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Abstract. During early development, intracellular 
Ca 2+ mobilization is not only essential for fertilization, 
but has also been implicated during other meiotic and 
mitotic events, such as germinal vesicle breakdown 
(GVBD) and nuclear envelope breakdown (NEBD). In 
this study, the roles of intracellular and extracellular 
Ca 2+ were examined during meiotic maturation and re- 
initiation at parthenogenetic activation and during first 
mitosis in a single species using the same methodolo- 
gies. Cumulus-free metaphase II mouse oocytes imme- 
diately resumed anaphase upon the induction of a 
large, transient Ca 2+ elevation. This resumption of 
meiosis and associated events, such as cortical granule 
discharge, were not sensitive to extracellular Ca 2+ re- 
moval, but were blocked by intracellular Ca 2+ chela- 

tors. In contrast, meiosis I was dependent on external 
Ca2+; in its absence, the formation and function of the 
first meiotic spindle was delayed, the first polar body 
did not form and an interphase-like state was induced. 
GVBD was not dependent on external Ca 2+ and showed 
no associated Ca ~+ changes. NEBD at first mitosis in 
fertilized eggs, on the other hand, was frequently, but 
not always associated with a brief Ca 2+ transient and 
was dependent on Ca 2§ mobilization. We conclude that 
GVBD is Ca 2+ independent, but that the dependence of 
NEBD on Ca 2+ suggests regulation by more than one 
pathway. As cells develop from Ca2+-independent ger- 
minal vesicle oocytes to internal Ca 2§ pro- 
nuclear eggs, internal Ca 2§ pools increase by approxi- 
mately fourfold. 

T 
HE release of Ca 2+ from intracellular stores is a uni- 
versal stimulus of fertilization or parthenogenetic acti- 
vation (Steinhardt and Epel, 1974; Steinhardt et al., 

1974, 1977; Ridgway et al., 1977; Yoshimoto et al., 1986; 
reviewed by Jaffe, 1985) as well as the resumption of meiosis 
II (Masui et al., 1977; Cuthbertson et al., 1981; Kanfman, 
1983). Upon fertilization, Ca 2+ spreads across the egg as a 
wave in diverse deuterostome species (Giikey et al., 1978; 
Jaffe, 1983; Busa and Nuccitelli, 1985; Miyazaki et al., 
1986; Hafner et al., 1988; Hamaguchi and Hamaguchi, 
1990; Speksnljder et al., 1990) and is frequently followed 
by Ca 2+ oscillations (Cuthbertson and Cobbold, 1985; Miya- 
zaki, 1988; Speksnijder et al., 1989). Inositol triphosphate- 
dependent (Swarm and Whitaker, 1986) and independent 
(Rakow and Shen, 1990) pathways have been implicated to 
mediate the sperm-triggered Ca 2+ wave. Calmodulin and 
protein kinase C(PKC) 1 appear to be the relevant species- 
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specific targets of such Ca 2+ changes to mediate cortical 
granule exocytosis (Steinhardt and Alderton, 1982; Bement 
and Capco, 1989; Heinecke and Shapiro, 1990; Heinecke et 
al., 1990; Shapiro, 1991). In species where meiosis is reini- 
tiated at fertilization by the degradation of cytostatic factor 
(CSF) (Masui and Shibuya, 1987) or its active component, 
c-mos (Sagata et al., 1989), calpain H, the Ca2+-dependent 
protease (Watanabe et al., 1989), is the likely Ca2+-respo n- 
sive effector. Our understanding of the thresholds, kinetics, 
and sources of Ca 2+ at activation of metaphase II mammal- 
ian oocytes, however, comes from only a few studies OVhit- 
ring, ham and Siracusa, 1978; Cuthbertson et al., 1981; Co- 
lonna et al., 1989). 

Little is known about the role of Ca "+ during first meiosis 
and first polar body formation, in any species. It is known 
that Ca 2§ flux across the cell surface (Leibfried and First, 
1979; Paleos and Powers, 1981; Jagiello et al., 1982) and 
PKC activity (Bornslaeger et al., 1986) are important during 
first polar body formation in mammals, however, dependen- 
cies on Ca 2+ and potential Ca 2+ targets remain undeter- 
mined. 

Changes in the level of intracellular free Ca 2+ ion have 
also been strongly implicated to trigger the initiation of 
M phase (Whitaker and Patel, 1990). For example, nuclear 
envelope breakdown (NEBD) has been shown to be depen- 
dent upon Ca 2+ mobilization and frequently accompanied 
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by transient rises in Ca 2§ (Schuetz, 1975; Poenie et al., 
1985; Steinhardt and Alderton, 1988; Silver, 1989; Kao et 
al., 1990). Furthermore, a potential target for Ca 2+ at 
NEBD, the multifunctional Ca~§ kinase, has 
been identified in sea urchin embryos (Baitinger et al., 
1990). The subsequent events of mitosis, including anaphase 
onset and cytokinesis, also appear to be dependent upon 
Ca 2§ mobilization (Hepler and Callaham, 1987; Ratan et 
al., 1988; Hepler, 1989; Tombes and Borisy, 1989; Kao et 
al., 1990) and several potential Ca2+-binding targets, such 
as calrnodulin and calpain, associate with the spindle 
(reviewed by Whitaker and Patel, 1990). The onset of M 
phase, which is marked by the disassembly of the envelope 
of the meiotic nucleus (germinal vesicle breakdown [GVBD]) 
or the mitotic nucleus (NEBD), has been strongly associated 
with M phase promoting factor (MPF) (Nurse, 1990). MPF 
consists of at least two conserved components, one of which, 
p34 c~2 kinase, is a ubiquitous eukaryotic serine/threonine 
protein kinase (Nurse, 1990). NIMA, another serine/threo- 
nine kinase in Aspergillus nidulans, represents a pathway 
separate from cdc2 required to initiate mitosis (Osmani et 
al., 1991). No clear link has been reported among members 
of the p34 c~2 or NIMA pathways and Ca 2" at M phase 
(Luca and Ruderman, 1989; Picard et al., 1990). 

Initial reports that GVBD in invertebrates and amphibians 
was either induced by Ca ~§ (Moreau et al., 1978), accom- 
panied by a Ca z§ transient (Wasserman and Masui, 1975), 
or dependent on internal Ca 2§ mobilization (Masui et al., 
1977) have been succeeded by analyses suggesting that 
GVBD can be accompanied by Ca 2~ transients, but is not 
Ca z§ dependent (Picard and Doree, 1983; Witchel and 
Steinhardt, 1990). In mammalian oocytes, reports of the role 
of Ca 2" as a mediator or trigger of GVBD (Powers and 
Paleos, 1982; Jagiello et al., 1982; Tsafriri and Bar-ami, 
1978) conflict with reports of its Ca 2§ independence (Paleos 
and Powers, 1981). In fact, Ca 2§ has been implicated in 
GVBD suppression through protein kinase C (Bornslaeger et 
al., 1986). 

