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Abstract

Summary: ChemBioServer 2.0 is the advanced sequel of a web server for filtering, clustering and networking of
chemical compound libraries facilitating both drug discovery and repurposing. It provides researchers the ability to
(i) browse and visualize compounds along with their physicochemical and toxicity properties, (ii) perform property-
based filtering of compounds, (iii) explore compound libraries for lead optimization based on perfect match sub-
structure search, (iv) re-rank virtual screening results to achieve selectivity for a protein of interest against different
protein members of the same family, selecting only those compounds that score high for the protein of interest, (v)
perform clustering among the compounds based on their physicochemical properties providing representative com-
pounds for each cluster, (vi) construct and visualize a structural similarity network of compounds providing a set of
network analysis metrics, (vii) combine a given set of compounds with a reference set of compounds into a single
structural similarity network providing the opportunity to infer drug repurposing due to transitivity, (viii) remove
compounds from a network based on their similarity with unwanted substances (e.g. failed drugs) and (ix) build cus-
tom compound mining pipelines.

Availability and implementation: http://chembioserver.vi-seem.eu.

Contact: zcournia@bioacademy.gr or georges@cing.ac.cy

1 Introduction

Despite the improvement of available technologies in the pharma-
ceutical industry, the cost of commercializing a new drug doubles
every 9 years (Scannell et al., 2012). Designing novel organic com-

pounds in a systematic fashion is a daunting task as it has been esti-
mated that there can be up to 1060 molecules with drug-like
properties (Polishchuk et al., 2013). One of the initial stages in drug

development is to explore the chemical space using compound libra-
ries that attempt to capture its vastness with a small subset of very
diverse molecules. Generating these libraries through exploration of

this space is a challenge in itself, and several researchers have tackled
the problem through different computational approaches, such as

exhaustive search (Gómez-Bombarelli et al., 2016), genetic algo-
rithms (Virshup et al., 2013) and recently, deep neural networks
(Gómez-Bombarelli et al., 2018). Once a sufficiently large and di-
verse library of compounds is obtained, its components are virtually
screened against a desired target to predict their free energy of bind-
ing (Lionta et al., 2014). This initial prediction is of paramount im-
portance; in order to save both time and resources the initial library
is narrowed down to only the best scoring molecules that are
selected for further screening using more detailed computational
models, filters and experimental assays. This approach has been
demonstrated to enhance the success rate of virtual screening experi-
ments as demonstrated in Lionta et al. (2014) and Athanasiadis
et al. (2012).
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One issue related to drug discovery is the problem of specificity.
The complexity of a cell is still far beyond the reach of current
biomolecular simulations capabilities, while drug targets are never
found in isolation. Therefore, a compound that binds with a strong
affinity to a specific target could also have other off-target interac-
tions, leading to undesired side effects. This is very often the case for
protein families: groups of evolutionarily related proteins that share
structural similarities.

On the other hand, already existing drugs might prove useful
against a disease outside their initial target spectrum. Drugs with
high structural similarity imply similar mode of action against simi-
lar targets (Campillos et al., 2008). As highlighted in the study of
Zhang et al. (2014), drug similarity analytics, including chemical
structure similarity, aim to identify candidate drugs, which display
similar pharmacological characteristics to the drug of interest. Drug
repurposing studies using tools based on drug structural similarity
have already been performed (Gottlieb et al., 2011; Li and Lu,
2012). A drug–drug network with nodes linked by their pairwise
structural similarities shows direct association of compounds allow-
ing the researcher to either choose or filter out compounds based on
these relations, as an additional filtering method.

ChemBioServer (Athanasiadis et al., 2012) is a very successful
application that has been continuously supported by our Groups
and is gaining attention from the scientific community (for the last
11 months, from July 2018 to June 2019, it has an average of 8749
hits per month). We have updated the initial version of this server
with (i) a functionality that re-ranks virtual screening results based
on ensemble docking screenings, i.e. screening the same compound
library against different protein members of the same family, select-
ing only those compounds that score high for the protein of interest,
(ii) a group of networking tools in order to allow researchers to cre-
ate networks of compounds and provide useful network metrics, (iii)
a functionality that infers potential drug repurposing based on struc-
tural similarity and (iv) a filtering functionality to filter out com-
pounds that are similar to unwanted substances (e.g. failed drugs of
a clinical trial).

