified by BioMed Central.
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Figure 2. HIV-1 specific IFN-γ ELISPOT responses to pTHgrttnC DNA vaccines containing portions of
the PCV-1 genome. Groups of mice were vaccinated intramuscularly with DNA vaccines on days 0 and
28. Two groups of mice were subsequently boosted with 104 pfu of modified vaccinia Ankara (MVA)
on day 56. A separate group of mice was vaccinated with 10 µg pTH (empty vector) on days 0 and
28 and subsequently boosted with 104 pfu of MVA on day 56. * p < 0.001; ** p < 0.05 Student t-test.
Figure reproduced from Tanzer et al. [3] under the Creative Commons Attribution (CC-BY) license as
specified by BioMed Central.

3. Testing the Enhanced DNA Vector with HIV-1 Subtype C pr55Gag

Strong polyfunctional CD8+ T cell responses to HIV-1 Gag or Gag-derived antigens have been
found to be important for controlling viremia in HIV+ people who are termed “elite controllers.”
Accordingly, Gag should be and often is included in candidate HIV vaccination regimes, so as to allow
early clearance of infected cells at the initial sites of infection, as well as control of spread from these
sites and later control of viremia [14]. A subtype C mosaic Gag sequence was chosen to increase the
coverage of both CD8+ and CD4+ T cell epitopes from that of natural sequences with the hope of
reducing the HIV-1 escape pathways [15–18]. Subtype C (HIV-1C) was chosen as it is the most prevalent
subtype in the world, accounting for over 50% of all global infections and is the dominant subtype in
southern Africa. In a study carried out by our group, the pTHPcapR plasmid backbone [3] was used to
construct a DNA vaccine containing an HIV-1 subtype C mosaic gag gene, DNA-GagM [19,20].

HEK293T cells transfected with DNA-GagM expressed high levels of Gag (up to 26 ng/mL in
the media). The immune responses to the DNA vaccine were evaluated in mice using homologous
and heterologous prime boosts with MVA vaccine expressing the matching HIV-1 subtype C mosaic
Gag antigen (MVA-GagM). To confirm that the DNA vaccine was immunogenic at a low dose, mice
were vaccinated with 10 µg of the DNA vaccine. Mice vaccinated with two doses of DNA-GagM had
mean cumulative Gag-specific IFN-γ ELISPOT responses of 882 sfu/106 splenocytes (Figure 3). These
responses were higher for CD8+ rather than for CD4+ Gag peptides (604 and 278 sfu/106, respectively).
Mice that received a heterologous prime boost consisting of two doses of DNA-GagM followed by
a single dose of MVA-GagM had mean cumulative Gag-specific IFN-γ ELISPOT responses of 2675
sfu/106, that were evenly balanced for both Gag CD4+ and CD8+ peptides. Both the homologous and
heterologous vaccination regimen elicited a higher proportion of CD8+ T cells expressing cytokines
than CD4+ T cells. All the cytokine-positive CD8+ T cells had an effector–memory phenotype. This
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study confirmed that the pTHPcapR DNA vector backbone containing the porcine circovirus enhancer
elicits high-magnitude, Gag-specific T cell responses in BALB/c mice at a low dose.

Figure 3. DNA vaccine elicits high Gag-specific IFN-γ ELISPOT responses both alone and in a
heterologous prime boost with MVA. (A) Vaccination schedule. DNA-GagM = pTHPcapR containing
mosaic gag; DNAE = pTHPcapR empty vector; MVA-GagM = MVA containing mosaic gag. (B)
Cumulative IFN-γ ELISPOT CD8+ and CD4+ responses of vaccinated mice to HIV-1 Gag peptides. ** p
< 0.01 Student t-test of unpaired data.

