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Abstract

Catalytic subunits of PI3K play a critical role in growth factor signaling and survival by 

phosphorylating inositol lipids. We found that PI3K Class IA p110α and p110β have distinct 

functions in myoblasts. Inhibition of p110α reduced IGF-I-stimulated Akt activity and prevented 

IGF-I-mediated survival in H2O2-treated cells; in contrast, siRNA knockdown of p110β increased 

IGF-I-stimulated Akt activity. However, inhibition of p110β catalytic activity did not increase 

IGF-I-stimulated Akt activity, suggesting a role for p110β protein interactions rather than 

decreased generation of phosphoinositides in this effect. Increased Akt activity in p110β-deficient 

myoblasts was associated with diminished ERK activation as well as ERK-dependent IRS-1 

636/639 phosphorylation, findings we show to be independent of p110β catalytic function, but 

associated with IGF-IR endocytosis. We also report that IGF-I protects myoblasts from H2O2-

induced apoptosis through a mechanism that requires p110α, but may be independent of Akt or 

ERK under conditions of Akt and ERK inhibition. These observations suggest that both p110α 

and p110β are essential for growth and metabolism in myoblasts. Overall, our results provide new 

evidence for the roles of p110 isoforms in promoting cellular proliferation and homeostasis, IGF-

IR internalization, and in opposing apoptosis.

Introduction

Members of the phosphoinositide-3-OH kinase (PI3K) class of enzymes generate 

phosphoinositol products that act as second-messengers in a number of intracellular 

signaling cascades (1). PI3K catalytic enzymes are categorized into three classes by their 

structure, substrate specificity, and lipid products (2). Members of the Class IA PI3Ks (α, β, 

and δ) are heterodimers consisting of a 110 kDa catalytic subunit and an 85, 55, or 50 kDa 

regulatory subunit (2, 3). Activation of PI3K leads to proliferation and pro-survival effects; 
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however, dysregulation of PI3K signaling can promote aberrant proliferative signals leading 

to cellular transformation (4-7).

Examination of the ubiquitously expressed PI3K Class IA p110α and p110β catalytic 

subunits has revealed distinct and redundant roles for each depending on cellular context 

(8-10). Heterozygous knock-in of catalytically-inactive p110α or pharmacological inhibition 

of p110α with a small-molecule inhibitor has been shown to negatively regulate growth, 

metabolism, and growth factor signaling in mice (10, 11). p110β has been shown to mediate 

cell growth and development, DNA replication, insulin sensitivity, tumorigenesis, and G-

protein-coupled receptor-activated signaling (12-15). Recently, a kinase-independent, 

scaffolding role of p110β has been suggested; indeed, this kinase-independent function may 

play a role in cell proliferation and clatharin-mediated endocytosis (13, 16). Mice doubly 

heterozygous for p110α and p110β showed mild glucose intolerance and reduced sensitivity 

to insulin challenge associated with p85 protein instability, but showed no difference in 

insulin-stimulated Akt phosphorylation or activity in liver or muscle as compared to control 

mice (17).

Insulin-like growth factor I (IGF-I) is a hormone that promotes proliferation, differentiation, 

and survival in a number of cells types mediated principally through PI3K/Akt, and 

Ras/Raf/MEK/ERK pathways (18-20). IGF-I/PI3K signaling has been shown to promote 

survival in several apoptosis-inducing models such as serum withdrawal and oxidative stress 

(21-23); however, the specific PI3K and Akt isoforms involved in survival have yet to be 

established. Likewise, PI3K/Akt-independent compensatory survival mechanisms have yet 

to be fully resolved. We report here that C2C12 myoblasts transfected with siRNA against 

p110α, p110β, or a combination of both, displayed differential phenotypes with respect to 

cell growth and PI3K-dependent signaling. Furthermore, we found that IGF-I stimulation 

differentially regulated Akt phosphorylation and activation in a PI3K- and Akt- isoform-

specific fashion, and that p110α was the principal Class IA PI3K mediating IGF-I anti-

apoptotic actions. Finally, we report that knockdown p110β negatively regulates IGF-IR 

internalization and ERK activation, which was associated with relief of feedback inhibition 

of PI3K-dependent signal transduction.

Results

Reduced cell proliferation in cells treated simultaneously with siRNA against p110α and 
p110β is associated with increased apoptotic markers, whereas reduced cell proliferation 
in cells treated with siRNA against p110β alone is not

We first determined that both p110α and p110β are expressed at the mRNA and protein 

level in C2C12 myoblasts (Figure 1a), but that p110γ and p110δ were not expressed 

appreciably. In order to establish efficacy of siRNA-mediated knockdown of p110α and 

p110β, cells were transfected with siRNA against p110α (si-p110α), p110β (si-p110β), or 

non-targeting control siRNA (si-Con). Addition of si-p110α resulted in ∼60-65% reduction 

in p110α mRNA, while addition of si-p110β resulted in ∼65% reduction in p110β mRNA 

