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Background: Developing inhibitors is a rare event during the treatment of hemophilia A. The 

multifacets and uncertainty surrounding the development of inhibitors further complicate the 

process of estimating inhibitor rate from the limited data. Bayesian statistical modeling provides 

a useful tool in generating, enhancing, and exploring the evidence through incorporating all 

the available information.

Methods: We built our Bayesian analysis using three study cases to estimate the inhibitor 

rates of patients with hemophilia A in three different scenarios: Case 1, a single cohort of 

previously treated patients (PTPs) or previously untreated patients; Case 2, a meta-analysis of 

PTP cohorts; and Case 3, a previously unexplored patient population – patients with baseline 

low-titer inhibitor or history of inhibitor development. The data used in this study were extracted 

from three published ADVATE (antihemophilic factor [recombinant] is a product of Baxter for 

treating hemophilia A) post-authorization surveillance studies. Noninformative and informa-

tive priors were applied to Bayesian standard (Case 1) or random-effects (Case 2 and Case 3) 

logistic models. Bayesian probabilities of satisfying three meaningful thresholds of the risk of 

developing a clinical significant inhibitor (10/100, 5/100 [high rates], and 1/86 [the Food and 

Drug Administration mandated cutoff rate in PTPs]) were calculated. The effect of discounting 

prior information or scaling up the study data was evaluated.

Results: Results based on noninformative priors were similar to the classical approach. Using 

priors from PTPs lowered the point estimate and narrowed the 95% credible intervals (Case 1: 

from 1.3 [0.5, 2.7] to 0.8 [0.5, 1.1]; Case 2: from 1.9 [0.6, 6.0] to 0.8 [0.5, 1.1]; Case 3: 2.3 

[0.5, 6.8] to 0.7 [0.5, 1.1]). All probabilities of satisfying a threshold of 1/86 were above 0.65. 

Increasing the number of patients by two and ten times substantially narrowed the credible 

intervals for the single cohort study (1.4 [0.7, 2.3] and 1.4 [1.1, 1.8], respectively). Increasing the 

number of studies by two and ten times for the multiple study scenarios (Case 2: 1.9 [0.6, 4.0] 

and 1.9 [1.5, 2.6]; Case 3: 2.4 [0.9, 5.0] and 2.6 [1.9, 3.5], respectively) had a similar effect.

Conclusion: Bayesian approach as a robust, transparent, and reproducible analytic method can 

be efficiently used to estimate the inhibitor rate of hemophilia A in complex clinical settings.
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Background
Challenges in estimating the development of inhibitors
The development of inhibitory antibodies, usually IgG 4, is a natural response of the 

host immune system to exogenous factor VIII in patients with hemophilia, who are 

devoid of endogenous factor VIII and therefore not naturally tolerant to it. Some forms 

of immunological reaction are observed in more than half of the patients at the first 

exposure to factor VIII. In many cases, the antibodies are able to block factor VIII 
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clotting activity, and their presence can be detected and quan-

titated using a specific test, the Bethesda assay. Inhibitory 

responses of more than five Bethesda units are called high 

responding antibodies. Approximately one-third of inhibitors 

disappear spontaneously, while others are persistent, making 

exogenous factor VIII ineffective and requiring the use of 

bypassing agents to stop bleeding or prolonged administration 

of high-dose factor VIII to eradicate the inhibitor (immune 

tolerance induction treatment).

Developing inhibitors against factor VIII concentrates 

is the most severe and costly complication of the treatment 

of hemophilia A.1 Patients who develop inhibitors tend 

to have more severe bleeds, either because they are often 

treated on demand more than prophylactically, or because 

their bleeds are more difficult to stop. As to the utilization 

of factor concentrates, this might be lower, when patients are 

preferentially treated with bypassing agents, or higher, when 

low-titer or subclinical inhibitors are treated with factor VIII, 

usually requiring a neutralizing dose (formally calculated 

or empirically determined) in addition to the usual dose of 

concentrates required to prevent bleeding.

There are several reasons that complicate studying the 

determinants of inhibitor development.2 The first is that the 

development of inhibitory antibodies is a combination of 

different events, more than a single one, with nothing as 

simple as black and white.3–6 The second is the uncertainty 

of explaining both known and unknown risk factors associ-

ated with the development of inhibitors.7,8 The third is the 

rarity of the disease, which hampers the opportunity to obtain 

substantial comparative data.2

In this challenging scenario, it is important to determine 

the risk associated with specific brands or classes of factor 

concentrates, because the type of product is one of the few 

actionable risk factors in the field.9,10 Other characteristics 

of the treatment regimen such as dose, frequency, indication, 

and concomitant treatments or exposures also contribute to 

the risk of inhibitor development.11–13 Progress in this field 

requires a close collaboration with complementary expertise. 

Knowledge of immunology and basic science can help gain 

a broader and deeper understanding of the molecular and 

cellular mechanisms driving the development or breach of 

tolerance.14–17 Clinical investigators can work to dissect the 

common characteristics among the heterogeneous clinical 

manifestations of inhibitory responses. Epidemiologists and 

biostatisticians can develop more powerful and efficient ways 

of looking at the available data and generating new ones.

There are several unmet needs in the statistical models used 

to analyze observational data about inhibitor development, 

which relate to the rarity of adverse events in an already rare 

disease.18–24 The first critical issue is the scarcity of evidence, 

which emphasizes the need for incorporating external evi-

dence to increase the power and the informative value of small 

and otherwise weak cohorts.19 A second issue is the need for 

an efficient way to analyze the intricate relationship between 

treatment, time, and the varying risk of events over time.25 A 

third is the need to adjust for covariates (known risk factors) 

when performing multivariable exploration of, for example, 

inhibitor rates in previously untreated patients (PUPs). The 

fourth and last is the proper assessment and comparison of 

event rates generated by nonparallel cohorts.26–28 In the cur-

rent article, we address the first and fourth issues.

A powerful approach to the abovementioned problems 

might be a Bayesian framework. The Bayesian approach to 

interpreting experimental data from a clinical study consists 

of modeling the logical process leading to a change in opinion 

from before to after the availability of new information (the 

evidence provided by a new observation).

