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A B S T R A C T   

The evolution of the COVID-19 pandemic can be monitored through the detection of SARS-CoV-2 RNA in 
sewage. Here, we measured the amount of SARS-CoV-2 RNA at the inflow point of the main waste water 
treatment plant (WWTP) of Montpellier, France. We collected samples 4 days before the end of lockdown and up 
to 70 days post-lockdown. We detected increased amounts of SARS-CoV-2 RNA at the WWTP from mid-June on, 
whereas the number of new COVID-19 cases in the area started increasing a couple of weeks later. Future 
epidemiologic investigations shall explain such asynchronous finding.   

1. Introduction 

SARS-CoV-2 is the etiologic agent responsible for the current cor-
onavirus disease 2019 (COVID-19) pandemic. Wastewater-based epi-
demiology represents an attractive strategy to surveil the evolution of 
virus circulation in populations [2,6], contributing to cost-effective 
virus control without infringing on individual liberties. About half of 
symptomatic patients persistently shed SARS-CoV-2 RNA in their feces 
at levels going up to 108 RNA copies per stool sample [3,11–13,15,16], 
which means that a single patient can shed billions of SARS-CoV-2 RNA 
copies in wastewater at a time. Moreover, an asymptomatic child was 
recently reported as negative for SARS-CoV-2 RNA based on throat 
swab specimen, while his stools were positive [10], suggesting that 
symptomatic and asymptomatic persons are likely to release SARS-CoV- 
2 RNA in city sewerages. Of note, subgenomic viral RNA was not de-
tected in stools [12], e.g. no infectious virus is shed (although this 
finding remains to be further investigated). 

Several reports indicate that SARS-CoV-2 RNA was readily detected 
in wastewater, and it is proposed that such approach could anticipate 
the occurrence of novel COVID-19 outbreaks in low prevalence regions 
[1,4,5,7,8,14]. The end of the stringent lockdown (that occurred in 
France on May 11th) is therefore an adequate time to measure the re- 
emergence of the virus through the monitoring of wastewater. Here, we 

collected effluent composite samples (using a 24-h automatic sampler) 
in wastewater upstream of the main wastewater treatment plant 
(WWTP) of Montpellier metropolitan area located in Lattes, France, 
which receives the wastewater from ≈ 470,000 inhabitants. The sam-
pling dates were May 7th, 18th, 26th, June 4th, 15th, 25th, and July 
20th to monitor SARS-CoV-2 RNA expression levels during lockdown 
and up to 70 days after its end. During this period, the virus was still 
circulating in the area, but the incidence was relatively low (number of 
newly diagnosed COVID-19 patients per day < 20). 