(Figure 1b). mRNA levels of p110β were unaffected by p110α knockdown, and mRNA 

levels of p110α were unaffected by p110β knockdown. To determine whether cell growth 

was affected by knockdown of p110α, p110β, or the combination (si-p110α + β), cells were 
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counted at 24 and 48 hours after transfection. Addition of si-p110β and si-p110α + β caused 

a reduction in cell number at 48-hours for si-p110β (P<0.05) and at 24- and 48-hours for si-

p110α + β (Figure 1c). This reduction in cell number was associated with increased cleavage 

of Caspase-3 and Poly (ADP)-ribosyl-polymerase (PARP), a molecule downstream of 

Caspase-3 and an indicator of apoptosis (Figure 1d)(24). Because knockdown of p110α can 

reduce PIP(3,4,5)3 levels (11), and p110β may act to maintain basal levels of PIP(3,4,5)3 

(10), we analyzed Akt (also known as protein kinase B), an AGC kinase family members 

whose activation is known to be regulated by phosphoinositides (25). Forty-eight hours after 

transfection, levels of phospho-Akt in the hydrophobic domain (Ser473/474/472 in Akt1, 

Akt2, and Akt3, respectively; hereafter referred to as S473) showed decreased 

phosphorylation after treatment with p110α; conversely, phospho-Akt Ser 473 levels were 

increased after treatment with si-p110β alone (Figure 1e). The levels of phosphorylated Akt 

did not correlate with total p85 levels, as reductions in total p85 were observed in p110α- 

and p110β- deficient cells, but were even further reduced when cells were treated 

simultaneously with si-p110α and si-p110β (Figure 1e).

RNAi knockdown of p110α reduces, and knockdown of p110β increases, IGF-I-stimulated 
Akt phosphorylation and activity

Because IGF-I can mediate pro-survival effects through Akt, we sought to determine the 

responsiveness of p110α- and p110β-deficient cells to IGF-I. Addition of IGF-I to cells 

transfected with either si-p110α, si-p110β, or si-p110α + β resulted in increased Akt 

phosphorylation at the activation loop (Thr308/309/305 in Akt1, Akt2, and Akt3, 

respectively; hereafter referred to as T308). This increase was reduced in si-p110α-treated 

cells, but further increased in si-p110β-transfected cells (Figure 2a). IGF-I-stimulated 

phospho-Akt in cells treated with both si-p110α and p110β together was not statistically 

lower than si-Con cells treated with IGF-I (Figure 2a). Because the sequences surrounding 

the Akt active site (T308) and hydrophobic motif (S473) residues are similar between 

isoforms, and because the antibody cannot discriminate between isozymes, we performed in 

vitro kinase assays to determine relative contributions of each isoform. IGF-I-stimulated 

Akt1 activity was reduced in cells transfected with si-p110α and si-p110α + β; conversely, 

Akt1 activity was increased in response to IGF-I in cells treated with si-p110β (Figure 2b). 

Only cells transfected with si-p110α alone showed reduced Akt3 activity, and there was no 

increase or decrease in Akt3 activity in cells transfected with either p110β or p110α + β, 

respectively. Akt2 activity was unchanged by any treatment, and long exposures (shown in 

Figure 2b) likely represent background. Taken together, these data suggest that knockdown 

of p110α reduces IGF-I-stimulated Akt phosphorylation and activation of both Akt1 and 

Akt3. IGF-I-induced Akt1 activity was greater in si-p110β-transfected cells than IGF-I-

stimulated Akt1 activity in control cells, which correlated with increased Akt 

phosphorylation. Yet, IGF-I-stimulated Akt3 activity did not show this elevation, suggesting 

that the increase in total Akt phosphorylation may be the result of increased Akt1 activation 

in p110β-deficient cells. On the other hand, in cells transfected with si-p110α + β, Akt1 

activity was diminished, but Akt3 activity was not, suggesting that the increase in IGF-I-

stimulated Akt phosphorylation in si-p110α + β-treated cells as compared to si-p110α alone, 

reflects increased Akt3 activation.
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To test whether this increased Akt activity in p110β knockdown cells correlated with 

increased p110 association with components of the IGF-IR signaling complex, we 

performed immunoprecipitation experiments. Treatment of cells with IGF-I promoted 

p110α and p110β association with IRS-1 and IGF-IR at early time points following 

administration (Figure 3a, left). In p110α-deficient cells, IGF-I-induced association of both 

p110α and p110β with IGF-IR and IRS-1 was reduced, whereas in p110β-deficient cells, 

association of p110α with IGF-IR and IRS-1 was enhanced (Figure 3a, right). Simultaneous 

knockdown of p110α and p110β prevented IGF-I induced association of both p110α and 

p110β with IGF-IR and IRS-1. These findings suggest that IGF-I-induced association of 

p110α with IGF-IR and IRS-1 is enhanced when p110β levels are reduced. We next 

determined whether p110α or p110β deficiency affected IGF-I-stimulated PI(3,4,5)P3 

production. IGF-I promoted PI(3,4,5)P3 generation from p110α and p110β 

immunoprecipitates, and this effect was reduced when cells were deficient in the respective 

isoform (Figure 3b). Levels of PI(3,4,5)P3 in IGF-I-treated cells transfected with si-p110β 

were intermediate between unstimulated and IGF-I-stimulated control cells. Altogether, 

these data suggest that Akt activation correlates with levels of p110/IGF-IR complex, but in 

cells deficient in p110β, mechanisms other than PI(3,4,5)P3 production may contribute to 

elevated Akt activation.

