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Abstract: Conventional processes (coagulation, flocculation, sedimentation, and filtration) are widely
used in drinking water treatment plants and are considered a good treatment strategy to eliminate
cyanobacterial cells and cell-bound cyanotoxins. The diversity of cyanobacteria was investigated
using taxonomic cell counts and shotgun metagenomics over two seasons in a drinking water treat-
ment plant before, during, and after the bloom. Changes in the community structure over time at
the phylum, genus, and species levels were monitored in samples retrieved from raw water (RW),
sludge in the holding tank (ST), and sludge supernatant (SST). Aphanothece clathrata brevis, Microcystis
aeruginosa, Dolichospermum spiroides, and Chroococcus minimus were predominant species detected
in RW by taxonomic cell counts. Shotgun metagenomics revealed that Proteobacteria was the pre-
dominant phylum in RW before and after the cyanobacterial bloom. Taxonomic cell counts and
shotgun metagenomic showed that the Dolichospermum bloom occurred inside the plant. Cyanobac-
teria and Bacteroidetes were the major bacterial phyla during the bloom. Shotgun metagenomics
also showed that Synechococcus, Microcystis, and Dolichospermum were the predominant detected
cyanobacterial genera in the samples. Conventional treatment removed more than 92% of cyanobac-
terial cells but led to cell accumulation in the sludge up to 31 times more than in the RW influx.
Coagulation/sedimentation selectively removed more than 96% of Microcystis and Dolichospermum.
Cyanobacterial community in the sludge varied from raw water to sludge during sludge storage
(1–13 days). This variation was due to the selective removal of coagulation/sedimentation as well as
the accumulation of captured cells over the period of storage time. However, the prediction of the
cyanobacterial community composition in the SST remained a challenge. Among nutrient parameters,
orthophosphate availability was related to community profile in RW samples, whereas communities
in ST were influenced by total nitrogen, Kjeldahl nitrogen (N- Kjeldahl), total and particulate phos-
phorous, and total organic carbon (TOC). No trend was observed on the impact of nutrients on SST
communities. This study profiled new health-related, environmental, and technical challenges for
the production of drinking water due to the complex fate of cyanobacteria in cyanobacteria-laden
sludge and supernatant.

Keywords: cyanobacteria; microcystins (MCs); water treatment; sludge; shotgun metagenomics;
cyanobacterial community; high-throughput sequencing
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Key Contribution: High-throughput sequencing was applied to investigate cyanobacterial com-
munity in raw water, stored sludge, and supernatant of sludge holding tanks in a drinking water
treatment plant.

1. Introduction

Cyanobacterial cells and their associated cyanotoxins are considered to represent
an important challenge due to (1) their health threat to humans and animals; (2) their
negative aesthetic impacts with respect to taste, odor, and color; (3) the implications of
extra water treatment requirements for ozonation and membrane filtration; and (4) the
increased consumption of coagulants, flocculants, and activated carbon [1–3].

Conventional treatment using coagulation, flocculation, sedimentation, and filtration
is a common approach for cyanobacterial removal from intake water [1,3,4]. However,
conventional treatment is not efficient at removing dissolved cyanotoxins [5]. In addition,
hydraulic and chemical stresses during treatment may cause damage to cells and trichomes,
leading to the release of cyanotoxins [6,7]. Another challenge of conventional treatment is
the increase in cyanobacteria and cyanotoxin concentrations in the clarifiers and filters of
water treatment plants (WTPs) and their accumulation in the sludge of clarifiers [3,4,8,9].
Cyanobacterial cells can be present at concentrations 10–100 times higher in the sludge than
in intake water, even in plants with low cyanobacterial flux (<1000 cells/mL) [10,11]. More-
over, some investigations have shown that coagulated cells can stay viable in the sludge for
2 to 10 days [4,9,12–14]. More recently, cell viability in the sludge was observed for more
than 20 days [15]. During this period, microcystin-LR (MCLR) and cylindrospermopsin
concentrations increased to 3–7 times their initial levels. The authors of [16] reported that
metabolite concentrations in the sludge supernatant after storage were up to five times
greater than those within the sludge before storage. This shows a new challenge in sludge
management during storage and when the sludge supernatant is recycled to the head of
the plant [16,17]. The fate of cyanobacteria and cyanotoxins during and after coagulation
and in the sludge is not fully understood. The impacts of coagulation on cyanobacterial
cells are still controversial. Although some studies have demonstrated that coagulation
depends on cyanobacterial species [3,17,18], another study showed that cells are not selec-
tively captured by coagulation [15]. It has been shown that cell damage and metabolites
released in sludge are associated with various environmental conditions; however, due to
the complex interactions of cyanobacteria with treatment processes, the primary factors
behind this complex behavior are still not determined [16,19]. Additionally, although the
positive impact of powdered activated carbon (PAC) on cyanotoxin degradation in raw
water (RW) has been widely studied [5,20–23], there are no data about the role of injected
PAC in RW in the degradation of accumulated cyanotoxins within sludge.