Collected wastewater was processed as follows: on the day of water 
collection, samples were maintained at 4 °C for transport and im-
mediately cleared by centrifugation at 4500g for 30 min at 4 °C. The 
supernatant was passed through a 40 μm cell strainer (Corning) to re-
move large floating components. At this stage, the samples were frozen 
at −20 °C for later analyses with samples collected at other timepoints. 
Upon thawing, RNAs were concentrated on a Vivaspin 50 kDa MWCO 
filter membrane (Sartorius). Starting from 50 ml of water, the sample 
was concentrated down a hundred times to an adjusted volume of 
500 μl. RNA extraction was performed using the NucleoSpin RNA Virus 
kit (Macherey-Nagel), including harsh lysis conditions (lysis buffer 
enriched in guanidinium isothiocyanate heated at 70 °C for 5 min). RT- 
qPCR was performed on 10 μl of purified RNA using the highly sensitive 
TaqPath One-Step RT-qPCR, CG master mix (ThermoFisher Scientific). 
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The N1 and N3 primer/probe sets designed by the Center for Disease 
Control (CDC) were used to detect SARS-CoV-2 RNA and a standard 
curve was run in parallel using a positive control plasmid (Integrated 
DNA Technologies) coding for the nucleoprotein (N) of SARS-CoV-2. 
Using RNA extracted from Vero E6 cells either non-infected or infected 
with SARS-CoV-2 in vitro, we showed that the N1 and N3 primer/probe 
sets recognized solely the RNA from infected cells (Table 1). A recent 
study used a Dengue virus (DENV) sequence surrogate to determine 
PCR efficiency [5]. However, autochthonous cases of Dengue virus have 
been reported in Montpellier area (European Centre for Disease Pre-
vention and Control) and thus, we could not use this RNA sequence for 
control, as it could be contained naturally in the wastewater of Mon-
tpellier (through infected mosquito eggs for instance). In contrast, 
Ebola virus has not reached Europe, and hopefully never will, and 
therefore, no Ebola RNA would “contaminate” our PCR efficiency 
reading. Here, we used a sensitive primer/probe set previously de-
scribed [9] that target the complementary DNA of the VP40-encoding 
RNA of Ebola virus (Zaire strain) to assess the RT-qPCR efficiency in-
trinsic to each sample. First, we showed that the Ebola standard (Ebo 
Std) primer/probe set was not detecting RNA from SARS-CoV-2-in-
fected Vero E6 cells (Table 1). Using water samples at the inlet or the at 
t WWTP of the Montpellier metropolitan area collected on June 15th, 
we found that the Ebo Std primer/probe set gave no signal while the 
primer/probes N1, N3, and RLP27 (targeting the human rlp27 gene) 
returned positive signals (Table 1). In comparison, the nearby WWTP of 
Murviel-lès-Montpellier, treating the wastewater from 2000 in-
habitants, and a Montpellieran household in which no one was sick nor 
had symptoms, were negative for SARS-CoV-2 RNA on May 29, 2020. 
Collectively, these data show that N1 and N3 are relatively sensitive 
and specific for SARS-CoV-2 RNA detection. 

A synthetic RNA sequence of 91 nucleotides (gcagaucgaauccacu-
caggccaaucuauggugaaugucauaucgggccccaaagugcuaaugaa-
guuuggcuuccucuaggugucggcag) derived from the VP40-coding gene of 
Ebola virus and recognized by the above-mentioned Ebo Std primer/ 
probe set was purchased (Integrated DNA Technologies) to be used as 
an internal normalization standard. Standard curves were run using the 
N control plasmid (N1 and N3 primer/probe sets) or the Ebo Std RNA 
(Ebo Std primer/probe set) to estimate copy numbers (Fig. 1). Of note, 
the Ebo Std primer/probe set was less sensitive than N1 and N3, 
probably because the Ebo Std synthetic template RNA is relatively 
fragile and short (91 nucleotides). 

Next, we measured the SARS-CoV-2 RNA levels using N1 and N3 
primer/probe sets in wastewater collected at the inlet of of the main 
WWTP of the Montpellier metropolitan area on May 7th, 18th, 26th, 
June 4th, 15th, 25th, and July 20th (Fig. 2A). Our data highlights that 
the wastewater from the three later dates (June 15th, 25th, and July 
20th) contained about fifty-fold more SARS-CoV-2 RNA than from 
previous dates. We confirmed that our RT-qPCR reaction was working 
properly for each sample using Ebo Std. Sample-to-sample variation of 

PCR efficiency was negligible compared to the magnitude of the SARS- 
CoV-2 RNA increase observed, as depicted by the similar curves of raw 
versus corrected datasets (Supplementary Fig. S1). Similarly, inlet water 
flowrate entering the WWTP was varying by less than 25% and rain 
precipitations (Montpellier wastewater network is partially unitary) 
were also very low (between 0 and 2 mm of rain on the 24 h preceding 
sample collection). These variables were not incorporated in the cal-
culations because they are negligibly impacting the shape of the curve. 
Moreover, the calculations required for thorough data normalization 
are not trivial. 