Knockdown of p110β is associated with decreased ERK signaling and IGF-IR 
internalization

To further elucidate the mechanism whereby Akt phosphorylation and activity is increased 

in p110β-deficient cells, as well as to further characterize intracellular responses to p110 

catalytic subunit deficiency, we examined other molecules involved in canonical IGF-I 

signaling pathway. In cells deficient in p110β alone, or deficient in p110α and p110β, we 

found that phosphorylation of ERK was reduced in the basal state as well as after 

stimulation with IGF-I (Figure 4a). Additionally, IGF-I-stimulated phosphorylation of IRS-1 

as Ser 636/639 was attenuated under conditions of reduced p110β, a finding consistent with 

previous work suggesting a dependence on ERK for IRS serine phosphorylation at this site 

(26).

To determine whether decreased ERK phosphorylation seen in p110β-deficient cells was 

due to an overall decrease in p110β protein levels or due to decreased catalytic activity, cells 

were treated with increasing concentrations of TGX-221, an inhibitor of p110β catalytic 

function. Addition of TGX-221 reduced LPA-induced Akt phosphorylation in a dose-

dependent fashion, but did not affect IGF-I-stimulated ERK phosphorylation at any 

concentration tested (Figure 4b). These data suggest that the decreased levels of 

phosphorylated ERK observed in p110β-deficient cells may result from a loss of total p110β 

rather than loss of catalytic function, a finding consistent with a scaffolding action of p110β.

To address whether this catalytic-independent function of p110β mediates IGF-IR 

internalization, we examined the presence of IGF-IR at the cell surface after IGF-I treatment 

in the absence or presence of TGX-221 or si-p110β. Treatment of myoblasts with IGF-I 

resulted in a reduction in cell-surface IGF-IR that was maximal after 30-minutes (Figure 4c, 

left). In IGF-I-stimulated cells pre-treated with 100 nM TGX-221, IGF-IR internalization 
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was similar to IGF-I treatment alone; however, in cells deficient in p110β, IGF-IR did not 

internalize in response to IGF-I (Figure 4c, right). These findings suggest that at least one 

kinase-independent role of p110β in myoblasts is to mediate IGF-IR internalization.

IGF-I acts through PI3K p110α to prevent H2O2-induced apoptosis

To establish whether the differential signaling effects of p110α and p110β knockdown 

extend to physiological actions in a pro-apoptotic milieu, cells were examined to determine 

whether knockdown of p110 isoforms was sufficient to inhibit IGF-I from preventing 

oxidative stress-induced cell death. To first test this, we employed an inhibitor specific to 

PI3K p110α (“p110αi”) (27), since broad-spectrum PI3K pharmacological inhibitors such as 

LY294002 and wortmannin do not discriminate between isoforms. Caspase-3 and PARP 

cleavage were increased in cells treated with 400μM H2O2 for 4-hours, an effect that was 

completely prevented by a 30-minute pre-treatment with IGF-I (Figure 5a and 5b, lanes 1-4). 

Caspase-3 and PARP cleavage was increased in p110αi and p110αi + H2O2 -treated cells, 

and p110αi completely prevented IGF-I from inhibiting apoptosis (Figure 5a and 5b lanes 

7-8; compare to lanes 1-2). In contrast, treatment of myoblasts with IGF-I in the presence of 

the p110β inhibitor TGX-221 did not prevent IGF-I from reducing H2O2-stimulated 

Caspase-3 and PARP cleavage (Figure 5c, right).

To confirm these results, we employed siRNA directed against p110α and p110β. Cells were 

pre-treated with IGF-I, treated with H2O2, or both in the presence or absence of si-p110α, si-

p110β, or si-p110α + β. Similar to the inhibitor results, IGF-I was unable to prevent H2O2-

induced cleavage of caspase-3 and PARP in cells deficient in p110α whether transfected 

with si-p110α alone (Figure 5d left) or in combination with si-p110β (Figure 5d, right). si-

p110β-treated cells appeared partially resistant to H2O2-induced apoptosis (Figure 5d, 

middle), possibly a result of increased Akt activation (Figure 2). Taken together, these data 

suggest that IGF-I acts through PI3-K p110α isoform to prevent H2O2-induced apoptosis in 

myoblasts exposed to oxidative stress.