The benefit of the Bayesian approach derives from the 

opportunity of making use of existing knowledge in the 

assessment of data that extends to either incorporating that 

knowledge in the final results or using it as a standard to 

quantify the comparison between the new evidence and the 

previous knowledge. That knowledge could be a similar 

measure in a similar unrelated trial, or a threshold of clini-

cal importance.

The concepts behind Bayesian inference
Statistical inference is the process of fitting a probability 

model to a set of observed samples from a population to 

summarize the results by a probability distribution on the 

parameters of interests to make a general statement about 

the population and predictions for new observations. In the 

classical (frequentist) approach, the statistical modeling 

involves only fitting a probability distribution to the observed 

experimental data to model the likelihood of the observed 

experimental data for a given estimate of interest such as 

treatment effect and incidence rate. Unlike the classical 

approach, the Bayesian approach combines experimental 

and prior or external information via the Bayes theorem, to 

produce the posterior distribution that is used to make all 

inferences about the estimate of interest.

 p p pd d| | ( )data  data( ) ∼ ( ) × d  (1)

where d is the parameter of interest.

 

Posterior distribution ~ data likelihood

prior distribution×  
 (2)
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As shown in Equations 1 and 2, p(d) represents prior 

distribution of the parameter of interest (henceforth to be 

referred to as “the parameter”), ie, the prior or external 

information about the estimate of treatment effect, incidence 

rate, etc; p(data|d), the likelihood function, specifies the 

statistical model of the observed experimental data given 

the parameter; and p(d|data) is the posterior distribution of 

the parameter, which is essentially a combination of the evi-

dence provided by the observed experimental data and prior 

relevant data from clinical experience or past research evi-

dence.29,30 In many cases, the posterior distribution p(d|data) 

is intractable, and therefore to make inferences about the 

parameter the Bayesian approach uses Monte Carlo Mar-

kov Chain to obtain samples from the posterior p(d|data).31 

Monte Carlo Markov Chain is an iterative process, with 

each iteration yielding a realization or observation from 

the posterior distribution p(d|data). Typically, investigators 

will conduct a large number of iterations or simulations: 

1,000–10,000, or even more. These are used to inform 

posterior inferences about the parameter. For example, the 

posterior mean or median is used to estimate the parameter, 

while the 2.5th and 97.5th observations are used as the 95% 

credible interval (CrI) for the parameter. The probability of 

the point estimate less than a certain threshold is abstained 

by calculating the proportion of the cases lower than the 

threshold over the total number of the interactions. Table 1 

provides a brief summary of the comparison of main features 

of the frequentist and Bayesian approaches in clinical trials. 

The difference between Bayesian and frequentist statistical 

inference is presented in Table 1, and the definitions and 

descriptions of Bayesian terminologies used in this article 

are given in Table 2.

Objectives of this article
By using real clinically observed data from the recently 

published articles,32–34 we aimed to demonstrate the benefits 

or advantages of Bayesian approach in estimating the risk 

of developing inhibitors among patients with hemophilia 

A from the following aspects: increasing the credibility of 

the results and the understanding of the underlying mecha-

nisms by incorporating external evidence; generating prob-

abilities to be used in a physician-to-patient interaction.

Table 1 Brief comparison of the frequentist and Bayesian approaches in clinical trials

Feature Frequentist approach Bayesian approach

Interpretation of probability The proportion of times an event will occur in an 
infinitely long series of repeated identical situations

The “degree of belief” an event (or a number of 
repeatable events) will occur

Main question What is the probability of data (trial result), given 
the hypothesis (treatment effect)?

What is the probability of the hypothesis 
(treatment effect), given the data (trial result)?

Design features Hypotheses, type I and II errors Hypotheses, prior or external information
Reasoning paradigm Deductive reasoning Inductive reasoning 
Trial monitoring Prespecified with adjustments for type I error for 

interim analyses
Adaptive by design based on accumulating evidence

Condition of drawing statistical inference Inference based on observed experimental data Inference based on observed experimental data and 
prior information

Information for 
analysis

Use of external 
information/pre-belief

Informally considered only at study design stage, 
eg, sample size calculation

Formally incorporated in the design, analysis, and 
interpretation as a prior

Experimental data Summarized via the likelihood function, which 
captures all information provided by the 
observed data regarding any unknown population 
parameters

Summarized via the likelihood function, which 
captures all information provided by the 
observed data regarding any unknown population 
parameters

Results summaries Point estimate The “best estimate” obtained from observed 
experimental data 

A weighted point estimate from the posterior 
distribution derived by combining all relevant 
sources of information including the external 
information and observed experimental data

Interval estimates 95% CI: an interval that we are 95% confident 
that the true value of the unknown parameter 
would be as low as its lower bound and as high as 
its upper bound

95% CrI: an interval has a 0.95 probability that the 
unknown parameter would lie within, given the 
observed experimental data

Probabilities P-value, the chance of observing a result as 
extreme as what is seen in the experiment when 
the null hypothesis of no effect is true 

Posterior probabilities

Decision making Framework Not straightforward and hard to apply in clinical 
practice

Intuitive and based on minimizing expected losses; 
easy to apply in clinical practice

Abbreviations: CI, confidence interval; CrI, credible interval.
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Methods
Overall study design
This article is built around three case studies and uses a stan-

dardized multistep approach to show 1) how the Bayesian 

results compare with those based on the commonly used clas-

sical approach; 2) the impact of different sources of external 

information used to construct a Bayesian prior; 3) the use of 

different sources of external information as thresholds against 

which to benchmark Bayesian posterior estimates of risk; and 4) 

the impact of the size of information on the Bayesian posterior 

estimates. In this section, we describe the three case studies, the 

statistical details, and the data source we used for the simulation.

Case study scenarios and patient 
populations
Case 1: analyzing a rare adverse event in a single 
cohort
The first case was set to represent the analysis of a single 

study, where all patients were treated with the same FVIII 

product, aiming to assess the rate of inhibitor development in 

the cohort of patients with hemophilia A including previously 

treated patients (PTPs) and PUPs. For this case, we reanalyzed 

the same cohort already published by Oldenburg et al.32 We 

used this case to explore and discuss the basics of the Bayesian 

approach and the pros and cons of choosing different priors.