We then put in perspective the amount of SARS-CoV-2 RNA in 
Montpellier wastewater (Fig. 2B; purple line) with the number of new 
COVID-19 cases weekly recorded in the Hérault department (> 40% 
inhabitant living in the Montpellier metropolitan area). Interestingly, 
an 3–4 times increase in the number of newly diagnosed COVID-19 
patients was starting early July compared to May (Fig. 2B; green line). 
Of note, the outlier 58 newly diagnosed COVID-19 patients from week 
17–23 May is surprisingly high, which may be linked to readjustments 
following the creation of a new virological testing database as of May 
13 (the former public database reporting only 25 cases). In contrast to 
new COVID-19 cases, the number of hospitalized COVID-19 patients 
kept decreasing over the same period (Fig. 2B; blue line). This later 
observation is less relevant to measure the immediacy of the epidemic's 
resurgence as this parameter suffers high patient-to-patient variability. 

The surge in the number of new COVID-19 patients started roughly 
2–3 weeks after the increase of SARS-CoV-2 RNA levels in wastewater 
(Fig. 2B). Our data are reminiscent of a recent Spanish study, in which 
the authors could detect SARS-CoV-2 RNA in wastewater several weeks 
before the first COVID-19 cases were reported [8]. However, they could 
not see a correlation between SARS-CoV-2 RNA levels in wastewater 
and the number of newly diagnosed COVID-19 patients. Along the same 
lines, Medema & colleagues showed a correlation between the cumu-
lative cases of COVID-19 and SARS-CoV-2 RNA although the data were 
not correlated as a function of time [5]. A work in Paris, France is 
ongoing to further determine the temporal correlation between waste-
water SARS-CoV-2 RNA levels and COVID-19 epidemiological features 
[14]. 

In conclusion, we report effective detection of SARS-CoV-2 RNA in 
the wastewater of Montpellier area upstream of the treatment plant and 
identified an increase of the amount of detected viral RNA mid-June, 
associated with a rising number of newly identified COVID-19 cases in 
the department. Although a delayed correlation may exit, further in-
vestigations are required to better characterize the intricate relation-
ship between these two variables. Indeed, we are unable at this stage to 
determine whether this increase announces an upcoming relapse of the 
epidemics in the area or relates to intrinsic SARS-CoV-2 RNA variations 
associated with uneven virus shedding (from patient-to-patient and 
depending on the stage of the disease for a given patient). Moreover, 
various other parameters might also impact these results, such as 
people from distant clusters moving to second homes and tourist ac-
commodation, the chronic underestimation of prevalence rates, or local 
variability in the geographical pattern of virus spread. These hy-
potheses are non-exclusive and future multiparametric investigations 
are required to routinely use wastewater surveillance as a powerful 
predictive tool for ongoing and future epidemic outbreaks. 

Supplementary data to this article can be found online at https:// 
doi.org/10.1016/j.onehlt.2020.100157. 
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Table 1 
Specificity of the primer/probe sets from in vitro SARS-CoV-2 infected cells. The 
Table shows the cycle threshold (Ct) of individual RT-qPCR reaction. The table 
shows representative data performed in duplicates from at least two in-
dependent experiments. “No Ct” indicates that no signal was detected over 
40 cycles. nt: not tested.       

Primer/probe set N1 N3 Ebo Std RLP27  

RNA from non-infected cells No Ct No Ct No Ct nt 
RNA from SARS-CoV-2 infected cells 19 17.4 No Ct nt 
Water samples collected upstream of the 

Montpellier WWTP 
36.4 37.6 No Ct 30.9 
No Ct 37.3 No Ct 30.2 

Water samples collected upstream of the 
Murviel-lès-Montpellier WWTP 

No Ct nt nt 39.0 
No Ct nt nt 34.5 

Sample collected in Montpellier household 
wastewater 

No Ct nt nt 24.6 
No Ct nt nt 27.5 
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