Since reduction of p110β effectively inhibited phosphorylated ERK levels while 

simultaneously increasing Akt activation, we next tested whether Akt was a primary survival 

intermediate in p110β knockdown cells. Maximal inhibition of IGF-I-stimulated 

phosphorylation of Akt S473 was obtained at a concentration of 10 μM using a compound 

specific for Akt (“Akti;” ref. (28)) (Figure 5e, left). IGF-I was unable to prevent H2O2-

induced apoptosis in p110β-transfected cells (Figure 5e, right) also treated with Akti, thus 

confirming that a functional Akt pathway is necessary for survival in p110β-deficient 

myoblasts.

IGF-I acts through alternative signaling pathways to prevent apoptosis induced by 
deficiency of p110α alone, p110α + p110β, or by H2O2

We noted that knockdown of p110α or p110α + β increased Caspase-3 and PARP cleavage 

(Lanes 1-2 compared to lanes 5-6 Figure 5a, 5b, and 5d), an effect that was reversed by IGF-

I administration. To determine the identity of pathway(s) or molecule(s) involved in this 

effect, cells were treated with an inhibitor of Akt (Akti) or of MEK (U0126). Cells were pre-

incubated with inhibitors of increasing concentrations for one hour, and then exposed to 
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IGF-I for 4.5 hours. Ten micromolar U0126 completely prevented IGF-I-stimulated 

phosphorylation of p42/p44 ERK at 30-minutes, and 4.5-hours after IGF-I administration, 

levels of phospho-ERK remained slightly below that of IGF-I-naive cells (Figure 6a, left). 

Cells treated with si-p110α or si-p110α + β were pre-incubated with either Akti or U0126 

and then stimulated with IGF-I for 4.5 hours. Pharmacological blockade of MEK in IGF-I-

treated p110α-deficient cells prevented IGF-I-induced survival, and blockade of Akt 

increased p110α-deficiency induced apoptosis beyond that of the MEK inhibitor (Figure 6a, 

right). However, in p110α + p110β-deficient cells, inhibition of Akt, but not MEK, fully 

prevented IGF-I pro-survival signaling. These data suggest that when p110α, and by 

extension Akt activation, is reduced, IGF-I survival signaling compensates by increased flux 

through MAPK pathway. On the other hand, when cells are deficient in both p110α and 

p110β, IGF-I signals primarily through Akt to promote survival.

Because IGF-I differentially acts through Akt and MEK pathways to promote survival from 

p110α and p110α + p110β- deficiency-induced apoptosis, we sought to determine whether 

these pathways were also involved in preventing H2O2-induced apoptosis. Blockade of 

either Akt, ERK, or the concurrent inhibition of both, did not prevent IGF-I from inhibiting 

Caspase-3 or PARP cleavage (Figure 6b). These data suggest that, although Akt and ERK 

pathways can compensate for each other in response to IGF-I, at least one more mechanism 

exist through which IGF-I can exert anti-apoptotic effects in response to oxidative stress in 

myoblasts.

Discussion

In this work, we report that myoblasts deficient in p110α and/or p110β show disparate 

growth and intracellular signaling phenotypes, corresponding with differential regulation of 

Akt and ERK signaling pathways. One key observation was that knockdown of p110α 

inhibited, but knockdown of p110β promoted, the activation of Akt in an isoform-specific 

manner. Although p110β may play a secondary role in growth factor signaling by 

maintaining a basal pool of PI (3, 4, 5)P3 (10, 13), it is not generally thought to play a 

primary role in RTK-instigated signaling except under certain conditions such as PTEN loss, 

or in certain cell types (2, 29). Our results suggest that p110β deficiency leads to increased 

Akt activation through two separate mechanisms: First, reduced p110β levels enhance the 

IGF-I-induced association of p110α with IGF-IR and IRS-1. Second, reduced p110β levels 

inhibit phosphorylation of ERK and IRS-1 at S636/639, thereby relieving IRS-associated 

negative feedback. One intriguing finding was that increased IGF-I-stimulated Akt 

activation in p110β-deficient cells did not correlate with increased PI(3,4,5)P3 production, a 

finding consistent with previous results in skeletal muscle of insulin-stimulated p110α +/- /

p110β +/- mice (17). Those authors suggested that decreased p85 levels may contribute to 

insulin-sensitivity, and indeed, in our study we observed lowered p85 in p110β-deficient 

cells (Figure 1e).

Furthermore, our finding that serine phosphorylation of IRS-1 at S636/639, a site dependent 

on ERK (26) is reduced, is consistent with a relief of negative PI3K-signaling feedback (30). 