Our results indicate that parthenogenetic activation and 

NEBD in mouse eggs occur independently of external Ca 2+ 
and immediately upon the release of Ca:" from internal 
stores. In contrast, GVBD occurs completely independently 
of Ca 2+. Other aspects of oocyte maturation are dependent 
on the apparent influx of Ca 2+. Our results are presented 
with respect to our observed gradual filling of internal Ca z§ 
stores, which we interpret provides a mechanism to reduce 
the chances of precocious activation before nuclear matura- 
tion in the oocyte. 

Materials and Methods 

Collection of Oocytes and Developmental Assays 

Reagents were obtained from Sigma Chemical Co. (St Louis, MO), unless 
otherwise indicated. 

ICR mice (Sprague-Dawley, Indianapolis, IN) were used for this investi- 
gation. Cells were cultured in calcium-containing or caicium-free (CaCI2 
replaced with 1 mM EGTA) M-2 culture medium (Fulton and Whitting- 
ham, 1978) at 370C. Developmental stages examined in this study were 
assayed by differential interference contrast (DIC) microscopy of living 
oocytes, as shown in Fig. 1 with an approximate time line. 

Germinal vesicle stage (GV) oocytes were obtained by dissecting ovaries 
and physically removing cumulus cells in 0.l-raM dibutyryl cAMP 
(dbcAMP); GVBD occurred ,,,2-3 h after dbc, AMP removal (Wassarman 
et ai., 1976). A portion of GV oocytes was found to be sensitive to the ab- 
sence of external calcium in M-2 culture medium, as reported previously 
(Powers and Paieos, 1982; De Felici and Siracusa, 1982). These degener- 
ated oocytes, which could easily be identified with phase or DIC micros- 
copy, were physically removed from the population before subsequent ex- 
perimental analysis. They typically accounted for ",,50% of the population, 
but the variability was significant. Nonetheless, the surviving half of oo- 
cytes showed no visible abnormalities and underwent GVBD with normal 
kinetics. 

Oocytes in first meiosis were obtained by allowing GV oocytes to mature 
after dibutyryl cAMP (dbcAMP) withdrawai. Completion of meiosis I was 
assayed by first polar body formation, unless otherwise indicated, and oc- 
curred 6 h after GVBD. Subsequent maturation of the oocyte to metaphase 
II occurred within 5 h of meiosis I completion, where the oocyte arrested 
until fertilization/activation. 

Naturally arrested oocytes in metaphase 11 were collected from mice su- 
perovulated by 7.5 IU pregnant mare serum gonadotropin, followed 48 h 
later with 5.0 IU human chorionic gonadotropin (hCG). The completion of 
meiosis II (assayed by second polar body and female pronucleus formation 

Figure 1. Time line of developmental stages of mouse/oocytes eggs. DIC microscopy of living oocytes. Stages include: (.4) germinal vesicle 
(GV); (B) germinal vesicle breakdown (GVBD); (C) first meiotic spindle (MI); (D) first polar body (M2) and second meiotic spindle 
(invisible); (E) fertilized egg with male and female pronucleus and second polar body (PN); (F) pronuclear envelope breakdown (NEBD); 
(G) first cleavage (2-cell). Since maturing oocytes naturally arrest at M2, we set that time to 0. Events before 0 are those after dbcAMP 
removal, but are assigned negative values from M2, while events afterwards have positive values, starting with h after estimated fertilization. 
Times represent when 50% of the population reached the indicated stage. For parthenogenetic activation studies, haploid female pronuclear 
formation occurred 5 h after artificial stimulation; all other times are similarly adjusted by 7 h less. 
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and eventual cell division) was achieved with equal success using either 7% 
ethanol for 7 rain or 10 ~M ionorn~in for 15 rain (Kaufman, 1983). 
lonomycin, a nonfluorescent Ca2+-specific ionophore (Molecular Probes, 
Inc., Eugene, OR), was dissolved in DMSO at 5 mM and stored at -20"C. 
A single aliquot was always thawed and dihted just before addition to cells. 
Using BCECE a pH sensitive fluorescent compound, we ascertained that 
ionomycin specifically elevated Ca 2+, not H + (data not shown). 

To examine first mitosis, fertilized oocytes were flushed from oviducal 
ampullae beginning 24 h after hCG (Schatten et el., 1985). NEBD began 
28-30 h after hCG and cytokinesis was completed 2-3 h later. Statistically 
significant differences between values were determined at the 99% con- 
fidence level by two-tailed t tests. 

Oocytes stm:lied by immuno~luorescence microscopy were permeabilized 
and fixed in a microtubule-stabilizing buffer (schatten et al., 1985). Chro- 
mosomes were visualized with the DNA-specific compound: 4,6 diamidino- 
2-phenylindole (DAPD, at 2.5 t~g/ml, cortical granules were observed with 
fluorescently labeled lens culinaris agglutinin (Sigma Chemical Co., 
Ducibella et al., 1988) and microtubules were labeled by indirect im- 
munofluorescence with a rabbit anti-tubulin antibody, as described (Schat- 
ten et al., 1985). 

Introduction of Molecules and Fluorescence Imaging 

We used the fluorescent Ca 2+ probes fura-2 and fluo-3 and the nonfluores- 
cent calcium chelators EGTA, BAPTA (Molecular Probes, Inc.) and nitr-5 
(Calbiocbem Corp., La Jolla, CA) in both Ca2+-containing and Ca2+-free 
media. These probes were either injected as free acids or loaded into cells 
as their acetoxymethyl ester (AM) derivatives. Microinjection was as de- 
scribed (Simerly et al., 1990). Typically, AM dyes were dissolved in 2% 
Pluronic F-127 in 100% DMSO, then diluted 1000-fold into loading 
medium to final concentrations of I ~M indicator dye and 10 ~tM BAPTA. 
Final DMSO concentrations never exceeded 0.2%. Loading was typically 
for 1 h at 37"C followed by at least two washes of medium '~1-2 h before 
the developmental event of interest. The dye/chelator concentration eventu- 
ally selected was experimentally optimized (see Fig. 2). We found that all 
stages of oocytes loaded AM dyes equally well, that dyes were completely 
internalized since added extracellular MnCI2 could not rapidly quench 
fluorescence, but that some compartmentalization of dye occurred by the 
end of the experiment (<20%), as indicated by the average percentage of 
fluorescence persistence within a single oocyte or egg after 0.01% digitonin 
treatment (Tsien and Tsien, 1990). Compartmentalization of tetracarboxy- 
late organic anion Ca 2+ dyes into intracellular vesicles is common (Mal- 
garoli et al., 1987); we observed it to be equivalent at all developmental 
stages. We typically worked with these compounds under indirect room 
lights. 

The temperature was carefully maintained at 37"C with a thermocoupled 
hot air blower in a plexiglass enclosure which surrounded the entire stage 
and objective. Oocytes were imaged through coverslips mounted in dishes 
and overlaid with medium and mineral oil. Calciurn-EGTA solutions, 
buffered to different free Ca 2+ concentrations as described (Tombes and 
Boris),, 1989), were microinjected into oocytes when indicated. 