Recently, high-throughput sequencing and metagenomics techniques have been suc-
cessfully applied to describe microbial communities in the water resources to predict the
occurrence of cyanobacterial blooms [24,25]. During the last decade, several studies have
investigated bacterial communities in WTPs and have demonstrated that while microbial
communities in the water treatment chain are represented by water intake, treatment
processes have an impact on the microbial community structure through WTPs [17,26–32].
Few studies have investigated bacterial communities within sludge in WTPs [33,34]. The
authors of [33] reported similar bacterial communities in sludge samples collected from six
different Chinese WTPs with the same treatment processes. They reported similar bacterial
communities in sludge samples, suggesting that bacterial communities in sludge might
be shaped by RW communities; however, they did not compare the bacterial composition
in sludge with that in RW. The authors of [34] studied the impact of different coagulants
on bacterial communities and metabolite release in sludge. They found that the relative
abundance of the dominant genera Microcystis, Rhodobacter, Phenylobacterium, and Hy-
drogenophaga decreased, reflecting their damage and the subsequent release of extracellular
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microcystin and organic matter. They suggest that the sludge should be treated or disposed
of within 4 days to avoid the proliferation of the pathogens.

There are basically no studies exploring the impact of RW cyanobacterial communities
on cyanobacteria-laden sludge and its supernatant in WTPs. Moreover, previous studies
considered sludge as a batch samples, while in WTPs cyanobacteria-laden sludge might
be dynamically affected by different parameters such as RW characteristics, treatment
process functionality, and sludge storage time. The impact of these parameters on the
cyanobacterial community structure of sludge has not been investigated. No comparative
analysis has been carried out on bacterial/cyanobacterial community composition within
RW, sludge, and sludge supernatant. Due to the knowledge gaps related to the fate of
cyanobacteria and cyanotoxins in sludge, high-throughput sequencing techniques could
be useful to better understand the community dynamics of cyanobacteria-laden sludge
through a WTP. This study is the first to use both shotgun metagenomic sequencing and
taxonomic cell count approaches to provide an overview of cyanobacterial composition in
RW, a sludge holding tank (ST), and the corresponding sludge supernatant (SST) in a WTP.

The general objective of this research was to study the fate of cyanobacteria and its
associated cyanotoxins in a WTP. The specific objectives were to: (1) diagnose critical
points of WTPs where cyanobacteria cells and their associated cyanotoxins accumulate;
(2) determine the relationship between cyanobacterial communities in RW, sludge, and its
supernatant; (3) determine the impact of nutrients on cyanobacterial community shifts in
RW, the sludge holding tank, and its supernatant; and (4) compare taxonomic cell counts
with shotgun metagenomic sequencing results.

2. Results and Discussion
2.1. Impact of Conventional Treatment on Cyanobacteria and Cyanotoxins

During the period prior to the bloom (1 July to 30 August 2017), taxonomic cell
counts in RW were below 5.0 × 104 cells/mL and Aphanothece clathrata brevis was the
most dominant species, representing 65–100% of total cell counts. Dolichospermum spiroides
(0–26%), Chroococcus minimus (0–34%), Microcystis aeruginosa (0–2%), and Dolichospermum
circinale (<1%) were detected frequently (Figure 1). During this period, low concentrations
of MCs were detected, with dissolved microcystin (MC) levels below 90 ng/L and cell-
bound MC levels below 10 ng/L (Figure 2, Table S2).

A cyanobacterial bloom appeared in Missisquoi Bay in late August, and total taxo-
nomic cell counts increased in RW to 3.1 × 105 cells/mL on 1 September. The dominant
species was D. spiroides, representing 52% of total cell counts with a concentration of
1.6 × 105 cells/mL. Other identified species were A. clathrata brevis (1.0 × 105 cells/mL,
33%), M. aeruginosa (4.0 × 104 cells/mL, 13%), and Coelosphaerium kuetzingianum
(1.7 × 103 cells/mL, 1%) (Figure 1). The low total MC level increased to 260.1 ng/L, of
which 191.9 ng/L were dissolved (Figure 2). On the sampling dates following the bloom
(5 September and 27 October), cell counts decreased to around 3.9 × 104 cells/mL and
remained constant. The species A. clathrata brevis was dominant during those two dates
(68–85%). C. minimus (31%) was also found on 5 September and M. aeruginosa (31%) and
Aphanizomenon gracile (1%) were found on 27 October. MCs remained below the detec-
tion limit (DL) on 5 September. On 27 October, the total MC concentration increased to
142.6 ng/L, of which 121.9 ng/L were dissolved (Figure 2).