Since IGF-I-stimulated Akt activity did not statistically differ between control and p110α + 

p110β-deficient cells (Figure 2b), yet there was virtually no p110/IGF-IR/IRS-1 association 
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(Figure 2c, right), the loss of feedback inhibition in p110α + p110β-deficient myoblasts may 

explain the mechanism underlying the similarity in Akt activation. Indeed, in skeletal 

muscle of insulin-stimulated p110α +/- /p110β +/- mice, Akt phosphorylation was similar to 

that observed in muscle of insulin-treated wild type mice. It is possible that other 

mechanism(s) contribute to increased Akt activation in p110β-deficient cells, including 

decreased actions of Akt-specific phosphatases (31, 32), but whether activation of these 

phosphatases is reduced under these conditions remains to be investigated. Altogether, our 

observations suggest that increased IGF-I-stimulated Akt activity in p110β-deficient 

myoblasts may result from both an increase in p110α/IRS-1/IGF-IR association as well as 

decreased negative feedback to IRS-1 secondary to reduced ERK activation. That distinct 

Akt isoforms are differentially regulated suggests a high degree of fine-tuning in these 

processes. Figure 7 presents this signaling model diagrammatically.

The lower levels of ERK phosphorylation in p110β deficient cells may be reflective of 

decreased association of p110β with Ras, an upstream molecule in the MAPK signaling 

pathway; indeed, ERK activation has been shown to be attenuated under conditions where 

p110β cannot bind to Ras (4, 5). However, use of TGX-221, a compound that inhibits p110β 

catalytic activity, did not prevent ERK phosphorylation in response to IGF-I in this study. 

These results suggest that non-catalytic functions of p110β may be essential for ERK 

activation in myoblasts; in support of this, cells deficient in p110β also showed decreased 

IGF-IR internalization in addition to attenuated ERK signaling. This is in agreement with 

previous work suggesting a requirement for IGF-IR internalization for activation of 

upstream MAPK pathway components in CHO cells (33); additionally, p110β itself has been 

shown to modulate EGFR and transferrin uptake (13, 16). Taken together, these data and 

ours support the hypothesis of a kinase-independent function of p110β in IGF-IR 

internalization and signaling. Consequently, p110β may play a role in IGF-I-mediated 

processes in skeletal muscle such as progenitor cell proliferation, survival, and 

differentiation, which occur during muscle development and repair/regeneration.

In light of the findings above, it was not surprising that inhibition of p110α by means of 

pharmacological blockade or siRNA completely prevented IGF-I from reducing Caspase-3 

and PARP cleavage in response to H2O2, whereas TGX-221- or RNAi-induced silencing of 

p110β did not (Figure 5a-d). Akt is a critical mediator of anti-apoptotic signaling, acting to 

suppress apoptosis by phosphorylation and inactivation of pro-appoptotic molecules such as 

apoptosis-signal regulating kinase-1 (Ask1) (34), Bad (35), and FoxO3a (36). Because Akt 

signaling was reduced after p110α knockdown or treatment with p110αi, it would logically 

follow that suppression of Akt-targeted pro-apoptotic molecules would also be attenuated. 

Likewise, because Akt activation was elevated with p110β knockdown, and this was found 

to be necessary for survival, IGF-I-stimulated Akt actions would also be elevated.

Myoblasts deficient in p110α or p110α and p110β together showed increased Caspase-3 and 

PARP cleavage, an effect fully reversed by IGF-I. We found that inhibition of MEK 

prevented IGF-I from attenuating p110α-deficiency-induced Caspase-3 and PARP cleavage, 

and that inhibition of Akt caused apoptosis in excess of p110α deficiency alone. Inhibition 

of Akt, but not MEK, prevented IGF-I from attenuating p110α + p110β-deficiency-induced 

Caspase-3 and PARP cleavage (Figure 6a). These data suggest that IGF-I can act through a 
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MEK-dependent pathway to rescue cells from apoptosis associated with p110α deficiency, 

but that myoblasts under these conditions are more sensitive to loss of Akt, possibly 

resulting from the reduced Akt activation associated with p110α deficiency. Likewise, in 

cells simultaneously deficient in p110α and p110β, blockade of Akt prevented IGF-I from 

opposing apoptosis, whereas blockade of MEK had minimal effects. This is consistent with 

our findings that ERK activation is inherently reduced under conditions of p110β deficiency, 

whether alone or in combination with p110α reduction.

We found that IGF-I was still able to prevent H2O2 -induced apoptosis even under 

conditions of Akt and MEK blockade. However, our results also suggest a dependence on 

p110α. Therefore, our data collectively suggest that IGF-I is capable of preventing H2O2-

induced apoptosis through an Akt- and MEK-independent, but p110α-dependent 

mechanism. Since other AGC kinases are also regulated through p110α in response to IGF-

I, it is possible that one or several may contribute to opposing apoptosis. For example, 

serum- and glucocorticoid-inducible kinase 1 (SGK1) can phosphorylate and inhibit pro-

apoptotic FoxO3a at the same sites as Akt, although there exists a preference for some sites 

over others (37).

In conclusion, we found that knockdown of p110α and p110β have differential effects on 

cell growth, survival signaling, and Akt activation. We have defined a kinase-independent 

role for p110β in IGF-IR internalization and ERK phosphorylation, which is associated with 

negative feedback to the IGF-IR/IRS-1 signaling complex. Additionally, we identified 

p110α as the primary Class IA PI3K involved in IGF-I-mediated rescue from oxidative 

stress-induced apoptosis and that, in the absence of Akt and MEK-dependent signaling, IGF-

I can still prevent H2O2-induced apoptosis, but through a mechanism that requires p110α.