Fluorescent video imaging of living cells was performed using an in- 
tensified silicon intensified target video camera (ISIT) camera (model 66; 
Dage-MTI, Inc., Michigan City, IN) coupled to an inverted microscope 
(Nikon Diaphot, Nikon, Inc., Melville, NY) equipped with a UV-transmit- 
ring, 20x "Fluor," 0.75 numerical aperture, dry, phase-contrast objective. 
Images were acquired and quantitatively processed with "Image-l" image 
analysis software (Universal Imaging Corp., West Chester, PA) which con- 
trolled dual excitation/neutral density filter wheels (Eastern Scientific, 
Charlotte, NC). Illumination was at 340 and 380 nm fDr fura-2. Illumina- 
tion was typically attenuated 1,000-fold from a 75 W xenon power source 
for a total of 0.25 s (8 frames) per ratio half. Each half of the ratio pair 
was separated by 0.25 s. Images were acquired at various frequencies not 
exceeding one every 10 s. 

Images are presented as their calibrated internal Ca 2+ level, calculated 
as described (Tombes and Borisy, 1989) using a Ca 2+ dissociation constant 
of 225 nM for fura-2. Integrated and averaged Ca 2+ levels were calculated 
for each oocyte within an image frame as described (Florman et al., 1989) 
and plotted as averages versus time with standard deviations. Our calibra- 
tions routinely yielded 340:380 nm fura-2 fluorescent ratio values of 0.2 and 
5.0 for the unsaturated and saturated forms of fura-2, respectively. 

For NEBD, we pooled eggs from a single mother to improve synchrony 
and loaded them for 1 h, starting 2 h before we expected the first NEBD 
to occur. Imaging then continued through NEBD for several more hours. 
For GVBD, we loaded and then imaged oocytes before and after release 
from dbc.A MP. 
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Figure 2. Parthenogenetic ac- 
tivation of metaphase II oocytes 
is blocked by Ca2+-binding 
compounds in proportion to 
their Ca 2§ affinity. The per- 
centage parthenogenetic acti- 
vation or resumption of sec- 
ond meiosis (second polar body 
and pronuclei formation) in 
Ca2+-containing M2 culture 
medium of between 20 and 50 
oocytes at each data point was 

compiled from three separate trials. Activation was with either 7% 
ethanol or 10 ~M ionomycin and each compound was loaded at the 
specified #M concentration of its AM ester for 1 h at 370C. Re- 
ported Ca 2§ affinities are: BAPTA, 110 nM; nitr-5, 150 nM;fura-2, 
225 nM, and fluo-3, 400 nM. 

Resu l t s  

An examination of the role of Ca 2§ in mouse oocytes at the 
time of meiosis II reinitiation provided a reference point both 
experimentally and temporally for this entire study. The ki- 
netics of all developmental stages assayed in this study are 
shown in Fig. 1 relative to metaphase II (M2). Second meio- 
sis completion was induced by both parthenogenetic activa- 
tion and natural fertilization. Relative to natural fertilization, 
the kinetics of events subsequent to M2 were approximate 
and set by the time when mice were mated. Relative to the 
stimulus of parthenogenetic activation, the kinetics of events 
after activation were more accurate and occurred 7 h sooner. 
For example, pronuclear formation (PN) occurred at +5 h, 
NEBD occurred at + l l  h, and first cytokinesis (2-cell) at 
+15 h. Events before M2 are indicated in negative hours, rel- 
ative to the time that maturing oocytes reach M2. To obtain 
meiosis I (M1) oocytes, we isolated GV oocytes free from cu- 
mulus cells and al lowed G V B D  and subsequent  development  
to M2 arrest  to occur  spontaneously.  Our  results, l ike those 
of  other  investigators (Schroeder  and Eppig,  1984; Schroeder  
et al . ,  1988), indicate that these deve lopmenta l  events are not 
dependent  on at tached cumulus  ceils. 

Parthenogenetic Activation Is Blocked 
by Ca z§ Chelators 

It was important to select concentrations and loading times 
of (a) fluorescent dyes which gave a sufficient signal without 
inhibiting the cel lular  event  of  interest  and (b) nonfluorescent  
chelators  which  were  just  sufficient to achieve max imal  inhi- 
bition. We fixed loading t imes at 1 h and titrated the A M  es- 
ters of  the Ca 2§ indicators,  fura-2 and fluo-3, and the Ca 2. 
chelators,  BAPTA and nitr-5, on par thenogenet ic  activation 
of  cumulus  cel l-free oocytes  in ca lc ium-conta in ing  med ium 
(Fig. 2). Dye import  was uni form,  at least for fluo-3 and 
fura-2,  based on their  s imilar  ext inct ion coefficients and 
f luorescence intensity levels af ter  loading. All  of  these 
Ca2§ compounds  blocked activation, half-maximally 
at 3 (BAPTA),  5 (unphoto lyzed  nitr-5),  10 (fura-2),  and 
above (fluo-3) 20 ~tM. This  result  was consistent  with their 
relat ive Ca 2§ affinities: 110 (BAPTA),  150 (nitr-5, unphoto-  
lyzed),  225 (fura-2),  and 400 (fluo-3) nM,  as descr ibed 
(Grync iewicz  et a l . ,  1985; Kao et al . ,  1989). These  results 
suggested that the inhibi tory effect of  each of  these Ca~*-spe - 
cific compounds  was due to the chelat ion of  Ca  2§ and not a 
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result of a nonspecific side reaction associated with dye im- 
port and AM ester hydrolysis. These results also established 
working concentrations of 1 #M for fura-2/AM and 10/~M 
for BAPTA/AM. These concentrations were used in all other 
events examined in mouse oocytes/eggs in this study. 

Parthenogenetic Activation Mobilizes Ca z+ from 
Internal Stores 

To determine whether the Ca 2§ dependency at activation 
was associated with an elevation of Ca 2§ metaphase II oo- 
cytes were fura-2 AM loaded and ratiometrically imaged be- 
fore and after activation with 10 #M ionomycin. A selection 
of five of the resultant calibrated images of oocytes activated 
in Ca~+-containing and Ca~+-lacking medium are displayed 
as nM (10 -9 M) Ca 2+ versus time (Fig. 3 A). In both the 
presence and absence of external Ca 2., ionomycin elicited 
an elevation of internal Ca ~§ which peaked within a few 
minutes and then returned to preactivation levels. Within 
populations, each oocyte had slightly different Ca 2+ tran- 
sient kinetics, but between populations, the average time 
course was similar. Activation occurred in both populations 
of imaged oocytes at 80%, the standard activation rate with- 
out indicator or imaging, indicating that imaging itself was 
noninhibitory and that the activation stimulus was sufficient 
regardless of external Ca 2+. The transient behavior of 
ionomycin in the presence of external Ca 2§ was initially sur- 
prising, although it has been documented in single cells 
(Foskett and Melvin, 1989) and in populations (Albert and 
Tashjian, 1985) and may be because of both the instability 
of ionomycin and cellular mechanisms which compensate 
for increased Ca 2+. We observed a similar Ca 2+ amplitude 
when oocytes were activated with 7% ethanol in Ca 2+- 
containing medium (data not shown), although Ca 2+ re- 
mained elevated until ethanol was removed. 