Through the treatment process, 86–99% of total cyanobacterial cells were removed by
the clarifier. In particular, 85–100% of M. aeruginosa, A. clathrata brevis, C. minimus, A. gracile,
and D. spiroides were eliminated. These results are in agreement with previous studies
documenting coagulation efficiency of between 62% and 99% [4,8,14,35,36]. Meanwhile,
14–71% of the escaped cells from the clarifier were removed by filtration (Figure 1). Overall,
92–99% of cells were eliminated by conventional treatment. A previous study on this
plant found a similar reduction [3]. Furthermore, taxonomic cell counts increased from
25% to 120% in treated water (TW) on all sampling dates. A. clathrata brevis (72–99%)
remained dominant in TW, except on the bloom date (1 September). On 1 September,
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the cyanobacterial composition in TW consisted of D. spiroides (62%), A. clathrata brevis
(29%), and Pseudanabaena mucicola (9%) (Figure 1). Cell counts in TW (after chlorination)
were 1.3–2 times greater than cell counts in filtered water (FW) (before chlorination). This
accumulation can be problematic if accumulated cells produce cyanotoxins.
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2 days. NS: sample not taken.

Total taxonomic cell counts in ST remained around 3–31 times greater than in RW
(Figure 1). The cell percentage of A. clathrata brevis in ST decreased from ~100% on 27 July
to 32% on 1 September (bloom date). In contrast, during this period, the percentages of
Aphanocapsa delicatissima and D. spiroides increased from 0% to 29% and 27%, respectively.
On 1 September, M. aeruginosa counts in ST were four times greater than in RW. Further-
more, A. delicatissima, P. mucicola, Aphanizomenon flos-aquae, D. circinale, and C. kuetzingianum
were detected in small amounts (0–1.7 × 103 cells/mL) in RW, whereas their cell counts
increased to between 2.5 × 102 to 1.2 × 106 cells/mL in ST on the corresponding dates
(Figure 1).

Cell counts in SST remained around 94–98% lower than those in ST and 69–97% lower
than those in RW. A. clathrata brevis was dominant (83–99%) in SST, with small percentages
of D. spiroides (1–6%) and P. mucicola (5–11%).
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Figure 2. Concentration of dissolved and cell-bound microcystins (MCs) in raw water (RW), in the
sludge holding tank (ST), and in sludge holding tank supernatant (SST). NS: sample not taken, DL:
below detection limit.

Total MCs in ST and SST remained below 281 and 128 ng/L, respectively, during
the sampling campaign (Figure 2). These MC trends are inconsistent with previous in-
vestigations which reported MCLR concentrations in the clarifier sludge to be around
10 times greater than in RW [3,8]. This low concentration of MCs measured in the ST
also contradicts the results of [16], where it was shown that cyanobacterial metabolites in
lagoon supernatant were 2 to 5 times greater than the initial concentrations. One reason
behind the low MC concentrations in the ST as well as in the SST in our study may be the
impact of injected PAC in RW on accumulated MCs in stored sludge. Indeed, levels of
dissolved MCs were reduced from 121.7 ng/L (1 September) to below DL on 5 September
when the PAC dose increased from 9.2 to 27.3 mg/L. In contrast, the concentration of
dissolved MCs increased to 116.7 ng/L on 27 October when the PAC dose decreased to
7.0 mg/L (Figures 2 and 3). A second reason may be the biodegradation of MCs during
sludge storage. However, the authors of [37] documented biodegradation of MCs as being
very low compared to individual microcystin analogues.
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2.2. Cyanobacterial Diversity in Sludge and Supernatant Assessed by Shotgun
Metagenomic Sequencing

From 27 July to 25 August 2017, Proteobacteria remained dominant in RW and their
relative abundance increased from 26% to 56%. Actinobacteria (12–26%) and Bacteroidetes
(14%) were the following dominant phyla in RW. During this period, Cyanobacteria,
Verrucomicrobia, and Firmicutes had small relative abundances below 6%, 5%, and 3%,
respectively. On 30 August, the abundance of Proteobacteria and Actinobacteria decreased
to 35% and 14.6%, respectively, while that of Cyanobacteria and Bacteroidetes increased
to 19%. On 1 September, the community profile was associated with high cyanobacterial
levels (38%) and was distinct from those of other sampling dates where there were lower
cyanobacterial levels. This is coherent with trends observed in taxonomic cell count
results on 1 September. Similarly, the relative abundance of Bacteroidetes reached its
highest level (32%) on that date (Figure 4), as supported by previous reports linking
cyanobacterial blooms with Bacteroidetes [38,39]. Indeed, Bacteroidetes is associated
with nutrient loadings which promote the growth of Cyanobacteria [40]. In this work,
we observed that total (TN) and dissolved nitrogen (DN) were significantly associated
with the Bacteroidetes community (Table S1, Figure S1). On the next sampling dates
(5 September and 27 October), the abundance of Cyanobacteria and Bacteroidetes decreased
to 12.4% and 4.5% on 5 September, and 19% and 14% on 27 October, respectively. The
abundance of Proteobacteria increased from 37% to 48% (Figure 4). On 30 August (before
the bloom) and 5 September (after the bloom) Proteobacteria and Actinobacteria were the
two dominant phyla in the ST (56–57% and 14–17%, respectively) and SST (56–68% and
18–20%, respectively) (Figure 4). During this period, the relative cyanobacterial abundance
in the ST and SST was about 7% and 4%, respectively. Interestingly, Bacteroidetes was also
found at low levels, fluctuating from 5% to 12% and from 7% to 18% in the ST and SST,
respectively.
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At the genus level within Cyanobacteria in RW, Synechococcus and Microcystis were
predominant on 27 July and 15 August (Figure 5). In late August, the relative abundance of
Synechococcus and Microcystis, declined, while that of Dolichospermum and Nostoc, increased.
The relative abundance of Dolichospermum reached its maximum level on 30 August and
1 September (bloom date). After the bloom date (5 September and 27 October), the rela-
tive abundance of Dolichospermum decreased, while that of Microcystis and Synechococcus
increased, and the diversity of cyanobacterial communities almost returned to pre-bloom
conditions (Figure 5). A previous investigation in Missisquoi Bay documented that the
relative abundance of Dolichospermum and Microcystis repeatedly alternated in bloom and
non-bloom events [24], while our study showed that Synechococcus also shifted from being a
highly abundant taxa before and after the bloom to being present with very low abundance
during the bloom.
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Figure 5. Cyanobacterial community at the genus level in raw water (RW) (27 July, 15, 25, and
30 August, 1 and 5 September, and 27 October 2017), in the sludge holding tank (ST), and in
sludge holding tank supernatant (SST) (30 August, 5 September 2017). The black arrows show the
corresponding dates for the ST and SST samples.

