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Nucleic acid testing (NAT) designate any molecular approach used for the detection,
identification, and characterization of pathogenic microorganisms, enabling the rapid,
specific, and sensitive diagnostic of infectious diseases, such as tuberculosis. These
assays have been widely used since the 90s of the last century in human clinical
laboratories and, subsequently, also in veterinary diagnostics. Most NAT strategies
are based in the polymerase chain reaction (PCR) and its several enhancements and
variations. From the conventional PCR, real-time PCR and its combinations, isothermal
DNA amplification, to the nanotechnologies, here we review how the NAT assays have
been applied to decipher if and which member of the Mycobacterium tuberculosis
complex is present in a clinical sample. Recent advances in DNA sequencing also
brought new challenges and have made possible to generate rapidly and at a low cost,
large amounts of sequence data. This revolution with the high-throughput sequencing
(HTS) technologies makes whole genome sequencing (WGS) and metagenomics the
trendiest NAT strategies, today. The ranking of NAT techniques in the field of clinical
diagnostics is rising, and we provide a SWOT (Strengths, Weaknesses, Opportunities,
and Threats) analysis with our view of the use of molecular diagnostics for detecting
tuberculosis in veterinary laboratories, notwithstanding the gold standard being still the
classical culture of the agent. The complementary use of both classical and molecular
diagnostics approaches is recommended to speed the diagnostic, enabling a fast decision
by competent authorities and rapid tackling of the disease.
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TUBERCULOSIS AND THE MYCOBACTERIUM
TUBERCULOSIS COMPLEX
Tuberculosis is an epidemic and serious infectious disease of
global proportions, responsible for the death of one to two mil-
lion people per year (WHO, 2011). The disease also affects wild
and domestic animals, particularly livestock. Bovine tuberculosis
is a zoonosis with high socio-economic impacts due to the low
productivity of affected cattle, to the imposed restrictions on ani-
mal trade and products thereof, and due to the costs associated
with the implementation of control and eradication programs
(Schiller et al., 2011). This disease also raises important pub-
lic health concerns, particularly in developing countries, where
the main routes of transmission to humans are the contact with
infected animals and ingestion of unpasteurized dairy products
(Kubica et al., 2003; Etter et al., 2006; Rua-Domenech, 2006;
Rodríguez et al., 2009; Michel et al., 2010; Pérez-Lago et al., 2013;
Torres-Gonzalez et al., 2013). Nevertheless, there is some evidence

of possible person-to-person transmission of the disease (Evans
et al., 2007; Sunder et al., 2009). In most developed countries,
bovine tuberculosis has been tackled during the last decades by
costly eradication programs. However, the eradication of the dis-
ease has been hampered in many countries by the presence of wild
animals which act as reservoirs of disease, among which are the
European badger (Meles meles), the possum (Trichosurus vulpec-
ula), the bison (Bison bison), the African buffalo (Syncerus caffer),
the white-tailed deer (Odocoileus virginianus) and the wild boar
(Sus scrofa) (Santos et al., 2010; Maas et al., 2013; Hardstaff et al.,
2014).

Tuberculosis is caused by members of the Mycobacterium
tuberculosis complex (MTC), a group of closely-related species
including: M. tuberculosis (the predominant cause of human
tuberculosis); “M. canettii” (a very rare MTC biotype);
M. africanum (mainly associated to human tuberculosis in
Africa); M. pinnipedii (the cause of endemic tuberculosis in
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several seal species); M. microti (with bank voles and other small
rodents as natural hosts, rarely identified from other mammals);
M. mungi (associated to tuberculosis in banded mongooses in
Botswana); M. orygis (a recently described and less known rare
species, with oryxes, waterbucks, and gazelles as potential hosts
in Africa, and bovines and rhesus monkeys in South Asia); and
M. bovis and M. caprae (the worldwide predominant cause of
bovine and goat tuberculosis, respectively, but also causing dis-
ease in a wide range of domestic and wild animals, including
humans) (Huard et al., 2006; Smith et al., 2009; Alexander et al.,
2010; van Ingen et al., 2012; Broughan et al., 2013; Rodriguez-
Campos et al., 2014). Although a rare event, infection with
M. tuberculosis may occur in animals living in close contact with
humans, such as pets, pigs, cattle and captive animals (Erwin
et al., 2004; Amado et al., 2006; Schmidt et al., 2008; Mohamed
et al., 2009; Botelho et al., 2014; Rodriguez-Campos et al., 2014).
Although the differences in their epidemiology, namely geo-
graphic distribution and host preferences, virulence traits and
antimicrobial susceptibility patterns (Brosch et al., 2000), MTC
species share more than 99.9% genomic sequence homology, with
very low levels of genetic diversity at the nucleotide level, and
present identical 16S ribosomal gene sequences (Sreevatsan et al.,
1997; Mostowy et al., 2005). The genome of these species has a
size of approximately 4.4 million base pairs, which reflects the
complexity of their life cycles as facultative intracellular parasites,
and contains a higher GC content of about 65%. The exchange
of genetic material by horizontal gene transfer (HGT) events is
apparently very rare among these species, which results in their
mainly clonal evolution (Coros et al., 2008). However, recent
whole-genome based studies have suggested that HGT may not be
as rare as previously thought in MTC (Veyrier et al., 2009; Supply
et al., 2013; Wang and Behr, 2014). The ancestor of all tuber-
cle bacilli probably underwent major events of genetic exchange
with unrelated environmental bacteria, which might have con-
tributed to the evolution of those species (Gutierrez et al., 2005;
Becq et al., 2007; Jang et al., 2008; Veyrier et al., 2011; Namouchi
et al., 2012). Remarkable, some genomic islands were found to
contain genes with putative or documented virulence functions,
notably the Rv0986–8 operon, probably acquired from a gamma-
proteobacterial species and involved in the host cell parasitism
(Rosas-Magallanes et al., 2006; Becq et al., 2007; Jang et al., 2008).
The lack of more abundant HGT events among the MTC mem-
bers may be a consequence of the organisms’ solitary lifestyles
within their hosts, preventing their contact with other bacterial
species (Gutierrez et al., 2005; Smith et al., 2006; Jang et al.,
2008).