The population-averaged, ionomycin-induced Ca 2§ tran- 
sient in the absence of external Ca ~§ subsided more rapidly 
and reached a lower amplitude than in the presence of exter- 
nal Ca ~+ (Fig. 3 B). The integrated Ca 2+ transient for oo- 
cytes activated in the absence of Ca ~§ was 46% of that 
which occurred in the presence of external Ca :§ Activation 

rates were similar in this experiment (80 vs 77%), indicating 
that less than half of the control level of Ca 2+ change was 
necessary to activate oocytes. When oocytes were first 
loaded with 10/~M BAPTA/AM, which was the minimum 
concentration of Ca 2§ chelator required to block activation 
(Fig. 2), and then imaged in the absence of external Ca 2+, 
the ionomycin-induced intracellular Ca 2+ rise was damp- 
ened to baseline levels, as shown in Fig. 3 B. Ooeytes 
microinjected with EGTA and fura-2, then activated with 
ethanol, also showed a negligible elevation of Ca 2§ and a 
complete block of activation (data not shown). 

To determine the temporal coupling between the Ca 2+ 
elevation and the onset of anaphase II, we fixed oocytes at 
various time points after activation in Ca2+-containing 
medium and stained their chromosomes with DAPI (Fig. 
3 D; DNA). Chromosomal patterns and/or the presence of 
nuclear envelopes observed in DIC allowed scoring oocytes 
as in either metaphase, anaphase, or interphase. The per- 
centage of cells in anaphase is shown on the same time scale 
in Fig. 3 C as the ionomycin-induced Ca 2+ transient in Fig. 
3 B. Both anaphase II and Ca 2§ peak simultaneously within 
3 min of addition of activating agent. The chromatin patterns 
of oocytes preactivation, 3 min and 1 h after activation are 
shown in Fig. 3 D. Cells which were blocked from activation 
by BAPTA/AM persist in the metaphase configuration even 
1 h after activation (Fig. 3 D). 

The release of cortical granules (CG), another Ca 2+- 
mediated activation event, was also examined during the 
same time course (Fig. 3 D). Cortical granule-free zones 
(Fig. 3 D, O' and CG) were observed near meiotic spindles 
and did not clump or decrease in density until at least 1 h 
after activation (Fig. 3 D, 1 h and CG), as reported 
(Ducibella et al., 1988). However, like chromatid separa- 
tion, the preactivation configuration of cortical granules was 
maintained in BAPTA/AM loaded oocytes (Fig. 3 D, 1 
h:BAPTA, and CG). 

The percentage of oocytes that activated (as judged by the 
formation of both a pronucleus and second polar body) under 
all conditions of Ca ~§ removal or chelation was averaged 
from all activations with either ionophore or ethanol (Fig. 
4 A). Control oocytes were activated in Ca 2+ and showed the 

bTgure 3. Ca 2+ ion elevation at activation is linked to anaphase II onset. (A) One time point before (-1') and four time points after (+ 1', 
+ 2', +5' and +8') activation with 10/~M ionomycin of two populations of oocytes, in Ca2+-containing and Ca2+-lacking medium are 
shown with times indicated in rain and Ca 2+ in aM, according to the scale bar. (B) The mean calibrated Ca 2+ ion concentration from the 
two populations of oocytes in A, plus a third population, are plotted at the indicated times before and after activation by 10 #M ionomycin 
at T = 0 rain (ionomycin was removed at T = 10 rain). The third population was loaded with both fura-2/AM (1/~M) and BAPTA/AM 
(10 #M) and then activated in Ca2+-free M2 culture medium. The legend shows the presence or absence of BAPTA loading and the pres- 
ence or absence of Ca 2+ in the activation medium. Activation occurred in 8/10 oocytes loaded with fura-2 alone and imaged in Ca 2+- 
containing medium, 10/13 oocytes loaded with fura-2 alone and imaged in Ca2§ medium, and 0/11 oocytes loaded with fura-2 and 
BAPTA and imaged in Ca2+-free medium. Standard error bars were omitted for clarity, since the variability could be as high as 30% of 
the signal as is apparent in images in A. (C) On the same time scale as in B, the percentage of oocytes in anaphase II, as determined 
by fixation and staining with DAPI, at various time points after activation with ionophore in Ca 2+-containing medium, is plotted. For each 
point, 10-20 oocytes were determined to be either in metaphase H, anaphase H, telophase II or interphase as shown below in D. (D) 
Control oocytes before activation ((Y) and 3 rain (3') and 1 h (/h) alter activation with ethanol in Ca2+-containing medium as well as a 
BAPTA-loaded oocyte 1 h after activation in Ca2+-free medium (/h: BAPTA) were fixed, photographed with DIC optics, and with fluores- 
cent DAPI staining to image chromatin (DNA) and fluoresce'm-lens culinaris agglutinin for cortical granules (CG). Notice the conical 
granule-free zone at 0' on the same side of the oocyte as the metaphase spindle. The 3' time point shows the immediate resumption of 
meiosis, without any noticeable change in cortical granule density or distribution photographed at a point on the opposite side from the 
spindle, where normally penetration is more likely and where there is not a cortical granule-free zone. Only after 1 h does the obvious 
change in cortical granules occur as the second polar body is being formed. Notice the similarity between DNA and cortical granule patterns 
between control (0 rain) and the BAPTA loaded oocyte even 1 h after ethanol treatment. 
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standard 80% activation rate (1 ) .  External Ca:* removal 
alone (D) did not significantly prevent any aspect of activa- 
tion. Internal Ca 2+ chelation alone (10/~M BAPTA/AM pre- 
loading) significantly inhibited activation, even in Ca2+-con - 
taining medium ([~). If  both internal Ca 2+ was chelated and 
external Ca :+ removed, activation was completely blocked. 
Two-tailed t tests confirmed that internal Ca :+ chelation, 
but not external Ca :§ removal alone, significantly blocked 
activation. 

Meiosis I is Dependent upon External Ca :§ 

In contrast to meiosis II, we found that external Ca :§ re- 
moval completely blocked formation of the first polar body, 
while internal Ca :§ chelation alone was only slightly inhib- 
itory (Fig. 4 B), as confirmed by two-tailed t tests. To exam- 
ine the specific locus of this external Ca 2~ dependency, we 
fixed oocytes and stained their chromosomes and microtu- 
bules (M'Is). Although first polar bodies had indeed not 
formed after incubations of GV oocytes in the absence of ex- 
ternal Ca 2+, oocytes were not prevented from proceeding 
through meiosis I (Fig. 5). Oocytes incubated in Ca2+-con - 
taining medium for 11 or 22 h after dbcAMP removal reach 
M2 (Fig. 5 A). In contrast, oocytes cultured without dbcAMP 
for 4 h and then switched to medium lacking external Ca 2§ 

for 7 h remained in meiosis I (Fig. 5 B). After 18 h without 
Ca :+, oocytes had decondensed their chromatin within two 
small clumps (Fig. 5 C). These clumps did not resemble pro- 
nuclei (Fig. 1). Although MTs persisted, the spindle did not. 
Because chromosomes had decondensed and the spindle had 
disassembled, we termed these oocytes "interphase-likeY 
These results suggested that external Ca :+ is important for 
first polar body formation, normal meiosis I kinetics, and for 
preserving the chromosome and spindle configuration which 
is normally maintained between M1 and M2. 