The relative abundance of the genera and species changed between RW and ST/SST
stages (Figure 5). It is important to note that the structural composition of the sludge
communities was not expected to match because sludge is the result of several days of
cyanobacterial cell accumulation in the holding tank. For example, when considering
samples from 25 August 2017, the sludge holding time was estimated as 13 days, while
that of 5 September was 1 day. A comparison between RW (25 and 30 August) and ST
(30 August) showed that there was a higher abundance of Synechococcus and a lower
abundance of Dolichospermum in the ST as compared to RW. This trend was also observed
on 5 September. On 25 August, the relative abundance of Microcystis was lower in the ST in
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comparison to RW, while the opposite trend was observed on 30 August. On 5 September,
the abundance of Microcystis was higher in the ST than in the RW. The abundance of
Synechococcus in SST (30 August) was higher than in RW (25 and 30 August). This trend
was also observed on 5 September. The opposite trend of Synechococcus was observed within
that of Dolichospermum. The abundance of Microcystis in SST (30 August) was lower than in
RW on 25 August but higher than in RW on 30 August. On 5 September, the abundance of
Microcystis in SST was lower than that in RW. The relative abundance of Synechococcus in
the ST was higher than that in SST on both sampling dates (30 August and 5 September).
On 30 August, the relative abundances of Microcystis and Dolichospermum were similar in
the ST and SST. Interestingly, on 5 September, the abundance of Microcystis decreased in
SST compared to the ST, while Dolichospermum showed the opposite trend (Figure 5). At
the species level, similar trends were observed in M. aeruginosa, Dolichospermum sp. 90,
and Synechococcus sp. CB0101 (Figure 6). Additionally, other genera with lower relative
abundance (<6%) were detected in the samples. For example, Prochlorococcus, Cyanobium,
Fischerella, Calothrix, and Cyanothece did not show significant changes between the RW, ST,
and SST (Figure 6, Figures S2 and S3). The richness of cyanobacterial species (Chao1 index)
remained approximately constant in the RW (578 and 598 on 30 August and 5 September,
respectively) and the ST (599 and 620 on 30 August and 5 September, respectively), while it
decreased in the SST (275 and 475 on 30 August and 5 September, respectively) (Figure 7a).
The difference in richness between RW and ST with respect to SST suggests that the
cyanobacterial communities in SST and ST were different but that there were similarities
between the ST and RW.
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Figure 7. Evaluation of cyanobacterial richness and diversity in raw water (RW) (25 and 30 August
and 5 September 2017), in the sludge holding tank (ST), and in sludge holding tank supernatant (SST)
on 30 August and 5 September 2017 using (A) Chao1 and (B) the Shannon index.

Between 27 July and 30 August, the Shannon index increased from 4.18 to 4.51 in RW,
while it decreased to 4.06 on bloom on 1 September (Figure S4). Our results showed that
the diversity decreased during the bloom, in agreement with [24]. The Shannon index in
the ST on 30 August (4.4) indicated similar diversity profiles to RW on 25 August (4.39)
and 30 August (4.28). Due to 13 days of sludge storage time on 30 August, the diversity in
the ST was affected by the bacterial populations in RW in samples on both 25 August and
30 August. The Shannon index in the sludge decreased to 4.16 on 5 September, which is a
lower value than the Shannon index in the RW (4.38) on the same date (Figure 7b).