The designation of the different members of the MTC as dis-
tinct formal species is somewhat controversial and challenges the
usual concept of bacterial species, given the very reduced genome
sequence diversity and the absence of major phenotypic differ-
ences within the complex. Indeed, these mycobacteria may be dif-
ferentiated in species, subspecies or even host-adapted ecotypes
depending on the strict taxonomical criteria used for interpre-
tation (Rodriguez-Campos et al., 2014). Nevertheless, although
genetically very similar, MTC members can be distinguished by
stable molecular differences, such as single nucleotide (SNPs) and
large sequence (LSPs) polymorphisms, whose analysis have been

the basis of several evolutionary studies about these mycobacte-
ria (Brosch et al., 2002; Mostowy et al., 2002, 2005). Comparative
genomic analysis evidenced that modern MTC species probably
evolved from a common ancestor through the accumulation of
sequential and irreversible genomic deletions, named Regions of
Difference (RDs), which has been important in generating genetic
diversity within these closely related mycobacteria (Mahairas
et al., 1996; Brosch et al., 1998, 2002; Behr et al., 1999; Gordon
et al., 1999; Mostowy et al., 2002). The pattern of the presence or
absence of these RDs in the genome of MTC members provides a
molecular signature that can discriminate among these mycobac-
teria (Brosch et al., 2002; Mostowy et al., 2002; Huard et al., 2006;
van Ingen et al., 2012). Other molecular markers, such as dele-
tions of spacer sequences of the Direct Repeat (DR) locus and
specific SNPs corroborate this discrimination among MTC mem-
bers (Gutacker et al., 2002; Baker et al., 2004; Gutierrez et al.,
2005; Huard et al., 2006; Smith et al., 2006; Alland et al., 2007).
MTC members harboring animals as their main hosts share the
absence of RD9 (present in M. tuberculosis) and other common
features such as the deletion of specific DR spacers and common
SNPs (Smith et al., 2006, 2009).

CONVENTIONAL APPROACHES FOR THE CONFIRMATION OF
TUBERCULOSIS IN ANIMALS
In cattle, symptoms of tuberculosis often manifest later, so the
clinical diagnosis is rare, especially in the course of control and
eradication plans. In most developed countries, eradication plans
of bovine tuberculosis mostly involve the culling of reactor ani-
mals and the laboratory testing of suspect tissue samples for the
definitive confirmation of the presence of MTC, particularly of
M. bovis. The screening of tuberculosis in live animals depends
on immunological assays such as the single intradermal com-
parative cervical tuberculin (SICCT) and the interferon-gamma
(IFN-γ) tests, which are based on the detection of cell-mediated
immune responses. SICCT test is based in an observed delayed
hypersensitivity reaction after an intradermal injection of bovine
and avian tuberculin in animals. When tuberculin is injected into
an animal whose immune system has been sensitized by infec-
tion with M. bovis, or by exposure to cross-reacting antigens, it
triggers an inflammatory response and swelling at the injection
site (Rua-Domenech et al., 2006). However, the sensitivity of this
test is moderate with estimates typically in the range 50–60%.
The IFN-γ test is an enzyme immunoassay based on the evalu-
ation of cytokine released by lymphocytes previously sensitized
with tuberculin and is generally used as a complement of the
SICCT test (Gormley et al., 2006). The IFN-γ test is generally
accepted to have a higher sensitivity than the SICCT test but does
not have a sufficiently high specificity to allow its use as a gen-
eral screening tool. Antibodies in measurable quantities are only
produced in later stages of the disease (Neill et al., 2001; Pollock
and Neill, 2002) and, consequently, diagnostic methods based on
the humoral response usually yield low sensitivities (Pollock et al.,
2005). Nevertheless, these tests may be of value in identifying ani-
mals with more advanced disease and therefore more likely to be
infectious.