The inhibition of first polar body formation was reversible 
since oocytes, which still contained the first meiotic spin- 
dle after 7 h of incubation without Ca :§ (Fig. 5 B), could 
achieve M2 if returned to Ca2+-containing medium for an- 
other 11 h (Fig. 5 D). None of these oocytes had the inter- 
phase-like morphology found in oocytes that were kept in 
Ca2+-free medium for the additional 11 h. Once achieved, 
however, the interphase-like morphology could not be re- 
versed by returning Ca 2+ to the medium. 

Despite the apparent dependence of first polar body for- 
marion on external Ca 2., we observed no Ca 2. changes dur- 
ing the 4-5-h natural time course of meiosis I in over 20 
oocytes loaded with 1 pM fura-2 AM and imaged every 15 s 
in Ca:§ medium (data not shown). Meiotic ki- 
netics were normal during imaging and imaged oocytes de- 
veloped normally to arrest at metaphase II. 

= l O 0  

9 0  
o 8 0  
laJ 
:~ 7 0  

,, 60  
o 5 0  
z 
o_ 4 0  
p-  

3 0  
J 
o.. 2 0  
"5 

o 10  

0 
BAPTA:  - - + 

E x t e r n a l  Ca:  + + 

>- 

o l O 0  

,-,- 9 0  

0 

a_ 70 

5O 
t s .  

o 40 
z 30 
0 

7- 2O 
< 

-s 10 
o 0 

BAPTA:  - - + 
E x t e r n o t  Ca :  + + 

Figure 4. (.4) Completion of 
meiosis II is dependent on 
intracellular Ca 2+. The per- 
centage of oocytes induced 
to complete meiosis II (as as- 
sayed by second polar body 
and pronuclei formation) were 
averaged from three-five trials 
in which oocytes were treated 
by either ionomycin or ethanol 
as described in Materials and 
Methods. n indicates the num- 
ber of oocytes assayed under 
each condition and standard 
deviation error bars are shown. 
Where indicated, BAPTA/AM 
was loaded at 10 /zM and 
Ca:+-fr~ medium lacks calci- 
urn and contains 1 mM EGTA. 
The first bat shows control 
conditions: no BAPTA loading 
and normal (calcium-contain- 
ing) activation medium used. 
The second bar represents no 
BAPTA loading, but activa- 
tion in Ca:+-fre, medium. The 
third bar shows BAFI'A loaded 
oocytes in the presence of cal- 

cium and tim fourth bar is BAPTA loaded oocytes in the absence 
of external calcium. (B) ExtraceUular C# + removal blocks first 
polar body formation. Oocytes loaded with or without 10/~M 
BAPTA/AM and then allowed to prognms through meiosis I (as- 
sayed by first polar body formation) in the presence or absence of 
external calcium are displayed as in A. When used, BAPTA was 
loaded at least 3 h before first polar body formation (at least 2-4 h 
before the onset of meiosis I) and incubations were carried out over- 
night (at least 16 h) before assaying. Each data point represents an 
average of three trials and the indicated number of oocytes (n). 

G VBD  Is Not  Dependent on Ca 2+ 

Since our results suggested that oocytes during first meiosis 
were more sensitive to Ca 2+ deprivation than oocytes dur- 
ing second meiosis, we wanted to test this sensitivity at ear- 
lier meiotic stages, such as GVBD. Our interest in GVBD 
was also based on the reported role of Ca :+ during mouse 
and echinoderm oocyte GVBD (see introduction). We exam- 
ined oocytes undergoing GVBD for their dependence on 
Ca 2§ and their potential association with transient eleva- 
tions of Ca 2+. To assay for any natural transients at this de- 
velopmental stage, we loaded oocytes with fura-2 AM and 
imaged them both before and after the removal of dbcAMP. 
Of 20 oocytes monitored over the 4-h rime course after 
dbcAMP removal leading beyond GVBD, we observed no 
change in intracellular Ca :§ (Fig. 6). The baseline Ca :§ in 
these oocytes was around 100 nM, similar to that in eggs 
(Fig. 3), but did not change. 

With significantly large numbers of oocytes, we character- 
ized the dependence of GVBD on internal and external Ca :+ 
as we had for other meiotic events. Our results indicated that 
GVBD was not blocked by any of the Ca 2§ chelation condi- 
tions known to be effective in blocking first or second polar 
body formation (Fig. 7 A). 

To directly test whether Ca 2§ could stimulate GVBD, we 
treated GV oocytes arrested with dbcAMP with 10 ~M 
ionomycin in Ca :+-containing medium. Although these oo- 
cytes exhibited a transient rise in Ca :+ (data not shown), 
they did not undergo GVBD. These conditions did not inhibit 
GVBD, since 90% of these ionophore-stimulated oocytes un- 
derwent GVBD when dbcAMP was subsequently removed. 

N E B D  Is Depemtent  on Internal Ca :§ Stores and Is 
Frequently Associated with a Cw "~ Transient 

Existing evidence strongly suggests that Ca 2§ transients exist 
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Figure 5. External calcium deprivation has pleiotropic effects on microtubule and chromatin configurations in meiosis I oocytes. Oocytes 
were incubated starting 4 h after GVBD (just before meiosis I spindle formation) for the indicated times in the indicated mediums and 
were fixed as described in methods and stained with DAPI (DNA) and an anti-tubulin antibody (MT). (A) Control oocytes showing normal 
metaphase II spindle microtubule and DNA patterns after 7 h of incubation in Ca2+ocontaining medium. An 18-h incubation sho~xi the 
same pattern. The first polar body is partially out of focus and additional masses of DNA are residual cumulus cells. (B) Oocytes incubated 
in the absence of Ca 2+ for 7 h show a normal, but delayed first meiotic spindle; no first polar body had formed. (C) Oocytes incubated 
in the absence of Ca 2+ for 18 h show two immature nuclei and the absence of a well-defined second meiotic spindle. The peripheral DNA 
mass is residual cumulus cells. The immunoreactive tubulin staining structure located at the site of the aborted first polar body is a spindle 
remnant (compare to tubulin staining structure in completed first polar body in Fig. 7 D ). (D) Oocytes incubated in the absence of Ca 2+ 
for 7 h as in B, were then returned to Ca2+-containing medium for the last 11 h. Note the completion of the first polar body and arrest 
of the oocyte at metaphase of second meiosis. 