Overall, when relating structural composition of the communities found in raw water
(RW), in the sludge holding tank (ST), and in sludge holding tank supernatant (SST), several
factors should be considered:

• As expected, changes in composition of RW communities were observed and affected
the microbial populations in the ST. Since sludge accumulates over the period of time
(1–13 days in this case), the ST profile is expected to reflect accumulative diversity
considering both the relative abundance and biomass. Furthermore, the efficacy of
coagulation and settling is species-dependent, as shown by [3,17]. Previous investiga-
tions also demonstrated that 96–100% of Dolichospermum and Microcystis cells were
more likely to be captured by the clarifier [3,8], and that the coagulation efficiency for
these genera was twice the value observed for Synechococcus [41].
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• The communities found in the ST and SST showed different trends at the phylum and
genus level as shown by the Shannon index (Figure S5, Figures 4 and 5). In fact, at
the phylum level, Cyanobacteria was selectively removed and retained within sludge
(Figure 4). The cyanobacterial community distribution in the supernatant reflects
the incoming sludge and the subsequent buoyancy of the community in the sludge.
Storage in the holding tank of the sludge may cause cell breakage, leading to vesicle
damage [42] and interruption of buoyancy regulation [43]. This would affect the
profile of the supernatant in our work. The increase in cyanobacterial richness in
SST on 5 September might be due to the longer sludge storage time in the 30 August
sample (13 days) compared to that of 5 September (1 day), providing more time for
cell damage.

• Cell survival, re-growth, and damage might have occurred in ST during sludge storage.
The longer storage of the sludge might have led to cell lysis in the sludge. These phe-
nomena were documented in several studies for various dominant genera including
the most dominant genera in this study (Microcystis and Dolichospermum) after 2 days
of sludge storage [4,15,16,44]. Furthermore, trichome damage of Dolichospermum due
to the treatment stress has been already reported [7]. However, there are no data on
the fate of Synechococcus in stored sludge.

Understanding the community structure and dynamics in the ST and SST is impor-
tant for quantitative cyanobacterial risk assessment. Water operators need to be able to
predict the exchanges between the sludge and the supernatant. Supernatant (SST) can be
discharged into water resources or recycled to the head of the WTP and could constitute a
risk for the water intake or an additional burden on the plant treatment processes. Sludge
(ST) can be disposed of in wastewater collectors, processed as sludge in lagoons or sludge
facilities, or land-applied.

Other studies have shown that environmental conditions can impact sludge com-
munities [16,19]. Redundancy analysis (RDA) analyses were performed to evaluate the
relationship between nutrients (Table S1) and cyanobacterial communities. Orthophos-
phate (OP), total nitrogen (TN, sum of Kjeldahl nitrogen (N- Kjeldahl), organic nitrogen,
nitrite, and nitrate), N-Kjeldahl, total phosphorous (TP), particulate phosphorous (PP),
and total organic carbon (TOC) exerted significant effects (p < 0.05) on community profiles
in different ways (Figure 8). A clear correlation was observed between OP in RW, with
Nostocales (reported to have a 4.5 times higher relative abundance of genes related to phos-
phorous metabolism than Chroococcales) found at low concentrations of phosphorous [45].
Other studies have demonstrated that higher concentrations of nitrogen, phosphorous, and
carbon resulted in better conditions for bacterial communities and led to an increase in
microbial growth [33,34,46]. In our study, RDA analyses showed that OP was more avail-
able in RW than in the ST and SST and that TN, N- Kjeldahl, TP, PP, and TOC had a strong
impact on the cyanobacterial population in the ST, which mostly contained Chroococcales.
None of these nutrient parameters seemed to affect the SST. This is in accordance with
our previous observations on the different patterns of cell accumulation in SST. However,
it must be noted that the mass of nutrients measured in sludge (2.0–32.8 mg/L of TN
and 0.48–5.9 mg/L of TP), was not associated with cyanobacterial cell-bound nutrients
nor with dissolved nutrients. Using reference values for cell nutrient content, cell-bound
nutrients consist of less than 0.8% nitrogen and 0.4% phosphorous [47]. The persistence
of Chroococcales in the sludge environment could be the result of the high environmental
resistance and the ability to thrive in the presence of elevated levels of nutrients (Figure 8).
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2.3. Comparison between Shotgun Metagenomic Sequencing and Taxonomic Cell Counts

The observed genera from microscopic cell counts do not completely match the high-
throughput sequencing results, as Aphanothece, Chroococcus, Aphanocapsa and Coelosphaerium
were not detected by shotgun metagenomics. In RW, M. aeruginosa, D. circinale, D. spiroides,
A. gracile, and P. mucicola were detected through both taxonomic cell counts and metage-
nomics (data not shown). In contrast, A. clathrata brevis, C. minimus, and C. kuetzingianum
were detected only by taxonomic cell counts and not by metagenomics (data not shown). In
ST, only M. aeruginosa, D. spiroides, and D. circinale were detected by both approaches, while
A. clathrata brevis, C. minimus, P. mucicola, A. delicatissima A. flos-aquae, and C. kuetzingianum
were only detected in taxonomic cell counts (data not shown). Overall, 76% and 88% of
the detected species by metagenomics were not detected by taxonomic cell counts in RW
and ST, respectively (Figures 1 and 6). As recently discussed [48], taxonomic cell counts
and high-throughput sequencing can yield different community profiles because of the
limitations inherent to each of these methods. Physical and chemical stress in WTPs may
cause damaged cells and affect taxonomic cell counts [7], while DNA can be extracted from
lysed and dead cells and provide metagenomics shotgun reads [49]. Despite the advantages
of taxonomic cell counts, measurement bias such as misidentification of morphologically
similar species, the impact of the conservation agent on biovolume, and the complexity
of counting species in aggregates should be considered [50–52]. In sludge samples, the
presence of debris, sediments, and a high number of cells might increase the probability of
cross interferences. New metagenomic approaches based on direct cloning and shotgun
sequencing of environmental DNA represent a powerful tool for species classification and
the evaluation of community dynamics through water treatment processes. However,
use of metagenomics also represents some challenges such as: (1) an inadequate recovery
rate of DNA [53]; (2) contamination of DNA during extraction [54,55]; and (3) a lack of a
standard identification pipeline that includes all species [56].