4. Testing the Enhanced DNA Vector with HIV-1 Subtype C Env Immunogens

The kinds of immune responses that an effective HIV-1 vaccine would need to elicit include
non-neutralizing antibody responses as well as broadly neutralizing antibody responses, together with
polyfunctional cytotoxic T cell responses to a variety of epitopes from the HIV-1 proteome [21–23].
One of the main targets of recent HIV-1 vaccine candidates is broadly neutralizing antibody (bNAb)
responses: bNAbs that can neutralize diverse primary HIV-1 subtype isolates protect against viral
challenge in nonhuman primates (NHP) with Env-pseudotyped simian–human immunodeficiency
viruses (SHIVs), suggesting that infection in humans could be similarly prevented [24,25]. Ranking of
HIV-1 isolates according to their sensitivities to neutralizing antibodies allows identification of viruses
as Tier 1 (sensitive), Tier 2 (moderately resistant), and Tier 3 (resistant) [26]. The circulating viruses that
vaccines will need to protect against are largely Tier 2 type: Accordingly, HIV vaccines should elicit
responses that neutralize laboratory Tier 2 virus isolates. We showed previously that using a DNA
prime/MVA boost immunization regime in mice with vaccines expressing HIV-1 subtype C mosaic
Gag resulted in strong cellular immune responses directed against Gag [19]. We wished to extend
these results by improving the vaccine regimen to allow the elicitation of Env-specific neutralizing
antibodies in a rabbit model.

The pTHPcapR vector was used to construct a DNA vaccine expressing a HIV-1 envelope (DNA
Env). The envelope sequence (CAP256SU) used in this study was selected as it elicited broadly
neutralizing antibodies (bNAbs) in the patient [27] and was sensitive to several prototype broadly
neutralizing monoclonal antibodies [28]. Several modifications were made to the envelope sequence,
these included replacing the native leader sequence with the tissue plasminogen activator leader
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sequence, replacing the furin cleavage site with a flexible linker, introducing an I548P mutation
equivalent to the I559P in the SOSIP trimers to improve the trimerization of gp41 [29] and truncating the
sequence from gp160 to gp150 [30]. A second plasmid expressing the soluble envelope protein (gp140)
with the same modifications was also constructed using the pTHPcapR backbone [31]. This plasmid
was used to generate a stable cell line expressing high levels of the soluble HIV-1 envelope protein,
which was subsequently purified and utilized as a protein boost in rabbit immunogenicity studies.
MVA vaccines expressing the matching gp150 Env and Env plus mosaic Gag were also constructed.

Rabbits were inoculated with different combinations of vaccines in different regimens, in order to
ascertain the overall effects on immunogenicity of the Env component. The first test group was injected
with 100 µg of each of DNA Env- and DNA-GagM-encoding plasmids at weeks 0 and 4, boosted with
doses of 108 pfu of rMVA Env + GagM at weeks 8 and 12, and further boosted with gp140Env protein
at weeks 20 and 28 (regime designated as DDMMPP). The other group received 108 pfu of rMVA Env
+ GagM intramuscularly at weeks 0 and 4, followed by three protein boosts at weeks 12, 20, and 28
(MMPPP) (Figure 4).

Figure 4. Rabbits primed with DNA produce higher autologous Tier 2 neutralizing antibodies than
those receiving MVA and protein alone. (A) Longitudinal, Tier 2 neutralizing antibody responses to
autologous CAP256SU pseudovirion from the serum of individual rabbits. (B) Neutralizing antibody
titers at week 30. ** p < 0.01 Mann–Whitney U test, median of N = 5.

Both the DDMMPP and MMPPP vaccination regimens elicited NAbs to the autologous Tier 2
CAP256SU pseudovirion. Moreover, high titers of antibodies that bound to the homologous CAP256
Env and a CAP256 V1V2 loop scaffold were also elicited [30]. It was noticeable that the DDMMPP
regimen elicited higher mean peak titers of Tier 2 NAbs than did the MMPPP regimen: This suggests
that priming with a DNA vaccine (DDMMPP) gives a better, wider anti-Env immune response than
the MMPPP regime (Figure 4). The DDMMPP regimen rabbits also apparently developed a slight
increase in breadth of the response as they had low levels of NAbs to clade A pseudovirus 398F1. Our
findings that DNA primes a good humoral response agree with others: For example, adding DNA-C
priming in the EV01 phase-I trial resulted in increased anti-Env IgG responses (from 27% for attenuated
vaccinia virus strain NYVAC alone to 75% for DNA + NYVAC [32]). Priming with DNA also resulted
in significantly boosted T cell responses.