Figure 6. GVBD is not associated with transient elevations of Ca 2+. Four representative oocytes monitored around the time of GVBD 
showed no changes in Ca 2+. Although oocytes were monitored from the time of dbeAMP removal, time zero is arbitrary here. GVBD 
occurred as indicated for each oocyte. 
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Figure 7. (,4) GVBD is not de- 
pendent on external or internal 
Ca 2+, Oocytes at the germinal 
vesicle stage were removed 
from dbcAMP blockage in the 
presence or absence of exter- 
nal calcium without loading 
or after loading with 10 #M 
BAPTA/AM and scored for 
GVBD. The first bar shows 
control conditions: no BAPTA 
loading, oocytes developed in 
standard (calcium-containing) 
medium. Second bar shows 
GVBD is not dependent on ex- 
ternal calcium. The third and 
fourth bars indicate that GWBD 
occurs in oocytes loaded with 
BAPTA/AM and then allowed 
to develop in the presence or 
absence of external calcium. 
Results were obtained from 
three trials and the number (n) 
of oocytes tested under each 
condition. (B) NEBD is de- 
pendent on internal, not ex- 

ternal Ca 2+ stores. Fertilized eggswere placed in the presence or 
absence of external calcium, sometimes after loading with 10 #M 
BAPTA/AM and scored for NEBD. The first bar shows control con- 
ditions: no BAPTA loading before eggs developed in standard (cal- 
cium-containing) medium. The second bar shows NEBD in the ab- 
sence of calcium. The third and fourth bars indicate the percentage 
NEBD in eggs loaded with BAPTA/AM and then allowed to develop 
in the presence or absence of external calcium. Results were ob- 
tained from three trials and the total number (n) of eggs assayed 
under each condition. 

and may trigger mitotic M phase (NEBD; see introduction). 
Unlike GVBD, but like activation, NEBD in pronucleate 
eggs was dependent on Ca 2+ (Fig. 7 B). Simply removing 
extracelinlar Ca 2§ neither blocked NEBD nor any other mi- 
totic event, including anaphase and c-),tokinesis (D). Intra- 
cellular Ca 2+ chelation alone with BAPTA/AM partially in- 
hibited NEBD ([]). Significant inhibition, as judged by 
two-tailed t tests, was achieved only when eggs were loaded 
with BAPTA/AM and then developed in the absence of extra- 
cellular Ca 2+ ([]). 

To determine whether fertilized mouse eggs entering mi- 
tosis exhibited Ca 2+ transients at NEBD, we loaded eggs 
with 1 #M fura-2 AM just before we expected the first eggs 
of a population to undergo NEBD after natural fertilization. 
Imaging conditions were identical to other stages and in 
many eggs we observed single Ca 2§ transients, from a base- 
line of 100 + 40 nM to 250 :k 90 nM, with half-maximal 
widths of •1 rain, just preceding NEBD. From three trials, 
eight of 19 eggs imaged rapidly enough to detect such transi- 
ents exhibited them. Such rapid imaging was noninhibitory; 
no aspect of mitosis was delayed by imaging. Three such 
eggs exhibiting transients are shown in color (representing 
nM Ca 2§ in hours after imaging had begun (Fig. 8). The 
single, rapid Ca 2+ transient occurred within 5 rain before 
NEBD and appeared to be global in nature. By averaging and 
plotting Ca 2+ in the three eggs shown in color versus time, 

the quantitative variability in amplitude is more evident. No- 
tice that in each egg the kinetics of the transient are similar 
and there is a slight overshoot when Ca 2+ returns to base- 
line. No Ca 2§ transients were detected during mitotic spin- 
die formation, chromatid separation, or cleavage. 

To further examine the role of Ca 2§ at NEBD, we tested 
whether an ionomycin-induced Ca 2+ transient was sufficient 
to precociously induce NEBD in late G2 fertilized eggs. Be- 
cause of the natural asynchrony in the timing of fertilization, 
we attempted to induce NEBD in populations of eggs where 
at least 10% had already undergone NEBD naturally and in 
which we expected at least an additional 30% to undergo 
NEBD in the next hour. Our population size was large 
enough that we would expect to statistically distinguish pre- 
cocious from normal NEBD. Ionomycin induced a rapid, 
transient increase in Ca 2+ which exceeded in amplitude and 
duration that observed naturally at NEBD (data not shown). 
However, in 37 eggs treated in two trials, we never induced 
NEBD, precociously, even when we repeated the ionomycin 
stimulus after 30 min. Nevertheless, all of the eggs eventu- 
ally underwent NEBD at a normal pace, indicating that the 
ionomycin-induced Ca 2+ transients were not inhibitory. 

We also tried to precociously trigger NEBD by microin- 
jecting Ca2§ solutions. We injected late 
pronucleate eggs, in a population which had begun to un- 
dergo NEBD, with Ca2+-EGTA solutions set to 1.3 and 25 
#M Ca ~§ but did not see an increase in the rate of NEBD. 
These microinjections did not prevent NEBD, like BAPTA 
or EGTA alone, and all treated eggs eventually underwent 
NEBD within the expected time. We conclude that internal 
Ca 2+ mobilization is necessary for NEBD, although we can- 
not conclude that Ca e+ transients are necessary or even 
sufficient to trigger NEBD, despite their compelling tem- 
poral association. 

Maturation of  Ca ~+ Stores during Meiotic Maturation 

We investigated whether the difference between the external 
Ca 2§ dependence of first and second meiosis was related to 
different levels of internally stored Ca 2~ during oocyte 
maturation. As in Fig. 3, we estimated the level of internal 
Ca 2+ by integrating the Ca 2+ peak induced by ionomycin in 
the absence of external Ca 2+, averaged from at least six oo- 
cytes. Fig. 9 shows these results for oocytes at the GV, MI, 
MII arrested and fertilized pronucleated egg stages, using the 
time scale of Fig. 1. There was a fourfold increase in inter- 
nally stored Ca 2+ from GV to PN, with the greatest in- 
crease occurring between MI and MH, in parallel to the shift 
in Ca2§ dependencies. This was because of an in- 
crease in both the amplitude and duration of the average tran- 
sient at each stage. 

Discussion 

Ca 2+-dependent events shift from a reliance on external to 
internal sources as intracellular Ca 2+ stores mature during 
mouse oocyte development. We find that: (a) during meiosis 
II, internal Ca 2+ release in metaphase N-arrested oocytes is 
necessary and sufficient to immediately stimulate the onset 
of anaphase II and eventually activate the release of cortical 
granules; (b) during meiosis I, spindle formation is delayed, 
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Figure 8. First mitotic NEBD is frequently coupled to a Ca 2+ transient. Calibrated Ca 2§ images from three eggs (A-C) undergoing NEBD 
(times are indicated in fractions of hrs after imaging had begun). Scale represents nM free Ca ~§ ion. Ca 2+ increases were global in nature. 
Egg B was at the edge of a field of view. The Ca 2+ signal was averaged over the entirety of the three eggs and plotted here on the same 
time scale. In these eggs, NEBD occurred within 5 min of the Ca 2+ transient, as marked. Cytokinesis occurred approximately 1 h after 
NEBD and both it and anaphase, whose timing was not precisely determined, were not associated with a detectable transient. 
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Figure 9. Kinetics of intracellttlar Ca :+ store maturation. Oocytes 
and eggs obtained at germinal vesicle (GV), meiosis I (M/), meta- 
phase II (bill), and pronucleate (PN) stages were loaded with 1 #M 
fura-2 and stimulated by 10 t~M ionomyein in medium lacking cal- 
cium. The Ca 2+ transients in each oocyte were determined, aver- 
aged, plotted with time, and integrated. The integrated value is 
plotted here as the percentage of the maximum value (obtained at 
the PN stage) versus its developmental stage, with times indicated 
as in Fig. 1. 

first polar body formation is prevented, and oocytes escape 
from M phase as a result of the removal of external Ca2+; 

(c) NEBD is frequently associated with Ca 2§ transients and 
is dependent on Ca 2§ mobilization, but GVBD is not; and 
(d) between GVBD and metaphase II arrest, internal Ca :+ 
stores increase fourfold. 