3. Conclusions

• Bacterial communities shifted before and after the cyanobacterial bloom. Proteobacte-
ria was the predominant phylum in RW before the bloom. Levels of Cyanobacteria
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and Bacteroidetes progressively increased to reach their greatest abundance on the
bloom date. This high abundance of Bacteroidetes was associated with nutrient-rich
conditions which occurred during the cyanobacterial bloom. After the bloom, bacterial
communities returned to almost the same composition as prior to the bloom.

• Conventional treatment eliminated 92–97% of the cyanobacterial cells, as revealed by
cell counts. Overall, 96% of Microcystis and Dolichospermum were eliminated by this
process. At first glance, this is an effective approach to controlling the cyanobacterial
flux. However, coagulation leads to accumulation of cyanobacterial cells in the sludge.
Even a low cell number in intake water (3.9 × 104 cells/mL) led to 31 times as much
cell accumulation in the sludge.

• Selective removal of cyanobacteria at the genus and species levels by coagulation/
sedimentation has been highlighted by both metagenomic shotgun sequencing and
taxonomic cell counts. Sludge (ST) cyanobacterial composition differs from RW if only
samples from the same day are considered. Sludge diversity reflects both selective
removal by coagulation/sedimentation and the accumulation of captured cells over a
period of time as determined by sludge age.

• Monitoring strategies focusing on sporadic measurement of the diversity in raw water
cannot capture the risk associated with the storage and disposal of the sludge. Sludge
community profiles also appear to be a better indicator for evaluating the influx of
cyanobacterial communities in WTPs. Indeed, the sludge profile reflects a cumulative
community in terms of relative abundance and biomass.

• Bacterial and cyanobacterial communities of sludge in the holding tank (ST) markedly
differed from those measured in sludge supernatant (SST). The communities found
in the ST and SST showed different trends at the phylum and genus level as shown
by the Shannon index. The prediction of cyanobacterial communities in the super-
natant remains a challenge as it is often recycled, possibly adding cyanobacteria and
cyanotoxins to the intake water.

• Considering environmental parameters monitored, nutrients were the most discrimi-
nating factors affecting cyanobacterial communities. Cyanobacterial communities in
RW were influenced by OP, while the sludge communities were correlated with TN,
N- Kjeldahl, TP, PP, and TOC.

• Storage, management, and disposal of the cyanobacteria-laden sludge are techni-
cal and health-related challenges. By adjusting the storage time and adding PAC,
risk assessment of supernatant recycling can be applied to minimize the impact of
cyanobacteria and cyanotoxin accumulation.

4. Materials and Methods
4.1. Description of the Studied Water Body and Plant, Including Treatment Schematics

A plant located on the Canadian side of Missisquoi Bay, Lake Champlain, located
South East of Montreal was monitored from 27 July to 27 October 2017. The plant intake
water is situated 180 m within the bay. The treatment chain is presented in Figure 9.
Briefly, powdered activated carbon (PAC) injection followed by conventional treatment
(coagulation, flocculation, sedimentation) and a post-chlorination step are applied as
treatment. The clarifier sludge is stored in a sludge holding tank. The supernatant of this
sludge is discharged into the lake and the sludge is transferred to the local wastewater
treatment plant.

Overall, seven sampling campaigns were performed on the following dates: 27 July,
15, 25, and 30 August, 1 and 5 September, and 27 October 2017. Specifications of the plant
and treatment are summarized in Table S2.
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Figure 9. The treatment chain of the WTP and sampling points. The water intake is from Missisquoi
Bay. Sampling points are indicated by . RW: raw water; CW: clarified water; FW: filtered water; TW:
treated water; ST: sludge holding tank; SST: supernatant of the sludge holding tank.

4.2. Description of the Studied Water Body and Plant Including Treatment Schematics

Samples were taken following each treatment step from raw water (RW), clarified
water (CW), filtered water (FW), treated water (TW), the sludge holding tank (ST), and
sludge holding tank supernatant (SST).

Autoclaved 1-L polypropylene bottles, 5-L polypropylene containers, and 40-mL glass
vials were used for each sampling point. Before sampling, all containers and vials were
rinsed with the water from the sampling point. The 40-mL vials were used for taxonomic
cell counts. The taxonomic samples were preserved with Lugol’s iodine. Subsamples were
taken for metagenomics from the 1-L bottles; the 5-L containers were used for cell-bound
and dissolved microcystins (MCs) and nutrient samples.