5. Comparison of DNA Vaccines between Two Initiatives in South Africa

In 2000, a University of Cape Town (UCT)-based consortium headed by Prof. Anna-Lise Williamson
was awarded funds by the South African AIDS Vaccine Initiative (SAAVI) for the development of HIV-1C
vaccines for South Africa. Two vaccines—designated SAAVI DNA-C2 and SAAVI MVA-C—were
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deemed suitable for human clinical trials [9,10]. The vaccines expressed a HIV-1 subtype C truncated
envelope protein Du151 (gp150) and the polyprotein designated Grttn described above, consisting of
translational fusions of HIV-1 subtype C Gag Du422, and modified reverse transcriptase (RT), Tat-, and
Nef-encoding ORFs. The vector backbone utilized for the DNA vaccines contained the regulatory R
region from the 5′ long terminal repeat (LTR) of human T-cell leukemia virus type 1, which acts as a
transcriptional and post-transcriptional enhancer [33]. Rhesus macaques were inoculated at weeks 0, 4,
and 8 with 4 mg of SAAVI DNA-C2. No HIV-specific ELISPOT responses were detected following the
DNA vaccinations (unpublished data). In a more recent study funded by the South African Medical
Research Council Strategic Health Innovation Partnerships (SHIP), DNA vaccines expressing the SIV
Gag and HIV-1 subtype C truncated envelope ZM109F.PB4 were constructed utilizing the pTHPcapR
vector backbone (unpublished data). Rhesus macaques were inoculated, at weeks 0 and 4 with 1 mg
of the DNA vaccines (four-fold lower dose). Four out of five macaques developed IFN-γ ELISPOT
responses following stimulation with SIV Gag and HIV-1 subtype Env peptides. It should be noted that
the antigens used in the SHIP vaccines have been designed to be more immunogenic than those used
in the SAAVI vaccines and thus the improvement in the immune response cannot be solely attributed
to the increased expression of the Gag and Env due to the inclusion of the porcine circovirus in the
DNA vaccines. However, the SHIP DNA vaccines elicited a HIV-specific T cell response despite being
administered at a four-fold lower dose than the SAAVI DNA-C2 vaccine.

6. Future Possibilities for Enhanced DNA Vaccine or Expression Vectors Based on Circoviruses

Our group has recently published an investigation of the possibility of using circovirus-derived
replication control elements to create replicons, or replicating dsDNA plasmid-like molecules, in
plants and in mammalian cells [34]. This followed our extensive success with use of a plant
ssDNA geminivirus-derived expression vector in plants as an enhanced expression vector [35]:
Geminiviruses are very similar to circoviruses in having small circular ssDNA genomes that replicate
via a Rep-mediated rolling circle mechanism, and very similar sequences for their non-nucleotide
origins of replication (TAATATT/AC vs. TAGTATT/AC). In this study, we used a synthetic, partially
dimeric clone of the genome of beak and feather disease virus (BFDV), a circovirus generically related
to PCV, to investigate cross-potentiation of replication between the plant and animal viruses in plants
and replication of the BFDV genome alone in HEK293TT cells.

Initial experiments where both the geminivirus-derived vector bean yellow dwarf virus
(BeYDV) and BFDV genome were introduced into Nicotiana benthamiana plants via Agrobacterium
tumefaciens-mediated DNA transfer showed that replication of BeYDV facilitated the co-replication of
BFDV, albeit to levels only 100× less than for BeYDV replicons. More importantly, however, transfection
of HEK293TT cells with the BFDV construct resulted in a ten-fold increase in genome copy number
after three days. This was the first time that BFDV genomes had been shown to replicate in any
animal-derived cell culture, in contrast to PCVs which readily infect a variety of cells [36]. Improvement
in replicon copy number could be achieved by expressing BFDV in trans from another co-transfected
vector with a strong promoter: This is not surprising, considering the native rep promoter is quite weak
and is probably not well recognized in mammalian cells, meaning expression in trans could mean a far
higher availability of Rep.