Delayed Internal CW § Store Maturation May Reduce 
the Risk of  Precocious Activation 

The maturation of mammalian oocytes to metaphase II, 
where they become competent for fertilization, has been as- 
sociated with several specific events. The ability of meta- 
phase II oocytes to be parthenogenetically activated increases 
dramatically as soon as, but not before, oocytes reach meta- 
phase H (Whittingham and Siracusa, 1978; Kubiak, 1989). 
The ability of cortical granules to undergo exocytosis during 
oocyte maturation is acquired around metaphase I and pro- 
gressively increases with the time of maturation (Ducibella 
et al., 1988). Oocytes from juvenile mice, induced to mature 
in vitro, are incapable of proceeding past metaphase I, even 
though spindle chromatin and MTs appear normal (Wickra- 
masinghe et al., 1991). The development of internal Ca :+ 
stores can be added to this list; it may be a necessary condi- 
tion for the acquisition of activation and cortical granule 
firing potential. The full development of internal Ca 2+ 
stores does not occur until oocytes reach metaphase II. The 
regulated build up of internal Ca :+ stores may provide some 
reproductive advantage by reducing the chances of preco- 
cious activation before nuclear maturation due to premature 
Ca 2+ release. Such spontaneous activation occurs in aged 
metaphase II oocytes (Whittingham and Siracusa, 1978) 
possibly as a result of the increased risk of spontaneous 
Ca 2+ release from mature stores. 

Ca2§ Events at Parthenogenetic Activation 
Are Not Necessarily Immediate 

In mammalian and amphibian oocytes arrested at metaphase 

II, the destruction of cytostatic factor (CSF) is thought to be 
triggered by Ca 2§ to immediately induce the resumption of 
meiosis II (Masui and Shibuya, 1987). We demonstrate that 
anaphase II onset in the mouse oocyte is also strictly tem- 
porally coupled to a large Ca 2§ transient and is dependent 
on Ca 2+ mobilization. The normal amplitude and duration 
of the Ca :+ transient is significantly greater than the thresh- 
old required for activation for two reasons. First, internal 
Ca :§ which can fully drive activation, supplies only half of 
the Ca 2+ provided when external Ca 2§ also contributes to 
the transient. Second, anaphase II initiates before the Ca :+ 
transient has begun to subside. This immediate activation of 
chromatid separation is a clear example of an event which 
is rightly coupled to the Ca :§ transient. In contrast, other 
Ca2*-dependent events reported in this study, such as corti- 
cal granule ex(g3aosis and polar body formation, show no 
temporal coupling to cytoplasmic increases in Ca:% 

The lack of temporal coupling of mouse CG discharge to 
the Ca 2+ rise, in this system, may be surprising considering 
the instantaneous Ca:+-induced firing of CGs at fertilization 
in invertebrates like the sea urchin (Heinecke and Shapiro, 
1990). However, the relatively slow (at least 15 min) kinetics 
of CG firing in mouse oocytes, as reported here and by others 
(Fukuda and Chang, 1978; Ducibella et al., 1988; Colonna 
et ai., 1989), may reflect other functions. In mammals, 
where fertilization is internal and polyspermy is not a poten- 
tially great problem, partial CG exocytosis may occur during 
meiosis I to generate CG-free zones to regulate the site of 
sperm penetration (Ducibella et al., 1988), while complete 
CG exocytosis after activation may protect the embryo. 
Nonetheless, the changes in CGs accompanying activation of 
the mouse oocyte are blocked by chelators of internal Ca :+ 
and are not affected by external Ca 2+ removal. This timing 
is consistent with the extracellular Ca:+-independent modi- 
fications of zona pellucida proteins (Kurasawa et al., 1989) 
and the proposed role of PKC in mouse CG firing (Colonna 
et al., 1989). 

First Meiosis has Pleiotropic Dependencies on CW § 

Our results confirm previous reports that first polar body for- 
marion is dependent on external Ca 2§ in cumulus-free mam- 
malian oocytes CLeibfried and First, 1979; Paleos and 
Powers, 1981; Jagiello et al., 1982). We extend those studies 
to show that, although first polar body formation is prevented 
by the absence of external Ca 2+, first meiotic spindle forma- 
tion is not, although it is delayed. Ultimately, oocytes incu- 
bated in the absence of external Ca 2+ exit meiosis, perhaps 
after chromosome pair separation, but still without polar 
body formation. Inhibitors of PKC also allow chromosome 
pair separation, but block first polar body formation, sug- 
gesting that part of this Ca 2+ dependency may be mediated 
by PKC (Bornslaeger et al., 1986). First polar body forma- 
tion is another Ca2§ event which shows no asso- 
ciated transient Ca 2+ elevation. Such cell surface events m~ay 
have Ca 2§ flux cortically restricted, away from detection by 
cytoplasmic dyes. We expect that second polar body forma- 
tion is also dependent on Ca 2§ but that it acquires Ca 2§ 
from internal sources, which are mature at that point. Those 
Ca:* stores may also be cortically restricted, thus preclud- 
ing the detection of associated cytoplasmic Ca 2§ elevations. 

In addition, as now concluded for mitotic anaphase in 
many systems (Hepler, 1989; Tombes and Borisy, 1989), 
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first meiotic anaphase in the mouse oocyte as well as first mi- 
totic anaphase in the mouse egg is not accompanied by a de- 
tectable Ca 2+ transient. The lack of associated transients 
does not signal a Ca2+-independent event. The delay in first 
meiosis observed in the absence of Ca 2+ may reflect a de- 
pendence of chromosome movement on Ca 2+ mobilization. 