The detection of MTC bacteria in animal tissues is mainly
based in lengthy and cumbersome conventional methods,
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involving the examination of Ziehl-Neelsen stained smears,
histopathology, and culture in selective media, followed by bio-
chemical or molecular identification of typical mycobacteria
colonies. The microscopic observation of acid-fast mycobacteria
is non-specific and highly insensitive, particularly in the case of
paucibacillary forms of tuberculosis. Culture remains the gold-
standard method to confirm tuberculosis infection but requires
several weeks to obtain positive results due to the extremely
fastidious growth of tuberculous mycobacteria. A variety of dif-
ferent media has been developed for the cultivation of mycobac-
teria including egg-based media (e.g., Stonebrink’s medium
and Löwenstein–Jensen with added pyruvate), agar-based media
eventually enriched with serum or blood (e.g., Middlebrook
7H10 and 7H11), and liquid media (e.g., Middlebrook 7H9)
(Gormley et al., 2014). The introduction of automatic radiomet-
ric (e.g., BACTEC 460) and fluorometric (e.g., BACTEC 9000MB
or MGIT 960) equipments contributed to shorten the culture
time (Drobniewski et al., 2003; Hines et al., 2006). Culture has
a high specificity but is not particularly sensitive, especially when
using lymph node samples without observable lesions, even when
animals are positive for SICCT or IFN-γ tests (Pollock and Neill,
2002; Rua-Domenech et al., 2006). The results of culture assays
may be also affected by several factors, such as the decontamina-
tion procedures of samples, which can also have a harmful effect
on mycobacteria, as well as the growth media and incubation
conditions used and the constrained distribution of mycobac-
teria in tissues (Corner, 1994; Corner et al., 2012; Gormley
et al., 2014). Moreover, conventional laboratory diagnosis does
not routinely discriminate between the species of the MTC. In
most circumstances, phenotypic and biochemical assays able to
discriminate MTC members, such as the assessment of oxy-
gen requirements, niacin accumulation, nitrate reductase activity,
resistance to pyrazinamide or use of glycerol and pyruvate by
the MTC strains (Wayne and Kubica, 1986; Grange et al., 1996)
are slow, may yield ambiguous results and may be limited by a
degree of technical complexity that rule out its implementation
in routine diagnostics (Niemann et al., 2000).

NUCLEIC ACID TESTING OF VETERINARY-RELEVANT MTC
BACTERIA
The field of molecular diagnostics met tremendous technologi-
cal developments in the last two decades, and several strategies
and applications have been described to identify and characterize
MTC mycobacteria cultures and to directly detect these organisms
from a wide variety of matrices, including animal tissues. The first
molecular diagnostic methods have emerged in the 70s of the last
century, when DNA probes labeled with radioactive isotopes were
used to detect complementary DNA. These methods have evolved
after the introduction of restriction enzymes, used to cleave the
microbial genomes. The resulting fragments were then separated
by gel electrophoresis, transferred to a membrane and subjected
to hybridization with labeled DNA probes in a procedure known
as Southern blotting in tribute to the original inventor of the
technique (Southern, 1975). Over time, the hybridization proce-
dures were improved, including the labeling of DNA probes with
reporter molecules safer and easier to use, such as biotin or digox-
igenin (Langer et al., 1981), allowing a colorimetric detection of

hybridization results, or with fluorescein and other luminescent
molecules (chemiluminescent reaction). Several applications are
described in the literature where the direct hybridization with
DNA probes allowed the identification of cultured M. bovis and
other MTC members (Picken et al., 1988; Thierry et al., 1992;
Cousins et al., 1993; Fisanotti et al., 1997). However, despite the
high specificity, the applications based on direct hybridization
were never really adopted in the routine clinical diagnosis of ani-
mal tuberculosis, since they are very labor intensive, costly, slow
and insensitive.