2 Application

In this section, we describe the updates in ChemBioServer 2.0.

2.1 Filtering
The ‘Filtering’ section of ChemBioServer 2.0 allows researchers to
browse and filter compounds based on intra-ligand steric clashes,
unwanted toxicophores and desirable or undesirable chemical moi-
eties or physicochemical properties. In this update, the functionality
‘Re-ranking for Ensemble Docking’ has been added to this group of
actions. Very often users need to select compounds that rank high
for their target of interest but low for evolutionarily related proteins
with similar binding sites (e.g. in a set of protein kinases) in order to
avoid potential side effects. Thus, they employ cross-docking virtual
screening in multiple receptor structures to identify compounds that
will be predicted to bind only to the receptor of interest and not to
receptors of the same protein family (Amaro et al., 2018).
ChemBioServer 2.0 can post-process cross-docking results and auto-
matically re-rank virtual screening output to reveal compounds that
rank high for the protein of interest in seconds. To accomplish this,
first, the user uploads virtual screening results for the target(s) of
interest using the ‘Upload target file(s)’. Multiple file upload is
allowed as users may choose to dock a chemical library in multiple
conformations of a given protein. In the next step, the user can up-
load virtual screening results in SDF format, including docking
scores, for protein structures of the same family. The chemical li-
brary used for virtual screening should be the same for all protein
structures. ChemBioServer 2.0 then re-ranks and generates a filtered
list of compounds that rank high for the target of interest and low
for undesired targets (based on the provided docking scores).

The re-ranking algorithm is equipped with three compound se-
lectivity methods for the target protein: automatic, manual or based
on minimum desired docking score difference of the compound set.

In all three methods, the user has to specify the minimum number of
compounds that should be retrieved from the re-ranking procedure.
The automatic method detects high-scoring docked compounds for
the target of interest that have a low docking score for the undesired
protein targets. It thus starts by defining low and high docking score
cutoffs as the top 1% best scoring compounds for the target(s) and
the top 1% worst scoring compounds for the rest of the proteins, re-
spectively. These cutoffs are iteratively relaxed using 1% increment
until the minimum number of user selected compounds meets the fil-
ter conditions. The manual method provides more flexibility, as the
user manually specifies the low and high docking scores as cutoffs
and a direct search is performed. The third method provides an al-
ternative way to define compound specificity for a given protein tar-
get. Often, the absolute values of docking scores as cutoffs might
not be as important as the actual predicted free energy difference
(docking score) between the compounds for each protein. The larger
this difference, the more selective the compounds will be. Therefore,
with the ‘Score Difference’ selection from the Method Selection tab
the user can specify a desired level of energy difference, and the pro-
gram will proceed in a similar fashion to the automatic procedure. It
will start by defining the top 1% lowest scoring compounds for the
target protein and the second cutoff will be set above by the given
score difference. While the number of compounds that pass this fil-
ter is below the minimum number of compounds specified, the low
energy cutoff will be gradually increased by 1% steps, and the high
energy cutoff will always be at least above the set score difference
(in kcal/mol). These two last methods are not guaranteed to succeed,
as there might be no compounds that meet the selection criteria
defined by the user. In such case, the program will fall back to the
automatic method. Filtered compounds are available for download
in CSV format. The algorithm uses the Pandas Python package
API7. One of the three methods can be chosen and corresponding in-
put boxes appear. The input files are stored in the server and ana-
lyzed by calling a Python script through PHP. Results are stored for
a week and a link to download them is presented to the user before
executing the analysis.

2.2 Clustering
ChemBioServer 2.0 still features the two clustering methods that
were initially included under the ‘Clustering’ labeled section; hier-
archical and affinity propagation clustering. Both methods return
structural clusters of the input compounds to the users together with
their distance matrix as well as a graphical visualization. The affin-
ity propagation clustering also returns exemplar compounds for
each cluster.