Case 2: analyzing a rare adverse event by pooling a 
set of studies in a meta-analysis
The second case was conceived to represent a meta-anal-

ysis of studies assessing the rate of inhibitors in a set of 

 independent but similar studies in comparable populations of 

patients with hemophilia A; for this case, we used an earlier 

article we published.33 The main goal of this case was to show 

how the evidence synthesized from meta-analysis can be 

further enhanced using Bayesian approach by incorporating 

external information through priors.

Case 3: analyzing the inhibitor rate in a previously 
unexplored setting
The third case illustrates how Bayesian method can be used 

to explore a new clinical setting for which no obvious priors 

are available in the literature. Although the study design and 

data collection were similar to the second case, the patient 

population was defined as the patients with low-titer inhibi-

tors at baseline or positive personal history of inhibitors, 

which was definitely different and not directly comparable 

to any existing ones.34 The challenge presented in this case 

was how to properly choose priors to explore an unstudied 

population. In addition to that, the data used in this case were 

extremely sparse in a multicenter/meta-analytical setting, 

where no outcomes were observed in some centers/studies 

(the so-called zero event).

Source data and outcome
The individual data sets used to build our cases for illustra-

tion purposes32–34 were from the ADVATE post-authorization 

safety studies (PASS) program. The study population in 

PASS studies were hemophilia A patients undergoing 

treatment (prophylaxis or on-demand) with ADVATE in 

routine clinical use. The primary safety  outcome in these 

Table 2 Definitions of Bayesian statistical inference

Terms Definition Examples of interpretation

Bayesian statistical 
inference

p(d|data) ~ p(data|d) × p(d), posterior distribution is the joint 
distribution of prior distribution and the distribution of data 
likelihood

Obtaining the most updated evidence by combining the 
information from the study data with other sources

Prior p(d), the probability distribution of the unknown parameter 
of interest

Preexisting knowledge or evidence, or external information of 
treatment effect or incidence rate

Noninformative prior A prior distribution is called noninformative if the prior has 
little information to impact the posterior distribution

A noninformative prior is also called vague or flat prior

Informative prior A prior is called informative if the prior contains some 
information which impacts the posterior distribution 

The information presented in the prior can be the external 
evidence, pre-believe, or expert opinion

Likelihood function p(data|d), the probability distribution of the data observed 
over the parameter of interest, which embeds the statistical 
model

Data obtained for a study designed to investigate certain 
treatment effects or diseases

Posterior p(d|data), the updated probability distribution of the 
parameter of the interest given data, which is obtained by 
combining data likelihood and prior distribution

Updated evidence after combining the evidence from the 
study data and other information

95% CrI 95% CrI, the estimated interval has a 95% probability 
(credibility) that the parameter of interest lies within it

95% probability is a direct quantity attached to the obtained 
interval of the posterior estimates of the parameter of interest

Abbreviations: CrI, credible Interval; d, parameter of interest.
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studies is defined as inhibitor levels during the study period 

including de novo, recurrent, and persistent inhibitors. We 

adopted the cutoffs of inhibitor classification specified 

in the original PASS protocols: 1.0 Bethesda unit (BU) 

for US, EU, and Australian PASS; and 0.6 BU for Japan, 

Italian, Korean, and Taiwan PASS (studies adopting the 

Nijmegen modification).32,33 More detailed description of 

the data such as hemophilia severity and FVIII exposure 

history and the case-specific definitions of inhibitors are 

presented in Table 3.

Setting basic models with noninformative 
priors
For all the three cases, Bayesian statistical models with non-

informative priors were introduced first as the basic starting 

model. For Case 1, classical logistic and Bayesian logistic 

models were used. For Case 2 and Case 3, classical random-

effects logistic and Bayesian hierarchical random-effects 

logistic models were adopted, through which the patients 

from the same study were treated as within the same cluster. 

The random-effects model was adopted as the most common 

choice for individual patient data (IPD) meta-analyses. As 

for noninformative prior for log odds, the normal distribution 

with mean equals to zero (equal odds between developing 

or not developing inhibitor) and precision equals to 0.00001 

were specified. The uniform distribution was used to specify 

the prior for the between-study standard deviation in the 

random-effects logistic model. The details of prior specifica-

tions are presented in Table S1.

Choosing informative priors
As a second step, we replaced noninformative priors with 

information-rich priors to incorporate the preexisting 

external information or knowledge from earlier studies 

into the analysis of the current study data. Unlike nonin-

formative priors, informative ones contribute information 

to the posterior estimates, which can be looked at as a 

“combination” of the preexisting evidence with evidence 

generated by the current experiment. To this scope, we 

sought relevant comparable priors and tested two different 

sets of informative priors. The first set 1) comprised the data 

obtained during the treatment with a certain molecule (eg, 

rAHF-PFM) in different studies; specifically i) estimates of 

inhibitor rates from the manufacturer’s pivotal studies35; ii) 

estimates of inhibitor rates from a meta-analysis36; and iii) 

estimates of inhibitor rates from an independent prospec-

tive multicentric cohort.37 The second set of informative 

priors 2) comprised pooled inhibitor rates for any FVIII 

concentrate, including: i) a meta-analysis36 and ii) an inde-

pendent prospective multicenter cohort.37 The details of 

generating informative priors, published data, are  presented 

in Table S1.

In this study, Case 3 was specifically chosen not to have a 

study on the same patient population already available; thus, 

no obvious informative priors can be located in the literature. 