The introduction of in vitro nucleic acids amplification tech-
nologies enabled the development of new tools for the rapid,
sensitive, and specific detection and identification of pathogenic
microorganisms, including tuberculous mycobacteria. The most
commonly used technology is based on the polymerase chain
reaction (PCR), introduced in the mid-80s of last century (Saiki
et al., 1985, 1988). The first applications of PCR for the detec-
tion and identification of veterinary-relevant MTC members were
published soon after (Cousins et al., 1991; Plikaytis et al., 1991;
Wards et al., 1995). The real-time PCR was introduced in the
mid-90s of last century (Heid et al., 1996; Williams, 2009) and was
a very significant advancement in PCR technology that greatly
contributed to a wider use of molecular diagnostics technolo-
gies. Real-time PCR also allows quantifying the numbers of copies
of the template DNA initially present in a sample. Although the
significant advances in the development of novel molecular diag-
nostic assays toward a faster and accurate detection of MTC in
human samples, only a few assays have been described for detect-
ing these agents directly in animal tissues, particularly in fresh
tissues from livestock (Coetsier et al., 2000; Roring et al., 2000;
Taylor et al., 2001, 2007; Parra et al., 2008; Costa et al., 2013a;
Araújo et al., 2014). Most of these molecular approaches are PCR-
based and target specific polymorphisms, insertion sequences,
particularly the IS6110, and RDs in the genome of MTC mem-
bers (Liébana et al., 1995; Wards et al., 1995; Miller et al., 1997;
Niemann et al., 2000; Taylor et al., 2001, 2007; Pounder et al.,
2010; Thacker et al., 2011; Reddington et al., 2012). A higher
number of PCR-based applications were described for the iden-
tification of MTC members using DNA extracted from cultures
as template. Approaches such as the analysis of SNPs of the gyrB
gene, and of other genes, or the assessment of the structure of
variable DRs or of LSPs in the genome of MTC members have
been described that effectively discriminate between these species
(Niemann et al., 2000; Parsons et al., 2002; Huard et al., 2003;
Djelouadji et al., 2008; Pinsky and Banaei, 2008; Halse et al.,
2011). Several RDs-targeted assays have been proposed for MTC
species discrimination, usually involving standard PCR reactions
and analysis of products by gel electrophoresis (Warren et al.,
2006; Chen et al., 2007; Allix-Béguec et al., 2010), real-time
PCR using intercalating fluorescent dyes and melting curve anal-
ysis (Pinsky and Banaei, 2008; Pounder et al., 2010) and, to a
lesser extent, dual labeled hydrolysis probes (Halse et al., 2011;
Reddington et al., 2011, 2012; Costa et al., 2014a,b).

In the context of molecular microbiological diagnostics, the
DNA fragments amplified by PCR, or by any other nucleic acid
amplification technology, can also be analyzed by hybridiza-
tion with DNA probes immobilized on solid supports (reverse
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hybridization) such as nylon or nitrocellulose membranes. The
reverse hybridization technology enables the detection of multi-
ple genomic targets in a single test, a format commonly referred
to as macroarray in which different probes are immobilized in
specific positions of membranes as dots (dot blots) or lines (line
blots). The target DNAs are labeled during its amplification,
for example using biotinylated primers, and the occurrence of
hybridization with their complementary probes is signalized by
an enzymatic step yielding a colorimetric or chemiluminescent
signal. Several systems based on this format have been described
for the detection, identification and even typing (e.g., spoligo-
typing) of veterinary-relevant MTC members and commercial
diagnostic systems are also available (Padilla et al., 2003, 2004;
Duarte et al., 2008).

MAJOR CHALLENGES OF TUBERCULOSIS NUCLEIC ACID
TESTING
It is widely recognized that the analytical sensitivity of
amplification-based nucleic acid testing is extremely high, often
allowing the detection of single copies of the target nucleic acids in
the reaction mixture. However, the performance of these methods
is many times unsatisfactory when used for the direct detec-
tion of pathogen’s nucleic acids directly in samples, yielding false
negative results. A problem still largely unsolved concerns the
processes of extraction and purification of nucleic acids from bio-
logical samples, particularly from tissues. Indeed, most of the
amplification-based assays described for detecting MTC nucleic
acids directly in fresh or formalin-fixed paraffin-embedded ani-
mal tissues only yield a moderate sensitivity, usually up to 75%
when compared to the reference bacteriological culture, par-
ticularly when testing tissues without the characteristic lesions
(Liébana et al., 1995; Coetsier et al., 2000; Roring et al., 2000;
Taylor et al., 2001, 2007; Parra et al., 2008; Thacker et al., 2011).
This limitation is mostly related to the increased complexity
for disrupting and recovering genomic DNA from the tough
mycobacterial cells, which harbor complex walls, and to the inef-
ficiency of the extraction procedures from affected animal tissues,
especially those exhibiting strong fibrosis, calcification, and with
no histological evidence of acid-fast bacteria (Liébana et al., 1995;
Taylor et al., 2007; Amaro et al., 2008; Parra et al., 2008; Costa
et al., 2013a; Radomski et al., 2013). The presence of amplifica-
tion inhibitors in crude tissue extracts, and of large amounts of
co-extracted host eukaryotic DNA, often represent an additional
problem. Target mycobacteria are located within phagosomes,
within a host cell and within a granuloma, making DNA extrac-
tion from these organisms more challenging (Radomski et al.,
2013). The availability of efficient, simple to use and affordable
mycobacterial nucleic acids extraction processes adapted to diffi-
cult biological matrices, such as animal tissues, is still an unmet
need that has hindered a more widespread routine use of molecu-
lar methods for the detection of MTC members in the veterinary
microbiology laboratory (Cunha and Inácio, 2014).