Genomic subsamples were prepared by sample filtration via 0.2-µm polyethersulfone
hydrophilic membranes (Millipore Sigma, Oakville, ON). Membranes were stored in the
sterile Falcon tube at −80 ◦C. Cell-bound and dissolved microcystin subsamples were pre-
pared by sample filtration using pre-weighted 0.45-µm GHP membranes (Pall, Mississauga,
ON). The filters were kept in the petri dish and the filtrate was kept in 125-mL gradu-
ated polyethylene terephthalate glycol (PETG) amber bottles (Thermo Fisher, Mississauga,
ON). Subsamples for total nitrogen (TN), total phosphorous (TP), and total organic carbon
(TOC) were aliquoted directly. Dissolved nitrogen (DN), Kjeldahl nitrogen (N- Kjeldahl),
ammonium nitrogen (NH4), nitrite/nitrate (NO2/NO3) and dissolved phosphorous (DP)
subsamples were filtered on 0.45-µm membranes (Millipore Sigma, Oakville, ON).

Genomic subsamples were taken in triplicate, while MC and nutrient samples were
taken in duplicate. MC, N- Kjeldahl, and NO2/NO3 subsamples were frozen at −25 ◦C.
TN, TP, and TOC samples were stored at 4 ◦C. Taxonomic cell count samples were stored
in a dark place at ambient temperature.

4.3. Description of Analytical Methods
4.3.1. Taxonomic Cell Counts

Taxonomic cell counts were performed by an inverted microscope in a Sedgwick-Rafter
chamber at magnifications of 10 and 40× according to [57–59].
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4.3.2. Microcystin Analysis

Total microcystins (MCs) were analyzed by on-line solid-phase extraction ultra-high-
performance liquid chromatography coupled to tandem mass spectrometry (on-line SPE-
UHPLC-MS/MS). Firstly, samples were oxidized by potassium permanganate and sodium
(meta) periodate (Sigma Aldrich, Oakville, ON, Canada). Secondly, samples were quenched
by a 4M sodium bisulfite solution (Sigma Aldrich, Oakville, ON, Canada). Thirdly, the stan-
dard solutions of 4-phenylbutyric acid (50 ng/L) (Sigma Aldrich, Oakville, ON, Canada)
and erythro-2-Methyl-3-methoxy-4-phenylbutyric acid (D3-MMPB, 10 ng/L) (Wako Pure
Chemicals Industries, Ltd., Osaka, Japan) were added to the samples. Fourthly, 10 mL
of solution were filtered using 0.22-µm nylon filters (Sterlitech Corporation, Kent, WA,
USA). Aliquots were taken for analysis using the Thermo EQUAN™ interface (Thermo
Fischer Scientific, Waltham, MA, USA). The “in-loop” injection was controlled by an HTC
Thermopal autosampler (CTC analytics, Zwingen, Switzerland). Then, samples were
loaded into a Thermo Hypersil Gold aQ C18 (on-line SPE) column (20 mm × 2.1 mm,
12 µm). Separation of toxins was performed on a Thermo Hypersil Gold C18 column
(100 mm × 2.1 mm, 1.9 µm). MS/MS detection was performed by thermo TSQ QUANTIVA
triple quadrupole mass spectrometer (Thermo Fischer Scientific) following UHPLC. Water,
methanol, and acetonitrile for HPLC were purchased from Fisher Scientific (Whitby, ON,
Canada) and formic acid (>95%), potassium carbonate, ammonium hydroxide (28–30%
NH3), and ammonium acetate (≥99.0%) were obtained from Sigma Aldrich (Oakville, ON,
Canada). More details are provided by Munoz et al. [60] and Roy-Lachapelle et al. [61].

4.3.3. Nutrient Analysis

Nitrogen, nitrite, nitrate, and ammonium nitrogen were analyzed by the colorimet-
ric technique based on EPA 350.1 and 353.2 standard methods [62,63]. Phosphorous and
phosphate were measured by the colorimetric technique based on EPA 365.1 and 365.3 meth-
ods [64]. TOC was analyzed by Sievers InnovOX Laboratory TOC analyzer (USA) based
on USEPA 415.1 method [65].

4.4. DNA Extraction and Metagenomics Preparation

The extraction of total nucleic acid from frozen filters was performed with the RNeasy
PowerWater Kit (Qiagen, Toronto, ON, USA) with slight modifications. To avoid formation
of disulfide bonds protein residuals, dithiothreitol (DTT) was spiked into the pre-warmed
(55 ◦C) PM1 buffer. Since substantial biomass remained on the surface of the membrane
after the bead-beating step, the filters were transferred alongside the supernatant and were
incubated with the IRS solution. Total nucleic acids were eluted with 60 µL of nuclease-free
water. Half of the sample was treated with RNase If (New England Biolabs, Whitby, ON)
to remove the RNA. The resulting DNA was purified using the Genomic DNA Clean
& Concentrator TM-10 (Zyimo Research Corporation, Irvine, CA, USA), following the
instructions of the manufacturer.