These results open up a number of fascinating possibilities for using BFDV-derived sequences
as replication-competent DNA expression and vaccine vectors, several of which we are currently
investigating (W. de Moor, G. Regnard, A.-L. Williamson, E.P. Rybicki, unpublished results and ongoing
work). There are currently no small DNA virus-derived vectors in use in vaccinology, other than
recombinant adeno-associated viruses (rAAV), and AAV2 has recently been implicated in insertional
mutagenesis in human hepatocellular carcinomas [37]. Papilloma- and polyomaviruses are also known
to be associated with cancers, which may preclude their use as replicating vectors. The essentially
ubiquitous ssDNA torque teno viruses are potentially associated with some human disease conditions,
although causation is not proven [38,39].
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Circoviruses have never been implicated in any human disease: Although PCV-1 and PCV-2 were
famously discovered in live rotavirus vaccines given to millions of children [40], and PCV-1 was shown
to be able to infect a human hepatocellular carcinoma cell line [41], there was no evidence that PCV-1
infected the infants given the contaminated rotavirus vaccine [42]. There have been concerns, however,
over ssDNA viruses of pigs associated with xenotransplantation in humans [43], and swine–human
contacts are frequent and worldwide in agriculture. Thus, use of a circovirus such as BFDV as the source
of elements for a replicating DNA expression vector, when the virus is host-restricted to one type of
birds and has never been associated with human disease, is probably more likely to be regarded as safe.
Our preliminary investigations have revealed considerable promise in this regard; however, these will
be reported elsewhere (W. de Moor, G. Regnard, A.-L. Williamson, E.P. Rybicki, unpublished results).

7. Conclusions

It has been over 25 years since DNA vaccines were first introduced and many advances have been
made in the field. However, despite showing promise in small animals, with some DNA vaccines
being licensed for veterinary use [44,45], no DNA vaccines have been licensed for human use as
immunogenicity is still relatively poor. Thus, a great deal of research has gone into improving the
immunogenicity of DNA vaccines. Some of the strategies that have been shown to be effective are: (i)
RNA optimization to remove mRNA structures that inhibit ribosomal loading and sequences that inhibit
nuclear export of mRNA [46,47]; (ii) codon optimization [46,48,49]; (iii) use of Kozak sequences [50]; (iv)
use of leader sequences to improve stability, translation, and secretion [46]; (v) use of 3′ untranslated
regions (UTR) such as polyadenylation signals and post-transcriptional response elements which are
important for nuclear export, translation, and mRNA stability [51]; (vi) use of different promoters and
enhancers [52–54]; (vii) the inclusion of genes expressing immunomodulatory molecules in the plasmid
vector such as GM-CSF or IL-2 [55,56]; (viii) formulation of DNA vaccines in lipids and polymers [57];
(ix) use of better delivery systems [58–60]; and (x) use of suitable adjuvants [58,59].

In this review, we have only focused on a single method of improving DNA vaccine immunogenicity.
This was the use of a short enhancer sequence derived from the circovirus PCV-1 capsid gene promoter
to increase recombinant antigen expression. This enhancer element led to increased antigen expression
and immunogenicity of HIV-1 subtype C candidate DNA vaccines and allowed for the use of 10-fold
lower doses. The improved performance of the DNA vaccines with these candidates, compared to
non-enhanced vectors that went into human clinical trial, has prompted the inclusion of the enhancer
into all DNA vaccines under investigation in our research group, with excellent results. Future use
of replicating circovirus-derived DNA expression and vaccine vectors may yet open up even more
exciting possibilities.
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