Important in the context of developing nucleic acid testing
assays for tuberculosis is also the availability of adequate gold
standard diagnostics methods to validate and assess the perfor-
mance of those assays (Cunha and Inácio, 2014). The culture
of tissue samples for the isolation of MTC members, followed

by molecular or biochemical identification procedures, is usu-
ally the gold-standard method to validate alternative diagnostic
assays. However, it is widely known that bacteriological culture
is slow and laborious and can yield ambiguous or false-negative
results, e.g., due to the presence of non-viable mycobacteria,
raising concerns about its effectiveness as comparison reference
method (Liébana et al., 1995; Santos et al., 2010; Costa et al.,
2013a). As mentioned above, the results of culture assays may be
affected by several factors, including the constrained distribution
of mycobacteria in affected tissues (Corner et al., 2012; Gormley
et al., 2014).

RE-EMERGING STRATEGIES TO UNCOVER
ANIMAL-RELEVANT MTC MEMBERS
An option that has been explored to enhance the sensitivity of
PCR techniques for detecting MTC bacteria directly from bio-
logical samples involves the implementation of more effective
mycobacterial DNA extraction and purification methods. For
example, Taylor and colleagues were able to increase the M. bovis
detection sensitivity by PCR in bovine tissues, with visible lesions,
from 70 to 91%, after the inclusion of an additional cell disrup-
tive step of freeze-thaw cycles with liquid nitrogen in the DNA
extraction process (Taylor et al., 2007). Mechanical disruption
using bead-beating approaches was also shown to be more effec-
tive for the recovery of mycobacterial DNA from tissues (Amaro
et al., 2008; Radomski et al., 2013). The use of sequence capture
or immunomagnetic separation (IMS) approaches was also pre-
viously proposed for recovering higher yields of mycobacterial
DNA, particularly of M. bovis, from samples such as tissues, soil
and feces (Roring et al., 2000; Taylor et al., 2001; Sweeney et al.,
2006, 2007; Parra et al., 2008; Garbaccio and Cataldi, 2010), with
different degrees of success. Noteworthy, IMS strategies specifi-
cally targeting M. bovis were very recently described by Stewart
et al. (2013), allowing great sensitivity improvements for the cul-
ture and molecular detection of this mycobacterium from tissue
specimens. IMS is a physical cell separation technique able to
selectively capture and concentrate MTC bacteria from complex
matrices using magnetic beads coated with specific polyclonal
or monoclonal antibodies or other binders (Stewart et al., 2013;
Grant and Stewart, 2014). After the nucleic acid extraction from
the concentrated whole cells, captured on the magnetic beads,
genomic targets such as the MTC-specific IS6110 can be analyzed
by PCR or other molecular techniques (Stewart et al., 2013; Grant
and Stewart, 2014). Nevertheless, albeit promising, these DNA
extraction approaches involve additional experimental steps and
complexity, and usually require more expensive equipments and
consumables, which currently limit their wider use for the routine
laboratorial diagnosis of animal tuberculosis.

An established PCR-based strategy to increase the detection
sensitivity thresholds of low-copy number DNA targets is the
nested PCR, although this higher sensitivity needs to be balanced
against the associated increased risk of cross contamination of
samples. Thus, the use of nested PCR approaches, as for any
diagnostics techniques, requires very strict good practice stan-
dard conditions for molecular analysis and an effective quality
assurance and control (Costa et al., 2013a, 2014b; Kozlovac and
Schmitt, 2014; Saunders and Sharp, 2014). Previous studies found
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no significant improvements in the detection of MTC members
in animal tissue samples when using nested PCR assays, includ-
ing with real-time PCR formats (Wards et al., 1995; Taylor et al.,
2007; Thacker et al., 2011). However, it is widely know that the
performance of PCR detection systems is highly dependent on
the efficiency of the primers and probes, even when using the
same genomic targets such as the MTC-specific IS6110 element
(Savelkoul et al., 2006). Recently published studies, including
from our group, highlighted the usefulness of re-emerging nested
PCR strategies, including a real time PCR format, for a more
sensitive detection of MTC genomic targets directly in animal
tissue extracts (Costa et al., 2013a, 2014b; Araújo et al., 2014).
Costa and colleagues optimized an IS6110-targeted nested real
time PCR approach allowing the direct detection of MTC mem-
bers in animal tissue specimens, particularly from bovine, with
very high sensitivity, specificity and positive and negative predic-
tive values (Costa et al., 2013a). The inclusion of a first step of
conventional IS6110-targeted PCR amplification, whose product
is then used as template for a second Taqman®-based real time
PCR, allowed to increase the sensitivity of the detection assay to
near 100% (using culture as gold-standard). The duplex use of a
β-actin gene targeted probe, with complementary targets in most
mammals, allowed the assessment of amplification inhibitors in
the tissue samples. Other recently published study by Araújo and
colleagues described a similar nested real time PCR approach tar-
geting the TbD1 region of M. bovis in bovine and bubaline tissue
homogenates (Araújo et al., 2014). The TbD1 region appears to
be present exclusively in the genomes of M. bovis, M. africanum,
“M. canettii” and in ancestral strains of M. tuberculosis (Brosch
et al., 2002), the last three taxa being very infrequently or not
associated at all with infection in animals.