For the sludge samples, the RNeasy PowerSoil Total RNA Kit (Qiagen, Toronto, ON,
Canada) was used with two modifications to improve the recovery of DNA. The modifi-
cations consisted of (1) a centrifugation step for 5 min at 13,000 rpm at 4 ◦C to separate
the water from the sludge; and (2) incubation at −20 ◦C for 60 min after the addition
of solution SR4 to precipitate nucleic acids. DNA was eluted using the PowerSoil DNA
Elution Kit (Qiagen, Toronto, ON, Canada), following the instructions of the manufacturer.
DNA quantification was done by Qubit V2.0 fluorometer (Life Technologies, Burlington,
ON, Canada). The metagenomic libraries (Roche 454 FLX instrumentation with Titanium
chemistry) were sent to McGill University and Genome Quebec Innovation Centre for
sequencing. Ninety-six libraries were then pooled together and sequenced on a NovaSeq
6000 S4 with paired end of 150 bp and an insert of 360 bp.

Metagenomic analysis were performed on all RW, ST, and SST samples collected on
5 August and 5 September. Community dynamics was assessed using shotgun metage-
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nomics levels of phylum, order, genus and species. The number of reads for taxonomic
data was normalized by relative abundance.

4.5. Bioinformatics Analysis

DNA libraries were sequenced on the Illumina NovaSeq 6000 platform using S4 flow
cells. Paired-end raw reads of 150 base pairs (bp) were further analyzed using a home-
made bioinformatics pipeline. Firstly, quality trimming of raw reads was performed by the
SolexaQA v3.1.7.1 program with default settings [66]. Trimmed reads shorter than 75 nt
were removed for further analysis. Artificial duplicate removal was performed using an
in-house script based on the screening of identical leading 20 bp. From the trimmed high-
quality reads, gene fragments were predicted using FragGeneScan-Plus v3.0 [67]. Cd-hit
v4.8.1 was applied to cluster predicted protein fragments at a 90% similarity [68]. One
representative of each cluster was used for a similarity search on the M5nr database (https:
//github.com/MG-RAST/myM5NR) using the Diamond engine [69]. For assessment of
taxonomic affiliation of gene fragments encoding proteins, we took into account best hits
(minimal e-value of 1 × 10−5) combined with a last common ancestor approach.

4.6. Statistical Analysis

Statistical analysis was performed by R (3.6.2). Bacterial communities at the phylum,
order, and genus level were analyzed by phyloseq (1.28.0) [70]. Taxonomic data was
normalized by centered log-ratio transformation using easyCODA (0.31.1) [71]. Then,
the cyanobacteria species community was analyzed based on the first 25 most frequent
species by pheatmap (1.0.12) (https://CRAN.R-project.org/package=pheatmap). The
richness index was analyzed by phyloseq’s estimate_richness function. For visualization
of the species community and diversity variation, heat trees were illustrated using the
metacoder (0.3.3) [72]. Beta-diversity was performed by vegan package (2.5–6) (https:
//CRAN.R-project.org/package=vegan). Similarity matrices were calculated according to
Euclidean distance. A redundancy analysis (RDA) was performed to evaluate the impact
of constrained variables on sampling points at >95% significance. The homogeneity of
variances was validated before the model implementation. A model was defined by the
ordistep function [73] to illustrate the impact of nutrient parameters on the distribution of
cyanobacterial communities in the RW, ST, and SST at the order level. The Envfit function
was used to find similar scores and to scale the fitted vectors of variables based on the
correlations. The permutation test (>95% significance) was applied to select significant
variables.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
651/13/1/25/s1. Figure S1. Principal component analysis (PCA) of nutrient parameters’ impact
on (a) sampling dates, and (b) bacterial diversity (phylum-level) in raw water (RW) on 27 July, 15,
25, and 30 August, 1 and 5 September, and 27 October 2017. Only the significant parameters are
shown (p < 0.05). Figure S2. Relative abundance of the top 25 major abundant genera in RW. Samples
taken on 27 July, 15, 25, and 30 August, 1 and 5 September, and 27 October 2017. Figure S3. Relative
abundance of the top 25 major abundant genera in the sludge holding tank (ST) and sludge holding
tank supernatant (SST). Samples taken on 30 August and 5 September 2017. Figure S4. Evaluation of
the cyanobacterial diversity in raw water (RW) on 27 July, 15, 25, and 30 August, 1 and 5 September,
and 27 October 2017 using the Shannon index. Figure S5. Bacterial diversity in the raw water (RW) on
25 and 30 August and 5 September 2017, and in the sludge holding tank (ST) and sludge holding tank
supernatant (SST) on 30 August and 5 September 2017. Table S1. Concentration of nutrients in raw
water (RW), in the sludge holding tank (ST), and in sludge tank supernatant (SST) on 27 July, 15, 25,
and 30 August, 1 and 5 September, and 27 October 2017. Table S2. Concentrations of cell-bound and
dissolved microcystins (MCs) in the RW (raw water), sludge holding tank (ST), and sludge holding
tank supernatant (SST). Table S3. Water characteristics of the studied plant in Missisquoi Bay during
the sampling campaign from July to October 2017.
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