Notwithstanding, we wanted to show the value of the Bayes-

ian approach in exploring how the rate of inhibitor develop-

ment in this population would change when the known rate in 

PTPs and that in PUPs is added in. Consequently, in addition 

Table 3 Information of study data and outcome

Study information Case 1 (n=428) Case 2 (n=1,188) Case 3 (n=219)

Patient population PTP and PUP, all severity PTP and PUP, moderate-to-severe 
patients

Patients with baseline low-titer inhibitor or 
history of inhibitor

Source of PASS data Europe Australia
Europe
Italy
Japan
The USA

Australia
Europe
Italy
Japan
The USA
Taiwan
South Korea

Hemophilia severity
Severe, n (%)

308 (72.0) 883 (74.3) 198 (90)

FVIII exposure history
>50 EDs, n (%)

393 (91.8) 1089 (91.6) 214 (97.7)

Defined outcome: developing 
inhibitora, n (%)

6 (1.4) 21 (1.8) 6 (2.7)

Notes: aInhibitor defined in Case 1: inhibitor >1.0 BU; inhibitor defined in Case 2: de novo, recurrent, or persistent inhibitor; inhibitor defined in Case 3: titer increase or 
inhibitor recurrence. De novo inhibitor was defined as inhibitor occurring in patient with negative history of inhibitors and with negative titer at baseline; recurrent inhibitor 
was defined as the inhibitor observed for the patient with a history of inhibitor; persistent inhibitor was defined as the inhibitor that was present at the beginning of the study 
and carried through during the study.
Abbreviations: BU, Bethesda unit; ED, exposure day; PASS, post-authorization safety studies; PTP, previously treated patient; PUP, previously untreated patient.
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to the informative priors used in the first two cases, we also 

added the inhibitor rates for PUPs reported in the European 

Hemophilia Safety Surveillance (EUHASS) study37 for 1) the 

specific molecule and for 2) all products. The key rationale 

was to assess the robustness or sensitivity of the posterior 

inhibitor rates seen when a prior based on a truly high-risk 

population is used, ie, the worst-case scenarios. The details 

of generating priors for Case 3 are presented in  Table S1.

Calculating probabilities
To make this more evident and show another peculiar prop-

erty of the Bayesian framework, we further calculated, for 

the third case, the Bayesian probabilities of the posterior 

inhibitor rates being lower than three specific clinically 

meaningful thresholds, two high rates (10/100 and 5/100)38 

recommended by International Society on Thrombosis and 

Haemostasis (ISTH), and the US Food and Drug Adminis-

tration (FDA)-mandated cutoff rate in PTPs (1/86).39,40 The 

probability was calculated as the cumulated proportion of the 

posterior inhibitor rate less than the threshold over the total 

number of iterations, ie, the number of resamplings used in 

each Bayesian model.

Weighting prior information
We then moved to show the effect of scaling down or dis-

counting the value of the prior information in Case 3, for 

which due to the inability to use a full consistent informative 

prior, one might want to assign less weight to the informa-

tion carried by the selected priors. The weight of the prior 

was reduced in the following ways: 1) by decreasing the 

precision, ie, enlarging the variance of the priors depending 

on how relevant the particular piece of information is to the 

study we are assessing.30,41 In our third case, we discount the 

precision of the rates of inhibitor in PUPs in EUHASS for 

the specific molecule and for any factor VIII concentrate 

by 75% and 95% each, respectively. This is equal to the 

human process of any perceived information: “you told 

me that the rate of event is this, but I only 25% trust your 

information”; and 2) a second approach to obtain the same 

objective, ie, to undervalue the contribution of the priors, 

is scaling up the weight of the study data by increasing the 

precision assigned to the experimental data. One easy and 

understandable way to do this is to simulate the impact on 

posterior estimates of increasing the study sample size. 

Thus, we showed the effect of increasing the study data 

sample size by two and ten times for all three study cases. 

The increment of sample was performed in two ways: 1) 

for all the three cases, increasing the number of events and 

number of patients in each center proportionally, ie, mul-

tiplying the numbers of events and patients for each center 

by two or ten times; and 2) for Cases 2 and 3, increasing 

the numbers of centers by two or ten times while keeping 

the numbers of events and patients in each center as the 

same as in the original data. We reran the Bayesian model 

with noninformative priors using the purposely inflated 

data for all the three cases to test the idea and then further 

reanalyzed the effect of data inflation for Case 3 with all 

informative priors previously used.

Analysis and reporting
Throughout this study, posterior inhibitor rates (our results) 

were reported as percentage rates with 95% associated con-

fidence interval (CI) in the case of classic statistics, or 95% 

CrI in the case of Bayesian statistics. Graphic, descriptive 

statistics and classical meta-analyses were performed using 

STATA 13.1 (StataCorp LP, College Station, TX, USA). 

Bayesian analyses were performed using WinBUGS soft-

ware 1.4.3 (http://www.mrc-bsu.cam.ac.uk/bugs/). In every 

Bayesian analysis, two chains were run simultaneously, and 

the convergence of the Bayesian models was assessed based 

on the history trace, posterior density, and autocorrelation 

plots for parameters of interest. The codes of Bayesian models 

that detailed setups on the Bayesian simulations are presented 

in the  Table S2.

Results
Raw inhibitor rates in three cases
For Case 1, six inhibitors (1.4%) were reported among 428 

patients. For Case 2, five studies were included in the IPD 

meta-analysis, and 21 inhibitors (1.8%) were reported in 

1,188 patients. For Case 3, IPD were extracted from seven 

PASS, and six inhibitors (2.7) were reported in 219 patients 

(Table 4).

Comparing results from Bayesian 
approach to classical approach
As expected, the results obtained from classical analytical 

approach and Bayesian statistical model using noninforma-

tive priors were similar for all the three cases. For the single 

cohort study (Case 1), the estimates were the same to one 

decimal place (percent rate [95% CI]: 1.3% [0.5, 2.7]; percent 

rate [95% CrI]: 1.3% [0.5, 2.7]). For the pooled analysis (Case 

2), the Bayesian posterior estimates gave a slightly wider 95% 

CrI (1.9% [0.8, 4.5]) toward the lower end as compared to the 
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estimate from the classical approach (1.9% [0.8, 4.5]). For the 

cohort of patients with previous/current inhibitor (Case 3), 

the posterior estimates from the Bayesian model showed a 

slightly lower percent rate and wider 95% CrI (2.3% [0.5, 

6.8]) as compared to the estimate from classical approach 

(2.6% [1.0, 6.8]; Table 4, Figure 1A–C).

Impact of using informative priors in 
Bayesian analysis
For Case 1 and 2, using external information as priors con-

sistently narrowed the CrIs and lowered the central estimate 

of percentage rates. The range of the inhibitor percentage 

rates for the single cohort (Case 1) was 0.8%–1.3% and 

for the pooled analysis was 0.8%–1.9%. For the cohort 

of patients with previous/current inhibitor (Case 3), the 

posterior estimates of inhibitor percentage rates changed 

depending on the external information brought in by pri-

ors. The lowest percentage rates with narrowest 95% CrI 

was obtained using the informative prior generated from 

the EUHASS study of PTPs for all FVIII products: 0.7% 

(0.5, 1.1). The highest percentage rate was gained using the 

informative priors generated from the EUHASS study of 

PUPs for all FVIII products: 24.9% (21.1, 29.2; Table 4, 

Figure 1A–C).