The discrimination between MTC members is important
for an accurate diagnosis and epidemiological assessment of
mycobacterial disease. In the last two decades, the accumulat-
ing knowledge of the nucleotide sequences of several genes, and
of the whole genomes, of these species has allowed the devel-
opment of novel molecular assays for their identification. As
mentioned earlier in this review, the pattern of the presence or
absence of specific RDs in the genome of MTC members provides
a highly specific molecular signature that can accurately discrimi-
nate among these species. Furthermore, targeting LSPs instead of
SNPs (e.g., in gyrB and other genes) to discriminate between MTC
members may allow the development of more robust PCR-based
assays for use in the routine diagnostics framework of veteri-
nary laboratories. PCR-based detection assays targeting SNPs are
more difficult to optimize and may be less robust, requiring a
much more strict control of the experimental conditions to main-
tain the specificity. Several strategies targeting specific RDs were
recently described for the identification of MTC members, also
by our group, that focused mainly in the species of the com-
plex most commonly associated with tuberculosis in livestock and
other animals (Costa et al., 2014a,b). A two-step identification
strategy was thus developed, comprising two sequential TaqMan-
based multiplex real-time PCR reactions. The first step allows the
identification as MTC, by targeting the IS6110 element, or as a
mycobacterial species, if only a 16S rDNA product is detected in
the duplex amplification reaction. If a MTC member is identified,

the subsequent RDs-targeted triplex real time PCR allow the iden-
tification to the species level as M. bovis, M. bovis BCG, M. caprae
or M. tuberculosis, according to their distinct patterns of presence
or absence of RD1, RD4 and RD9 loci. This assay is faster and
simpler than other SNPs-targeted restriction analysis or reverse
line probe hybridization-based molecular assays, since it bypasses
any post-amplification experimental steps.

FUTURE PROSPECTS FOR THE MTC NUCLEIC ACID TESTING
Nucleic acid testing assays for pathogens detection and identifica-
tion are still mostly “in house” optimized in veterinary diagnosis
laboratories, usually demanding highly qualified personnel and
sophisticated and expensive facilities, equipment and consum-
ables (Cunha and Inácio, 2014). Therefore, it is necessary that
these technologies become simpler, standardized, and affordable
to make them effectively and widely used in routine clinical labo-
ratories, including in low-resource laboratories and in the devel-
oping world where animal and human tuberculosis is still a huge
scourge. Isothermal nucleic acids amplification processes, such
as Loop-Mediated Isothermal Amplification (LAMP) (Notomi
et al., 2000), could facilitate the integration of nucleic acid testing
strategies into bench molecular diagnostics kits independent of
the utilization of sophisticated equipments (Niemz et al., 2011).
The high potential of LAMP for the development of improved
nucleic acid detection strategies fully justifies the increasing num-
ber of reports on its utilization, including for the detection of
M. tuberculosis in sputum (Iwamoto et al., 2003; Boehme et al.,
2007; Pandey et al., 2008; Aryan et al., 2010, 2013; Geojith et al.,
2011; Zhang et al., 2011; Yuan et al., 2014). LAMP relies upon
an auto-cycling strand displacement DNA synthesis and is more
tolerant to the presence of inhibitory substances such as blood,
serum, plasma or heparin (Notomi et al., 2000). The reaction
runs very rapidly in the presence of template nucleic acids and
deoxynucleoside triphosphates, at a constant temperature (usu-
ally between 60 and 65◦C), and provides high amplification
efficiency with a detection limit and specificity comparable to
those of standard PCR. The detection of amplified products by
electrophoresis is not practical outside the laboratory but dispos-
able generic strips for the lateral flow detection of nucleic acids,
although still very expensive, are already commercially available
(Chowdry et al., 2014). These chromatographic strips can detect
biotin-labeled DNA fragments hybridized with complementary
FITC-labeled probes. FITC is detected in the strips by the for-
mation of complexes with gold-conjugated anti-FITC antibodies.
Our group is exploring the integration of LAMP with these
chromatographic strips for detecting veterinary-relevant MTC
members, particularly M. bovis, by targeting specific RD elements,
aiming the development of novel equipment-free molecular diag-
nostic kits for bovine tuberculosis (Costa et al., unpublished).