Materials and Methods

Materials

C2C12 murine myoblasts were purchased from ATCC (Manassas, VA). H2O2 and bovine 

serum albumin (fraction V) was purchased from Sigma (St. Loius, MO). rhIGF-I was 

purchased form Austral Biologicals (San Ramon, CA). Primary antibodies directed against 

p110β and GAPDH and HRP-linked secondary antibodies were purchased from Santa Cruz 

(Santa Cruz, CA); all other antibodies were obtained from Cell Signaling Technologies 

(Danvers, MA). PI3Kα inhibitor IV (“p110αi” in this manuscript, corresponds to figure 15e 

in ref (27)), TGX-221, Akt 1/2 inhibitor VIII (“Akti”), and U0126 were purchased from 

Calbiochem (San Diego, CA). LPA (18:1 oleoyl) was purchased from Avanti Polar Lipids 

(Alabaster, AL).

Cell culture conditions and siRNA transfections

C2C12 myoblasts were maintained in high-glucose DMEM containing 10% FBS and 

antibiotics (growth medium), with medium being replenished after 24-hours. Forty-eight 

hours after initial seeding cells were ∼95% confluent and unless otherwise indicated, 

experiments were conducted under these conditions (in growth medium). Pre-designed 

Silencer Select siRNAs for mouse p110α (ID# s71604), p110β (ID# s93108), and negative 

Matheny and Adamo Page 8

Cell Death Differ. Author manuscript; available in PMC 2010 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



controls (non-targeting siRNA ID# 4390843) were purchased from Ambion Inc. (Austin, 

TX). Cells (1.8 × 105/well in 6-well culture dish) were reverse-transfected with double-

stranded siRNA in antibiotic-free DMEM plus 10% FBS using Lipofectamine 2000 

according to manufacturer's instructions (Invitrogen). Twenty-four hours after reverse 

transfection, medium was changed to DMEM with 10% FBS containing antibiotics. RNA 

was isolated 48-hours after transfections using RNA-STAT (Tel-test, Friendswood, TX), 

quantified, and the level of silencing quantitated by real-time PCR as described later in this 

section. In some cases, protein was isolated 48h after transfection and the level of silencing 

determined by Western Blot.

Cell Counts

Medium was removed from plates and monolayers detached with 0.05% Trypsin-EDTA 

(Gibco). Cells were suspended in growth medium and counted in a hemacytometer chamber.

RNA Isolation, cDNA synthesis, and real-time PCR

Conversion of total RNA to single-strand cDNA was accomplished using the High-Capacity 

cDNA Archive Kit (P/N 4322171; Applied Biosystems, Foster City, CA). Briefly, 2 μg total 

RNA was reverse transcribed using random primers for the following incubation times: 25° 

C for 10 minutes, then 37° C for 2 hours. cDNA samples were stored at -80° C until use. 

TaqMan-MGB p110α (Mm00435673_m1), p110β (Mm00659576_m1), p110γ 

(Mm00445038_m1), p110δ (Mm00435674_m1) and B2M (Mm00437762_m1) probe and 

primers were purchased from Applied Biosystems as “Gene Expression Assays.” The real-

time PCR reaction was performed within an ABI 7500 thermal cycler. The fluorescence of 3 

to 15 cycles was set up as background. Data was collected at the annealing step of each 

cycle, and the threshold cycle (Ct) for each sample calculated by determining the point at 

which the fluorescence exceeded the threshold limit. The standard curve was calculated 

automatically via software by plotting the Ct values against each standard of known 

concentration and calculation of the linear regression line of this curve. Serially diluted 

amounts of RNA were used to establish standard curves. All samples were run in duplicate.

Protein extraction, immunoprecipitation, and Western immunoblot

C2C12 cells were harvested in ice-cold lysis buffer (20 mM Tris-HCl (pH 7.5), 150 mM 

NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM 

beta-glycerophosphate, 1 mM Na3VO4, 1 μg/ml Leupeptin, 1 mM PMSF, and 1: 100 

dilution of phosphatase inhibitor cocktails 1 and 2 (Sigma)). Homogenates were triturated 

through a small-bore needle, incubated on ice for 30 min, and then centrifuged at 14,000 × g 

for 10 min at 4°C. Protein concentrations were determined by the method of Bradford (38). 

For immunoprecipitations, 200ug of protein lysate were co-incubated with 4uL of respective 

antibody in 200uL cell lysis buffer with gentle rotation overnight at 4°C. 20uL of Protein 

A/G agarose slurry (Santa Cruz) were then added and rotated an additional 2 - 4 hours at 

4°C. Complexes were centrifuged at 14, 000 × g and washed 5 times in wash buffer before 

addition of 20uL 2× Laemmli buffer and then boiled for 5 minutes. For Western blotting, 

equal amounts of cell lysate proteins (typically 25μg) were electrophoresed through 

denaturing SDS-PAGE. Proteins were transferred to PVDF membranes (Millipore Corp., 
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Bedford MA). Membranes were incubated for 1 h in 5% dry milk solution in Tris-buffered 

saline plus 0.5% Tween-20 (TBST) and then incubated with the appropriate primary 

antibody at an appropriate dilution (as described in Table 1) overnight in 5% BSA in TBST. 