Comparing posterior inhibitor rates to 
thresholds
For the cohort of patients with previous/current inhibitor 

(Case 3), the posterior estimates of inhibitor rates were 

compared to the selected thresholds, and the probabilities 

of posterior inhibitor rates lower than the thresholds were 

then calculated. A probability of 1 means that the calcu-

lated rate of inhibitors is certainly below the threshold, 

and a probability of 0.5 means a 50% likelihood that the 

rate is below the threshold. Testing a threshold for the rate 

of inhibitors of 10%, six out of eight comparisons (when 

noninformative prior and informative priors were generated 

from the studies of PTPs) showed a probability >0.99. In 

contrast, when the EUHASS PUP study results were used 

as priors, the probabilities of a rate lower than 10% dropped 

dramatically to <0.001. Similar findings were obtained 

when the threshold was dropped to lower than 5%. When 

Table 4 Inhibitor rate (on percentage scale) for three different cases

Approaches and priors Case 1 Case 2 Case 3

Method Single study Meta-analysis Multicenter cohort – no 
appropriate priors

Test data (number of inhibitors/number of patients) PASS data30 (6/428) PASS data31 (21/1,188) PASS data32 (6/219)
Classical statistical analysis: percent rate (95% CI) 1.3 (0.5, 2.7) 1.9 (0.8, 4.5) 2.6 (1.0, 6.8)
Bayesian statistical analysis: percent rate (95% CrI)

Non-informative prior 1.3 (0.5, 2.7) 1.9 (0.6, 6.0) 2.3 (0.5, 6.8)
Informative prior: Baxter pivot study (1/102) 1.3 (0.5, 2.5) 1.6 (0.6, 4.1) 1.8 (0.5, 4.8)
Informative prior: meta-analysis of OS (seven ADVATE studies; 3/569) 0.9 (0.4, 1.9) 1.0 (0.4, 2.2) 0.9 (0.3, 2.3)
Informative prior: meta-analysis of OS (38/3,866) 1.0 (0.8, 1.4) 1.0 (0.8, 1.4) 1.0 (0.8, 1.4)
Informative prior: EUHASS study of de novo inhibitor in PUPs, ADVATE 
(37/141)

N/A N/A 23.4 (17.5, 30.7)

Informative prior: EUHASS study of de novo inhibitor in PUPs (108/417) N/A N/A 24.9 (21.1, 29.2)
Informative prior: EUHASS study of inhibitors in PTPs, ADVATE (5/707) 1.0 (0.5, 1.8) 1.1 (0.5, 2.1) 1.0 (0.4, 2.1)
Informative prior: EUHASS study of inhibitors in PTPs (all FVIII) (26/3,736) 0.8 (0.5, 1.1) 0.8 (0.5, 1.1) 0.7 (0.5, 1.1)
Discounted prior: discounting EUHASS in PUPs, ADVATE by 75% N/A N/A 16.9 (9.0, 29.4)
Discounted prior: discounting EUHASS in PUPs, ADVATE by 95% N/A N/A 5.3 (2.2, 16.0)
Discounted prior: discounting EUHASS in PUPs, all by 75% N/A N/A 22.2 (15.7, 30.4)
Discounted prior: discounting EUHASS in PUPs, all by 95% N/A N/A 12.3 (5.4, 25.8)
Enhanced data: enhancing study data by two times – increasing number of 
patients (with noninformative prior)

1.4 (0.7, 2.3) 2.0 (0.6, 6.4) 2.2 (0.5, 6.6)

Enhanced data: enhancing study data by two times – increasing number of 
studies (with noninformative prior)

N/A 1.9 (0.9, 4.0) 2.4 (0.9, 5.0)

Enhanced data: enhancing study data by ten times – increasing number of 
patients (with noninformative prior)

1.4 (1.1, 1.8) 2.1 (0.6, 6.6) 1.6 (0.4, 5.4)

Enhanced data: enhancing study data by ten times  – increasing number of 
studies (with noninformative prior)

N/A 1.9 (1.5, 2.6) 2.6 (1.9, 3.5)

Abbreviations: CI, confidence interval; CrI, credible interval; EUHASS, European Hemophilia Safety Surveillance; OS, observational study; PASS, post-authorization safety 
studies; PTP, previously treated patient; PUP, previously untreated patient; N/A, not applicable.
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Figure 1 Estimates of inhibitor rate obtained using classical or Bayesian approaches for three study cases A, B, C respectively.
Abbreviations: CI, confidence interval; CrI, credible interval; EUHASS, European Hemophilia Safety Surveillance; MA, meta-analysis; OS, observational study; PTP, previously 
treated patient; PUP, previously untreated patient.
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the threshold was dropped further to the FDA-approved 

rate for PTPs of 1/86, only the probability using priors 

for the EUHASS study in PTPs for all products was >0.9, 

but all estimations using PTPs as priors were still above 

0.65 (Table 5).

Impact of sample size of data
We found that increasing the number of patients narrowed the 

CrI for Case 1 (ie, the mimic of single-center studies), but 

had little impact on the posterior estimates of Cases 2 and 

3, which represented multicenter study settings. However, 

when more centers were added to get the same sample size, 

the CrIs noticeably narrowed. Another interesting observa-

tion is that when the number of patients was increased in 

each center while the number of centers remained the same, 

the posterior inhibitor rates decreased for Case 3, in which 

three of seven centers reported no inhibitor event in the 

original data (Table 3; more exploratory results are found 

in Table S2).

Discussion
In this study, we used three cases from the real-world data to 

examine the abilities of the Bayesian approach in analyzing 

and interpreting rare events observed in a rare population. 

In comparison of the frequentist (or classical) approach, the 

advantages of Bayesian framework majorly lay on the fol-

lowing three points.

First, unlike the classical frequentist statistics, Bayesian 

approach provides a way to dynamically update the evidence 

around a certain event using all the available information. In 

fact, posterior estimates are weighted averages based on prior 

and current experimental evidence/data, with the weights 

determined by the precision of the corresponding evidence. 