Other technological fields experiencing great developments are
microfluidics and nanotechnology (Granberg et al., 2014; Teles
and Fonseca, 2014). The procedures required for the molecular
detection of pathogens in biological samples, including nucleic
acids extraction and detection of specific genomic targets can
all be conceptually integrated into miniaturized microfluidic sys-
tems, enabling the development of promising molecular diagnos-
tics devices commonly referred to as Lab-on-a-Chip (Granberg
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et al., 2014; Teles and Fonseca, 2014). Particularly interesting have
been the internationally significant research efforts invested in
the development of a next generation of low-cost microfluidic
paper-based analytical devices (Martinez et al., 2007, 2010; Vella
et al., 2012; Rozand, 2014), also known as paperfluidics or Lab-
on-Paper (Costa et al., 2013b). These devices are based on the
definition of microchannels and test zones on hydrophilic paper
via the patterning of walls of hydrophobic polymers, photoresist,
or wax. Movement of fluids within channels is by capillarity and
thus independent multi-analyte assays can be conducted that do
not require use of pipettes, pumps, or electric energy. Multiple
detection zones for different target compounds are created by
deposition of reagents such as enzymes and antibodies on the
paper surface (Martinez et al., 2010). When the sample reaches
the detection zone, a reaction occurs and a color is developed.
Assays for detecting total proteins, cholesterol, and glucose in
fluids have been demonstrated and more specific biorecognition
assays usually involve antibody-antigen interactions (Martinez
et al., 2010; Vella et al., 2012; Costa et al., 2013b). We and other
groups are trying to adapt paperfluidics platforms for the devel-
opment of nucleic acid testing assays (Araújo et al., 2012; Veigas
et al., 2012; Costa et al., 2013b), a major largely unsolved prob-
lem being the efficiency of immobilization processes of nucleic
acid probes on the cellulosic paper matrices. In this context, very
recently, Rosa and colleagues described a novel methodology to
capture labeled-DNA strands and hybrids on paper, using MTC
nucleic acid templates as model, via the anchoring of antibodies
with a fusion protein that combines a carbohydrate binding mod-
ule (CBM), with high affinity to cellulose, and the ZZ fragment
of the staphyloccocal protein A, which recognizes IgG antibodies
via their Fc portion (Rosa et al., 2014). Antibodies immobilized
on paper matrices via CBM-ZZ were able to capture appropri-
ately labeled (biotin, fluorescein) DNA strands and DNA hybrids.
The efficiency of the capture of labeled-DNA by this strategy was
significantly higher when compared with a physical adsorption
method, which constitutes an important step toward the devel-
opment of affordable paperfluidics-based molecular diagnostic
tests.

Nanotechnologies have also sparked interest in the develop-
ment of new diagnostic tests and biosensors, including nucleic
acid testing strategies, taking advantage of the unique properties
that many materials exhibit at the nanoscale (Teles and Fonseca,
2014). Gold-nanoparticles, in particular, are already used fre-
quently in research for the molecular diagnostics of MTC bacteria
(Liandris et al., 2009; Costa et al., 2010, 2013b; Veigas et al., 2012).
In an example, gold nanoparticles conjugated with oligonu-
cleotide probes (gold-nanoprobes) allow the colorimetric detec-
tion of complementary DNA targets (Baptista et al., 2008). In
solution, monodisperse gold-nanoprobes appear red and exhibit
a Surface Plasmon Resonance (SPR) band around 520 nm. In con-
trast, a solution containing aggregated gold-nanoprobes appears
blue, corresponding to a characteristic shift in the SPR band to
higher wavelengths. The presence of complementary DNA targets
prevents aggregation of the gold-nanoprobes and the solution
remains red; non-complementary targets do not prevent gold-
nanoprobe aggregation resulting in a visible color change to
blue. This gold-nanoprobe non-cross-linking method has been

applied for the colorimetric identification of M. bovis and other
MTC mycobacteria, for example based in the detection of their
PCR-amplified gyrB genes (Costa et al., 2010).