2.3 Networking
The ‘Networking’ section of ChemBioServer 2.0 features all
similarity-based network-related actions that have been imple-
mented to this update. Similarity networks present a visualization
of the strongest connections between substances based on their
structural similarity. Nodes that are close to each other imply simi-
lar mode of action in a pharmaceutical setting. Apart from the hol-
istic type of visualization, network analysis offers insights
regarding the neighborhood of each node and the topology of the
network reveals nodes that may connect distinct subnetworks of
compounds, inferring multiple modes of action for some com-
pounds. Moreover, key drug players can be highlighted based on
network properties such as degree, strength or betweenness, as
structural representatives of a highly connected group of com-
pounds. Often, researchers need to discover new uses for existing
drugs against diseases, (i.e. drug repurposing) in order to lower the
cost of drug design. Structural drug repurposing identifies chemical
similarity of approved drugs with an inhibitor of the desired drug
target; these drugs have a high chance to bind to the desired drug
target. For this reason, fast screening of drug-like libraries to find
chemical similarity with known drugs is important for drug repur-
posing. On the other hand, drug candidates might be deemed in-
appropriate for further studies based on structural criteria such as
similarity to toxic substances or previously failed drugs from

ChemBioServer 2.0 2603



clinical trials. The similarity edge lists derived from
ChemBioServer’s networking actions can be further explored via
network analytics applications. Five networking functionalities are
implemented and labeled ‘Structural Similarity Network
Visualization’, ‘Structural Similarity Network Analysis’, ‘Combine
two SDF files in a Network’, ‘Attach similar-only nodes to
Network’ and ‘Remove nodes from Network, based on similarity’.
In ‘Structural Similarity Network Visualization’ the user uploads
an SDF file and can choose a similarity metric between ‘Tanimoto’,
‘Euclidean’, ‘Cosine’, ‘Dice’ and ‘Hamming’ and a cutoff value for
the edges (based on the resulting similarity values). According to
the bibliography, the Tanimoto, Dice and Cosine metrics yield
better results than the Euclidean metric regarding cheminformatic
similarity calculations (Bajusz et al., 2015). Another study has also
deemed the Tanimoto metric superior to the Hamming metric
when used for the classification of binary spectra based on similar-
ities (Woodruff et al., 1975). After the inputs are processed, the
network is visualized and the similarity matrix between all input
compounds can be downloaded. This matrix is returned through
the function calcDrugFPSim from the Rcpi package, which calcu-
lates the drug molecules’ similarity derived from their molecular
fingerprints. A molecular fingerprint is a series of bits that repre-
sent the presence or absence of chemical substructures in a mol-
ecule. The molecular fingerprints are extracted from the respective
mol structure format types via the extractDrugMACCS function.
The mol structures are the parsed version of the input SDF or mol
files and are calculated via the readMolFromSDF function. The
output graph is drawn in the user interface via the javascript li-
brary vis.js. ‘Structural Similarity Network Analysis’ uses the same
type of input values and the calculated similarity matrix is used as
an adjacency matrix in order to create a graph using the igraph
package in R. Node metrics ‘Degree’, ‘Strength’, ‘Transitivity’ and
‘Eigenvector Centrality’ are then presented in a sortable table, after
execution.

The ‘Combine two SDF files in a Network’ action allows the
user to test an SDF file against another reference SDF set, coloring
the two groups of compounds differently, while allowing users to
download the initial similarity matrix of both input sets. In the
‘Attach similar-only nodes to Network’ tab, a main network is cre-
ated for the reference set with a given edge threshold, while com-
pounds from the test set are attached to the main network via
another edge threshold (e.g. stricter connections). Then, the user can
download the upper triangular adjacency matrix of the whole net-
work, as well as the edge list of the reference—test edges. Finally, in
the ‘Remove nodes from Network, based on similarity’ tab, a main
network is created for the reference set with a given edge threshold,
while compounds similar to ones from the test set (second edge
threshold input) are removed from the network, together with their
edges. Once again, the user can download the upper triangular adja-
cency matrix of the new network, as well as the edge list of the refer-
ence—test edges that accounted for the removal of the reference
nodes.
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