As in our study cases, we updated the estimate of the inhibi-

tor rate that is represented by the posterior distribution by 

combining the information on the inhibitor rate contained in 

our data and the knowledge on the inhibitor rate found in the 

external study. This nature leads to the continuous updates 

of the evidence upon the availability of new data. The most 

informative example of using the Bayesian framework is 

where the inhibitor rate among patients with low-titer inhibi-

tor at baseline or personal history of the inhibitor had been 

given little consideration to date. Therefore, comparing the 

posterior estimates of the inhibitor rate obtained from the 

study data commonly used as clinical thresholds will provide 

clinicians with meaningful ways to interpret the results.

Second, the Bayesian posterior probability is funda-

mentally different from the P-value used for frequentist 

hypothesis test. For instance, when testing “the inhibitor 

rate (in our population) is <10%” in our case, the P obtained 

Table 5 Probabilities calculated for the inhibitor rates lower than specific thresholds for Case 3

Prior Case 3: PASS Threshold 1 Threshold 2 Threshold 3

Bayesian statistical analysis: percent rate (95% CrI) Multicenter study – no 
appropriate priors

<10/100 <5/100 <1/86

Noninformative prior 2.3 (0.5, 6.8) 0.994 0.921 0.165
Informative prior: Baxter pivot study (1/102) 1.8 (0.5, 4.8) >0.999 0.979 0.225
Informative prior: meta-analysis of OS (seven ADVATE studies) (3/569) 0.9 (0.3, 2.3) >0.999 >0.999 0.677
Informative prior: meta-analysis of OS (38/3,866) 1.0 (0.8, 1.4) >0.999 >0.999 0.782
Informative prior: EUHASS study of de novo inhibitor in PUPs, ADVATE 
(37/141)

23.4 (17.5, 30.7) <0.001 <0.001 <0.001

Informative prior: EUHASS study of de novo inhibitor in PUPs (108/417) 24.9 (21.1, 29.2) <0.001 <0.001 <0.001
Informative prior: EUHASS study of inhibitors in PTPs, ADVATE (5/707) 1.0 (0.4, 2.1) >0.999 >0.999 0.658
Informative prior: EUHASS study of inhibitors in PTPs (all FVIII) (26/3,736) 0.7 (0.5, 1.1) >0.999 >0.999 0.988
Discounted prior: discounting EUHASS in PUPs, ADVATE by 75% 16.9 (9.0, 29.4) 0.051 <0.001 <0.001
Discounted prior: discounting EUHASS in PUPs, ADVATE by 95% 5.3 (2.2, 16.0) 0.876 0.449 0.001
Discounted prior: discounting EUHASS in PUPs, all by 75% 22.2 (15.7, 30.4) <0.001 <0.001 <0.001
Discounted prior: discounting EUHASS in PUPs, all by 95% 12.3 (5.4, 25.8) 0.306 0.016 <0.001
Enhanced data: enhancing study data by two times – increasing number of 
patients (with noninformative prior)

2.2 (0.5, 6.6) 0.995 0.932 0.161

Enhanced data: enhancing study data by two times – increasing number of 
studies (with noninformative prior)

2.4 (0.9, 5.0) 0.998 0.967 0.305

Enhanced data: enhancing study data by ten times – increasing number of 
patients (with noninformative prior)

1.6 (0.4, 5.4) 0.998 0.976 0.067

Enhanced data: enhancing study data by ten times – increasing number of 
studies (with noninformative prior)

2.6 (1.9, 3.5) >0.999 >0.999 <0.001

Abbreviations: CI, confidence interval; CrI, credible interval; EUHASS, European Hemophilia Safety Surveillance; OS, observational study; PASS, post-authorization safety 
studies; PTP, previously treated patient; PUP, previously untreated patient.
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from the frequentist test tells us the probability of wrongly 

rejecting the null hypothesis – “the inhibitor rate equals to 

10%” in our case. This P-value reflects the type I error. In 

addition, thus the statistically significance from frequentist 

approach is built on an arbitrary cutoff for tolerating this 

type I error, say 0.05.42 In our example, if the “probability” 

of “the inhibitor rate is ≥10%” is <0.05, we conclude that this 

hypothesis can be rejected. However, this probability is not 

in fact a probability directly related to the acceptance of the 

testing hypothesis, but a level of confidence that the chance of 

mistakenly rejecting the null hypothesis is low. In fact, when 

P<0.05, we can reject the null hypothesis, but we are never 

able to say that the probability of “the inhibitor rate being 

<10%” is truly 0.95. On the other hand, the Bayesian prob-

ability is a quantity of the testing hypothesis, ie, the “degree 

of truth” of the study hypothesis. The Bayesian can really 

test the probability that the rate of inhibitor in our sample 

is <10%. If P=0.95, we are confident that the probability of 

“the inhibitor rate being <10%” is actually 0.95.

Third point is the different interpretations between the 

CI in classical approach and CrI in Bayesian approach. Back 

to our example, the 95% CI is interpreted as “the estimates 

of the inhibitor rate will fall in between these two boundar-

ies 95% of the time if the data can be repeated infinitely”. 

It cannot be used to make an assertion about the current 

test based on a single sample set without the assumption of 

the infinite repetition. In comparison, the 95% CrI tells us 

a straightforward story, “given the data and the model, the 

chance of the true inhibitor rate fall in this interval is 95%”.

Some further considerations are hopefully of value. For 

Cases 1 and 2, the Bayesian models with noninformative 

priors yielded results comparable to the classical approach. 

For third study case, the point estimate of inhibitor rate 

obtained from the Bayesian random-effects logistic model 

was lower than that obtained from the classical random-

effects logistic model. The reason is that the data used for 

this example are extremely sparse. In three out of seven 

pooled studies, there were no inhibitors observed. The clas-

sical logistic model directly takes event as outcome and thus 

fails to generate the estimates when no event is in the data. 