Membranes were washed three times in TBST followed by incubation with the appropriate 

secondary antibody and again washed three times. Membranes were incubated with 

enhanced chemiluminescence reagents (Thermo Fisher, Rockford, Il) and exposed to film.

Akt kinase assay

Immune complex-kinase assays were performed by a protocol from an assay kit purchased 

from Cell Signaling technologies. Cell lysates (200 μg) were incubated with anti-Akt1, anti-

Akt2, or anti-Akt3 antibody overnight at 4°C in cell lysis buffer. Immune complexes were 

then rotated for 2 – 4 h at 4°C with protein A-conjugated agarose beads (20 μl of 50% 

slurry/reaction) before being washed twice in cell lysis buffer and twice in kinase buffer (25 

mM Tris-HCl (pH 7.5), 5 mM beta-glycerophosphate, 2 mM dithiothreitol, 0.1 mM 

Na3VO4, 10 mM MgCl2). After resuspension in kinase assay buffer containing ATP and a 

GST-GSK-3 α/β fusion protein (residues surrounding GSK-3 α/β Ser21/9 

(CGPKGPGRRGRRRTSSFAEG)), the reaction was allowed to proceed at 30°C for 30 min. 

After the reaction was stopped by addition of concentrated SDS-PAGE loading buffer, 

samples were separated by SDS-PAGE and transferred to PVDF membranes as described 

above. Immunoblotting was performed using primary antibodies to phospho-GSK-3α/β 

provided in the kinase assay kit, followed by addition of HRP-conjugated secondary 

antibodies, detection by ECL, and exposure to X-ray film. Results were quantitated by 

densitometry.

Cell Surface Receptor

Analysis of IGF-IR at the cell surface was accomplished through use of a commercially 

available cell surface protein isolation kit (Pierce). Briefly, for each treatment, four 100mm 

culture dishes were seeded with C2C12 cells and transfected as described above. Cells were 

labeled with Sulfo-NHS-SS-biotin for 30-minutes and the reaction quenched with the 

provided quenching solution. Cells were transferred to 50 mL conical tubes, centrifuged, and 

washed with TBS. Lysis buffer provided in the kit was added to cell pellets and transferred 

to microfuged tubes and briefly sonicated every 10-minutes for 30-minutes at a power of 1.5 

followed by clarification of supernatant which was quantified and 1.4 g added to provided 

spin columns. At this point, some protein lysate was stored at -80° C for analysis of total 

IGF-IR or GAPDH. Biotin-labeled proteins were washed and isolated with NeutrAvidin 

Agarose (provided in kit) with end-over-end mixing for one hour. Agarose/biotinylated 

complexes were washed and incubated in sample buffer (62.5 mM Tris, pH 6.8, 2% SDS, 

20% glycerol) for one hour, centrifuged, and the eluate collected. A small amount of 

bromophenol blue was added to eluate and proteins were separated by SDS-PAGE followed 

by Western blotting for IGF-IR or GAPDH as described above.

Detection of PI(3,4,5)P3

Levels of PI(3,4,5)P3 were determined by using a commercially-available ELISA assay 

(Echelon Biosciences, Salt lake City, UT; P/N K-1000) following the manufacturers 

instructions. Briefly, after treatment, cells were washed three times in Buffer A (20 mM 
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Tris-HCl, pH 7.4, 137 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, and 0.1 mM sodium 

orthovanadate) and incubated at 4-degrees C for 30-minutes in Buffer A plus 1% NP-40 and 

1 mM PMSF. Insoluble material was removed by centrifugation and clarified lysates 

quantified. 125 μg was immunoprecipitated with either p110α or p110β antibody for 2-hours 

at 4-degrees C, followed by mixing with protein A/G agarose beads (Santa Cruz) for 1-hour. 

Immunocomplexes were washed three times with Buffer A plus 1% NP-40, three times with 

0.1 M Tris-HCl, pH 7.4; 5 mM LiCl, and 0.1 mM sodium orthovanadate, and twice in TNE 

(10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, and 0.1 mM sodium 

orthovanadate). Kinase reactions were performed in triplicate by incubation in PI3K reaction 

buffer (20 mM Tris, pH 7.4, 10 mM NaCl, 4 mM MgCl2, and 25 μM ATP) and 100 μM 

PI(4,5)P2 substrate for 2-hours, followed by centrifugation to stop the reactions and addition 

of PI(3,4,5)P3 detector for 1-hour. At this time, PIP3 standards (provided) were set up using 

concentrations of 200, 100, 50, 25, 12.5, and no lipid control. Reacted mixtures and 

standards were then transferred to the detection plate for 60-minutes, washed once in TBS-

T, and secondary detector added for 30-minutes. Wells were washed three times with TBS-T 

and then 100 μl of TMB solution added to induce color change. Color development was 

stopped by addition of 1 N H2SO4 stop solution when color development was within the 

linear range of standards, followed by reading at 450 nM.