Finally, over the last years, advanced high-throughput
sequencing technologies, and associated bioinformatics, have
generated massive amounts of sequence information, also for rel-
evant viral, parasitic and bacterial animal pathogens (Cantacessi
et al., 2014; Van Borm et al., 2014), with the possibility to gen-
erate highly redundant genome or metagenomic sequences for
just a few tens or hundreds of dollars (Joseph and Read, 2010;
Köser et al., 2012). In this context, there are tens or even hun-
dreds of genome sequences currently available for an increasing
number of individual microbial pathogenic species, with a partic-
ular focus for MTC members such as M. tuberculosis and M. bovis
(Roetzer et al., 2013; Coll et al., 2014). The analysis of SNPs and
other genetic polymorphisms information derived from Whole
Genome Sequencing (WGS) studies is allowing to uncover the
natural variation of MTC populations and the relation of these
pathogens with their hosts, including virulence, drug susceptibil-
ity and immune modulator determinants relevant to the clinical
manifestations of disease (Ford et al., 2012; Coll et al., 2014).
With the rapid decrease in DNA sequencing costs, it is foreseen
that WGS and metagenomics technologies will play an increas-
ing role in clinical microbiology laboratories, particularly for
molecular epidemiology studies (for surveillance and outbreak
investigation) and genotypic antimicrobial susceptibility testing,
with a focus for fastidious microorganisms such as MTC species
(Biek et al., 2012; Köser et al., 2012; Roetzer et al., 2013). High
throughput sequencing technologies and metagenomics may be
also useful for detecting novel pathogens, or variants of known
pathogens, that leads to false negative results using the stan-
dard diagnostic tests (Köser et al., 2012). In the coming years we
will continue to experience tremendous developments in high-
throughput sequencing technologies that will shape the design of
novel diagnostics and disease intervention strategies, including in
the veterinary field (Cantacessi et al., 2014; Van Borm et al., 2014).

SWOT ANALYSIS FOR MTC NUCLEIC ACID TESTING IN
VETERINARY LABORATORIES
Despite the great advantages normally associated with nucleic
acid testing technologies, for example in terms of specificity,
sensitivity and speed of response, veterinary laboratories face
several challenges in the implementation and use of these meth-
ods (Cunha and Inácio, 2014). In Table 1 we disclose a self-
explanatory SWOT analysis summarizing our view on the current
most relevant Strengths, Weaknesses, Opportunities, and Threats
associated to the use of nucleic acid testing strategies to uncover
MTC members in veterinary diagnosis laboratories.

CONCLUSIONS
Nucleic acid testing will be increasingly used in the vet-
erinary context. Identification of MTC cultures is relatively
straightforward when using nucleic acid testing approaches
but the molecular detection of these organisms directly in
tissue specimens remains extremely challenging. A problem
still largely unsolved concerns the processes of extraction and
purification of mycobacterial nucleic acids from biological
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Table 1 | SWOT analysis for MTC nucleic acid testing in veterinary laboratories.

Strengths Weaknesses

• Overall higher diagnostic specificities and sensitivities
• High discriminatory power
• Short time-to-result
• High sample throughput
• Multiplexing capability
• Possibility to target antimicrobial resistance and virulence associated

genes or polymorphisms
• Possibility to quantify target nucleic acids in samples
• Wide range of public databases and bioinformatics tools available for

analysis of molecular data

• Requirement for more expensive facilities, reagents and consumables
• Requirement for more technically complex procedures
• Potential for the occurrence of false positives due to contamination by

target nucleic acids
• Potential for the occurrence of false negatives due to difficulties in

extracting and purifying MTC nucleic acids from tissues
• Nucleic acid testing does not usually differentiate between viable and

nonviable mycobacteria

Opportunities Threats

• Growing demand for diagnostic tests for food-producing animals
• Demand for “point-of-care” diagnostic tests
• Educational efforts to disseminate nucleic acid testing
• Automation of nucleic acid tests
• Demand for more efficient DNA extraction and purification assays
• Microfluidics and nanotechnologies are becoming more mature for

developing alternative nucleic acid tests
• Next generation sequencing and the “population genomics era”
• Increasing amounts of genetic information available from public databases
• Less strict regulations in the veterinary sector can facilitate a more rapid

adoption of new diagnostic technologies

• Pressure to keep a low price per analysis in the veterinary sector
• Lack of harmonization of nucleic acid testing between different

laboratories
• Conservatism of medical personnel and technicians in the adoption and

use of new diagnostics technologies
• Difficulty in finding good gold standard diagnostic methods to validate

novel nucleic acid tests

matrices. Noteworthy, the use of re-emerging nested PCR strate-
gies may prove useful for detecting M. bovis and other MTC
members in animal tissue specimens. Isothermal DNA amplifi-
cation technologies, microfluidics and nanotechnology may also
soon provide the basis for more efficient and widespread low-
cost diagnostic devices targeting MTC organisms. Next gener-
ation sequencing and high-throughput metagenomics are fore-
casted to greatly shape our future understanding about microbial
pathogens and will contribute for designing enhanced diagnostics
and intervention strategies. Yet, we do not anticipate the complete
replacement of culture-based diagnostics, which is also subject to
improvements, by nucleic acid testing technologies. On the con-
trary, the real added value of molecular diagnostics will be in their
complementarily use with conventional microbiological tests,
allowing the collection and analysis of multivariate phenotypic
and genotypic characteristics of pathogenic microorganisms.
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