Therefore, when classical random-effect logistic was used 

to pool the data from seven individual studies, the three 

studies without outcomes were ignored, and the inhibitor 

rate was estimated from the four studies with observed 

inhibitor. Unlike the classical model, the Bayesian model 

resamples the data for certain times (eg, 100,000) based 

on the information provided by the current data and then 

generates the estimates in accordance before  reporting the 

posterior estimates, which usually are the median of the 

entire estimates. In our example, when data reported no 

event, the Bayesian model resampled the data using the 

probability of event sampled around zero. By doing so, 

the Bayesian model was able to incorporate those studies 

reporting no inhibitor into the posterior estimates and thus 

gave a lower inhibitor rate. On the other hand, for the same 

example, the 95% CrIs were wider than the 95% CIs. This 

is because the Bayesian model introduced more random 

uncertainty through noninformative priors that had very 

large variance. When the study data are not large enough, 

random uncertainty will be added in the posterior estimates. 

In our example, we had seven studies that were not even 

able to provide saturated information for estimating the 

between-study variance. Therefore, the model borrowed 

information from noninformative priors that only added 

uncertainty to estimate the between-study variance.

The Bayesian approach provides a very useful tool for 

exploring our Case 3 data, which presents the unexplored  

patient population with no existing evidence. We modeled 

the effect of observing six inhibitors in ~200 patients from 

the unlikely expectation that the inhibitor rate would have 

been as in Research Of Determinants of INhibitor (RODIN) 

study11, to the optimistic expectation that the rate would have 

not been different from that in PTPs. We also showed how we 

could model the “strength” of this belief, by “discounting” 

the previous information. Critics of the Bayesian approach 

would certainly say that by adding “discounts” you may play 

with data until you show what you want. We would object that 

this would be the case if you were only using one set of priors 

(maybe even discounted). If you instead show the results 

produced by using a whole range of priors, you explore the 

relevance of your previous beliefs and assumptions. Along 

the same lines, we found that Bayesian modeling can be used 

to simulate the effect by increasing the number of patients 

in the same centers or by increasing the number of centers. 

The information found through thes attempts can be easily 

used on estimating the sample size for the future studies. 

All of this richness of information is completely unavailable 

when using the frequentist approach. The reader needs to be 

aware, at this point, that most of the modeling of the impact 

of health care interventions on economics of health care 

systems or quality of life of patient population is generally 

obtained via Monte Carlo chain simulations which are, in 

essence, Bayesian probability applications.30,43

Bayesian estimates can be used to inform clinical deci-

sions in patient management in complex clinical settings. 

The success of integrating all relevant evidence through a 
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Bayesian approach depends on two aspects: 1) how to properly 

choose the clinically relevant priors, and 2) how to statistically 

formulate the clinical knowledge. These tasks need the joint 

force of clinicians and statisticians. Properly implementing the 

Bayesian results in the clinical decision making depends on the 

comprehensive understanding of the evidence, in particular, 

for the findings obtained from the first-time-ever exploration 

regarding new study settings or populations.

In regard to the purpose of serving as case studies for 

conducting Bayesian analysis in hematology area to analyze 

and generate evidence for rare events among rare study 

populations, we chose to use Bayesian random-effect logistic 

regression throughout the entire project for three scenarios for 

simplicity. We are aware that other statistical models such as 

random-effect Poisson regress may be a better choice for rare 

event data with zero outcomes. It is worth noting that properly 

setting up priors can be challenging because it depends on 

the types of outcomes and Bayesian models.

To come back to the clinical ground, we showed how 

the Bayesian posterior distribution can be interrogated to 

get, for example, the posterior probability that the rate of 

inhibitors in a population like the one we studied (eg, patients 

with previous history of inhibitors) was above or below a 

given (clinically meaningful) threshold. This is what, in our 

opinion, is needed for clinical decisions, and, indirectly, for 

policy-making decisions like taking into account the 30% of 

patients with a previous history of developing inhibitors in the 

proportion of population to be suitable to switch concentrate 

as a result of a tender process.

Conclusion
The Bayesian estimates of the inhibitor rate of patients under-

going treatment with ADVATE provide a broader understand-

ing for the clinicians, which can be utilized to inform clinical 

decisions in the management of patients with hemophilia A. 

Bayesian approach as a robust, transparent, and reproducible 

analytic method can be efficiently used to answer the complex 

clinical questions through updating, enhancing, and exploring 

the evidence by incorporating all the available information. 

Furthermore, the Bayesian probability can be directly used by 

clinicians to quantify individual patient’s risk on developing 

certain conditions.
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Supplementary materials
Figure S1 Bayesian codes
Number of updates, 300,000; number of chains, 2; number of thin, 5; burn in, 10,000; seed, 314,159.

Model 1: Simple logistic regression

model {

  r ~ dbin(p, n)

 logit(p) <- mu #log odds

 mu ~ dnorm(0, 1.0E-5) # non-informative

  #mu ~ dnorm (-4.615, 0.990) # PIVOT 1/102, log_odds=log(1/101), var=1/1+1/101

  #mu ~ dnorm (-5.24, 2.984) # Meta-OS ADVATE, 3/569

  #mu ~ dnorm (-4.613, 37.626) # Meta-OS ADVATE, 38/3866

  #mu ~ dnorm (-4.944, 4.965) # EUHASS PTP ADVATE, 5/707

  #mu ~ dnorm (-4.961, 25.819) # EUHASS PTP ALL, 26/3736

 odds<-exp(mu)

 prop<-odds/(1+odds)

 perc<-prop*100

  }

Note: “number of thin” is a term of Bayesian analysis, which means every 1 sample taking into account over certain 

numbers of samples generated.

Model 2: Random-effects logistic model

model {

 for( i in 1 : Num ) {

  r[i] ~ dbin(p[i], n[i])

  logit(p[i]) <- mu[i] #log odds

  mu[i] ~ dnorm(d, tau)