The most striking effect of culturing first meiotic oocytes 
in the absence of external Ca 2+ was that oocytes did not 
simply arrest at some point during meiosis I or take longer 
than usual to reach the normal arrest point of metaphase II. 
Rather, oocytes exited M phase and achieved an interphase- 
like state. Normally, there is no interphase between meiosis 
I and II in the mouse oocyte, as defined by the reformation 
of nuclei; interphase occurs after meiosis II. In this case, the 
interphaseqike configuration could have been reached before 
or after segregation of chromosome pairs, although it ap- 
peared to occur after segregation, since two "nuclei ~ were 
visible. This interphase-like state could also have been 
achieved after meiosis II, since oocytes naturally arrested at 
metaphase II have been reported to activate and form 
pronuclei by long-term incubation in Ca2+-free medium 
(Whittingham and Siracusa, 1978). Interestingly, a similar 
interphase-like state is induced when either Xenopus (Jessus 
et al., 1991) or mouse (Rime et al., 1989) oocytes are treated 
with agents which inhibit protein phosphorylation. By assay- 
ing molecular markers of M phase, such as lamin and histone 
HI phosphorylation, it should be possible to determine to 
what molecular degree Ca 2§ removal causes oocytes to exit 
M phase. 

Ca 2§ Transient Heterogeneity at NEBD Implies that 
Transients Are Dispensable 

The temporal association of Ca 2+ transients, when they oc- 
cur, with NEBD suggests a causal role of Ca 2§ in nuclear 
envelope disassembly. The sensitivity of NEBD to chelator 
inhibition supports this reasoning. However, some eggs un- 
dergo NEBD without any apparent Ca 2+ transient, indicat- 
ing that even though Ca 2+ mobilization is required, a detect- 
able transient may not be. 

The possibility that Ca 2+ can be mobilized, i.e., trans- 
ferred from a source to a target, without the appearance of 
a visible transient, has been discussed (Kao et al., 1990; 
Tsien and Tsien, 1990). Our results support the conclusion 
that the apparent absence of transients is not because of tech- 
nical limitations in our ability to detect them. Although there 
was significant variation in the amplitude of transients, 
which nonetheless was at least 10-fold higher than our esti- 
mated threshold for detection, there was not variability in 
their kinetics. Had w[ sampled the wrong focal plane, we 
would still have expected to detect transients of the same du- 
ration, but smaller amplitude. Transients were global in na- 
ture, indicating little, if any spatial limitations on detection. 
We found two equally populated subgroups of eggs undergo- 
ing NEBD simultaneously, one which exhibited Ca 2+ tran- 
sients at NEBD and the other which did not. In addition, 
global elevations of Ca 2+ alone induced at time points near 
natural NEBD are insufficient to trigger NEBD preco- 
ciously. 

How then can Ca 2+ transients at NEBD be explained? 
The appearance of a Ca 2+ transient requires that a source 
release Ca 2+ into the cytoplasm and that it diffuse to and be 
bound by the indicator dye faster than a target binds it or a 

sink sequesters it. If sources and targets are juxtaposed, it 
would be possible for a Ca 2+ transfer to occur from source 
to target without any significant increase in cytoplasmic 
Ca 2+. Useful indicators such as fura-2 have lower affinities 
for Ca 2+ and are used at lower concentrations than useful 
chelators such as BAPTA. Consequently, it is possible for a 
chelator to effectively compete with the natural target for 
released Ca 2+ under conditions where no detectable indica- 
tor signal would be produced. 

Ca 2§ Dependence at NEBD Implies Multiple Essential 
Regulatory Pathways 

The observation of Ca 2+ transients prompts the question of 
how transients and the mobilization of Ca 2+ integrate with 
other regulatory pathways believed to trigger NEBD, such as 
MPF. A relevant Ca 2+ target exists in the Ca 2+ calmodulin- 
dependent protein kinase, whose activity can be triggered by 
a brief transient and which appears to be essential for NEBD 
(Baitinger et al., 1990). From extensive work, NEBD has 
also been shown to be induced by the phosphorylation of nu- 
clear lamins, which is accomplished by p34 c~2, the cata- 
lytic subunit of MPE and other kinases (Nurse, 1990). No 
definitive relationships have been identified between Ca 2+ 
and MPF (p34~d~2). 

Perhaps both Ca 2+ transfer and MPF activation, but not 
Ca 2+ transients, are necessary, but not independently suf- 
ficient to trigger NEBD. This model requires that the timing 
of these two necessary events relative to each other is not 
precisely determined, but that they are interregulated by feed- 
forward and feedback mechanisms. I fMPF activation occurs 
first, then when Ca 2+ is released, NEBD is immediately trig- 
gered and feeds back to shut off Ca 2+ release rapidly before 
it is manifest in the form of a transient cytoplasmic elevation, 
but after Ca 2+ has bound to its target. On the other hand, if 
MPF is not fully active when Ca 2+ channels are opened, 
Ca 2+ activates its target and cytoplasmic Ca 2+ levels rise and 
register as a transient until MPF becomes fully active to trig- 
ger NEBD and feedback to close channels. Whichever path- 
way is fully activated first, it should also stimulate the activa- 
tion of the second pathway. 

Such a link between Ca 2+ and MPF may be represented 
by results obtained in starfish oocytes, where a peptide mod- 
eled on the conserved "PSTAIR" domain of p34 ~2 stimu- 
lates internal Ca 2§ release, without any associated effect on 
p34 ~dc2 kinase activity (Picard et al., 1990). If full activa- 
tion of MPF is related to a conformational change in p34 ~2 
to expose the PSTAIR domain, then this could represent a 
feedforward mechanism from MPF to Ca 2+. 

Such a multipathway model also has support from Asper- 
gillus nidulans, where Nima and edc2, both encoding pro- 
tein kinases, represent independent, yet essential pathways to 
initiate mitosis (Osmani et al., 1991). Feedforward mecha- 
nisms between these two essential kinases are implied by ex- 
periments where premature mitosis is induced by the hyper- 
activation or overexpression of just one of the kinases at a 
time (Russell and Nurse, 1987; Osmani et al,, 1988). 

GVBD Does Not Depend on Ca 2§ 

Unlike NEBD, GVBD showed neither transients nor a re- 
quirement for Ca 2+ mobilization. This was surprising, since 
the fundamental properties and dynamics of nuclear enve- 
lopes are believed to be conserved between meiosis and mi- 
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tosis (Stick, 1987). However, the same conclusion, that 
GVBD is not dependent on Ca ~§ has been reached in the 
starfish oocyte (Witchel and Steinhardt, 1990). More strictly 
interpreted, although the results with mouse and starfish oo- 
cytes are not consistent with a role for Ca e§ transfer at the 
time of GVBD, they do not exclude the possibility of a 
Ca2+-dependent event well upstream (>2 h in the mouse) of 
GVBD. The rapidly expanding analyses of cell cycle control 
indicate the possibility of dissimilarities in the protein kinase 
components of meiotic and mitotic MPF (Nurse, 1990). Ad- 
ditional studies of protein kinase and Ca ~§ targets may help 
resolve differences in the Ca 2§ dependencies between NEBD 
and GVBD. Clearly, the interaction between Ca 2+ transfer 
and MPF activation at many M phase loci is an area demand- 
ing further examination. 
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Note Added in Proof. D. Kline and J. T. Kline corroborate our findings 
by showing that BAPTA blocks cortical granule exocytosis and mouse egg 
activation, and that natural fertilization is associated with a large transient 
elevation of Ca 2+ (Kline, D., and J. T. Kline. 1992. Dev. Biol. 149: 
80-89. 
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