      } 

 d ~ dnorm(0,1.0E-5) # Non-informative prior 

 # Prior1: Baxter Pivot Trial, 1/102

  #d ~ dnorm(-4.62,0.99) # log_odds, variance=1/1+1/(102-1), precision=1/var

  #d ~ dnorm (-5.24, 2.984) # Meta-OS ADVATE, 3/569

  #d ~ dnorm (-4.613, 37.626) # Meta-OS ADVATE, 38/3866

  #d ~ dnorm (-1.033, 27.291) # EUHASS PUP ADVATE, 37/141

  #d ~ dnorm (-1.051,80.029) # EUHASS PUP ALL, 108/417

  #d ~ dnorm (-4.944, 4.965) # EUHASS PTP ADVATE, 5/707

  #d ~ dnorm (-4.961, 25.819) # EUHASS PTP ALL, 26/3736

  #d ~ dnorm (-1.033, 6.822) # EUHASS PUP ADVATE(-75%), 9.25/35.25

  #d ~ dnorm (-1.033, 1.365) # EUHASS PUP ADVATE(-95%), 1.85/7.05

  #d ~ dnorm (-1.051, 20.007) # EUHASS PUP ALL(-75%), 27/104.25

  #d ~ dnorm (-1.052, 4.001) # EUHASS PUP ALL(-95%), 5.4/20.85

 tau<-1/(sigma*sigma)

  sigma~dunif(0,2) # between study variance is estimated from PASS1

 odds<-exp(d)

 prop <- exp(d)/(1+exp(d)) 

 perc<-prop*100

 ppos1<-step(10/100-prop) 

 ppos2<-step(5/100-prop)

 ppos3<-step(1/86-prop)

    }
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Table S1 Analysis methods and the choice of priors

Approaches and priors Case 1 Case 2 Case 3

Method Single study Meta-analysis Multicentric cohort – no 
appropriate priors

Test data PASS data1 (6/428) PASS data2 (21/1,188) PASS data3 (6/219)
Classical statistical analysis Logistic model Random-effects logistic model Random-effects logistic model

Bayesian statistical analysis Logistic model Hierarchical (random-effects) logistic 
model

Hierarchical (random-effects) 
logistic model

Noninformative prior Ok Ok Ok

Informative prior: Baxter pivotal study (1/102) Ok Ok Ok

Informative prior: meta-analysis of OS (seven ADVATE 
studies) (3/569)

Ok Ok Ok

Informative prior: meta-analysis of OS (38/3,866): do you 
need data per study?

Ok Ok Ok

Informative prior: EUHASS study of de novo inhibitor in 
PUPs, ADVATE (37/141)

No No Ok

Informative prior: EUHASS study of de novo inhibitor in 
PUPs (108/417) 

No No Ok

Informative prior: EUHASS study of inhibitors in PTPs, 
ADVATE (5/707)

Ok Ok Ok

Informative prior: EUHASS study of inhibitors in PTPs (all 
FVIII) 22/3,736

Ok Ok Ok

Discounted prior: discounting EUHASS in PUPs, ADVATE 
by 75%

No No Ok

Discounted prior: discounting EUHASS in PUPs, ADVATE 
by 95%

No No Ok

Discounted prior: discounting EUHASS in PUPs, all by 75% No No Ok

Discounted prior: discounting EUHASS in PUPs, all by 95% No No Ok

Enhanced data: enhancing study data by two times – 
increasing number of patients

Ok Ok Ok

Enhanced data: enhancing study data by two times – 
increasing number of studies

No Ok Ok

Enhanced data: enhancing study data by ten times – 
increasing number of studies

Ok Ok Ok

Enhanced data: enhancing study data by ten times – 
increasing number of studies

No Ok Ok

Note: “OK” means it is valid choice thus will be used in the analysis. “No” means it is no a valid choice and won’t be used in the analysis.
Abbreviations: CI, confidence interval; CrI, credible interval; EUHASS, European Hemophilia Safety Surveillance; OS, observational study; PASS, post-authorization safety 
studies; PTP, previously treated patient; PUP, previously untreated patient.
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Table S2 Assessing the impact of sample size change and choice of priors on the Bayesian posterior estimates

Original data Increasing sample size by two times Increasing sample size by ten times

Test data (number of inhibitors/number 
of patients); number of centers

Case 3: PASS 
(6/219)3; 7 

Increasing number 
of patients in each 
center: (12/438); 7

Increasing number of 
centers: (12/438); 14

Increasing number of 
patients in each center: 
(60/2,190); 7

Increasing number of 
centers: (60/2,190): 70

Noninformative prior 2.3 (0.5, 6.8) 2.2 (0.5, 6.6) 2.4 (0.9, 5.0) 1.6 (0.4, 5.4) 2.6 (1.9, 3.5)

Informative prior: Baxter pivotal study 
(1/102) 

1.8 (0.5, 4.8) 1.8 (0.5, 4.6) 2.1 (0.8, 4.2) 1.4 (0.4, 3.9) 2.6 (1.8, 3.4)

Informative prior: meta-analysis of OS 
(seven ADVATE studies) (3/569)

0.9 (0.3, 2.3) 0.9 (0.3, 2.4) 1.3 (0.5, 2.7) 0.8 (0.3, 2.0) 2.3 (1.5, 3.1)

Informative prior: meta-analysis of OS 
(38/3,866)

1.0 (0.8, 1.4) 1.0 (0.8, 1.4) 1.1 (0.8, 1.5) 1.0 (0.7, 1.4) 1.4 (1.0, 1.8)

Informative prior: EUHASS study of 
de novo inhibitor in PUPs, ADVATE 
(37/141)

23.4 (17.5, 30.7) 23.2 (17.3, 30.4) 21.4 (15.6, 28.1) 22.8 (17.0, 29.8) 11.2 (7.7, 15.4)

Informative prior: EUHASS study of 
de novo inhibitor in PUPs (108/417) 

24.9 (21.1, 29.2) 24.8 (20.1, 29.1) 24.1 (20.4, 28.3) 24.7 (20.8, 28.9) 19.2 (16.1, 22.5)

Informative prior: EUHASS study of 
inhibitors in PTPs, ADVATE (5/707)

1.0 (0.4, 2.1) 1.0 (0.4, 2.1) 1.2 (0.6, 2.4) 0.9 (0.4, 1.9) 2.3 (1.5, 3.0)

Informative prior: EUHASS study of 
inhibitors in PTPs (all FVIII) (26/3,736)

0.7 (0.5, 1.1) 0.8 (0.5, 1.1) 0.8 (0.5, 1.2) 0.7 (0.5, 1.1) 1.2 (0.8, 1.7)

Note: Data presented as percent rate (95% CrI).
Abbreviations: CI, confidence interval; CrI, credible interval; EUHASS, European Haemophilia Safety Surveillance; OS, observational study; PASS, post-authorization safety 
studies; PTP, previously treated patient; PUP, previously untreated patient.
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