Statistics

Data are presented as means ± S.E.M. Statistics were performed using either one-way or 

two-way ANOVA and multiple range tests a posteriori, as described in figure legends. 

Densiometric analysis was performed using Image J 1.60 (NIH). A P-value <0.05 was 

considered significant.
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Figure 1. 
PI3K p110α and p110β are expressed in C2C12 myoblasts and reduction of p110β or p110α 

and β simultaneously reduced cell growth. (a) PI3K p110 catalytic subunit expression in 

myoblasts. Real-time PCR was used to determine mRNA transcript level as described in 

materials and methods. Ct values were first normalized to invariant endogenous beta-2 

microglobulin (B2M), and then values were expressed relative to p110α which was 

arbitrarily set at 1.0. Inset: detection of expressed p110 isoforms by Western blot. (b) 
Efficacy of RNAi-mediated knockdown of p110α and p110β was determined by real-time 

PCR using B2M as a reference gene, as in (a). Cells were reverse-transfected with 10nM 

negative control siRNA (si-Con) or 5nM siRNA against p110α (si-p110α) plus 5nM si-Con, 

5nM p110β (si-p110β) plus 5nM si-Con, or simultaneous transfection (co-transfection) with 

5nM p110α and 5nM p110β (si-p110α + β). Medium was changed to antibiotic-containing 

media 24-hours after plating, and cells were harvested for RNA 24-hours following media 

change (48-hours after initial reverse-transfection). Values are expressed relative to p110α 

which was arbitrarily set at 1.0. Columns represent averages of two independent 

experiments and error bars indicate S.E.M. (c) Cells were reverse-tranfected as described in 

(b) at day 0. Twenty-four and 48-hours after plating, cells were trypsinized and counted in a 

hemacytometer and expressed as fold-changes relative to initial plating density, which was 

set at 1.0. Asterisks next to treatments indicate significant difference at P<0.05 after two-
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way ANOVA followed by Bonferroni post-test. (d) Cells were transfected as described in 

(b), and myoblasts were harvested for protein lysates 24- and 48-hours after plating. 

Western blotting was performed to analyze levels of Caspase-3, PARP, and GAPDH as 

described in materials and methods. Uncleaved Caspase-3 and PARP are labeled; cleaved 

Caspase-3 and PARP are indicated by arrows. Numbers 1 – 8 (bottom) indicate lanes. The 

asterisk (*) next to the PARP image indicates protein ladder (98 kDa) that reacted with 

antibody in this and some subsequent runs. Abbreviations: C (non-targeting control siRNA), 

α (siRNA against p110α), β (siRNA directed against p110β), α + β (siRNA directed against 

p110α co-transfected with siRNA directed against p110β). (e) Cells were treated and 

maintained as described in (b). Western blots of various proteins involved in PI3K signal 

transduction are shown. Each blot is representative of two independent experiments. 

Abbreviations are identical to those described in (d).
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Figure 2. 
RNAi-mediated knockdown of p110α reduces Akt phosphorylation Thr 308 and Ser 473 

and activation of Akt1 and Akt3, while p110β knockdown does not. (a) Cells were reverse-

transfected and maintained as described in Figure 1b. Forty-eight hours after transfection, 

cells were treated with 125ng/ml IGF-I for 30-minutes and then harvested for protein lysates 

upon which Western blotting (left upper) and in-vitro kinase (IVK; right upper) assays were 

performed as described in materials and methods. For Western blots, the antibody used is 

indicated to the right. Blots are representative of 3-5 independent experiments. For in vitro 
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kinase assays, the antibody used for immunoprecipitation is indicated to the right, and 

experiments were performed 3-5 times. Levels of GAPDH protein were determined by 

Western blotting on protein lysates. (b) Quantification of blots depicted in (a). 
Quantification of phospho-Akt (upper graphs) and isoform-specific Akt activities was 

performed using Image J software (NIH) as described in materials and methods. Levels of 

phosphorylated Akt were normalized to total Akt for each specific run, and the level of IGF-

I-stimulated Akt phosphorylation was set to 1.0. Isoform-specific activated Akt levels were 

normalized to GAPDH for each specific run, and the level of IGF-I-stimulated Akt 

phosphorylation was set to 1.0. Columns in graphs represent averages of 3-5 independent 

experiments, and error bars represent S.E.M. Asterisks indicate significant difference from 

IGF-I-stimulated values (P<0.05; one-way ANOVA followed by Dunnett's multiple 

comparisons test), and horizontal bars directly below asterisks span columns statistically 

different from IGF-I-stimulated values.
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Figure 3. 
IGF-I effects on p110 subunit association with IGF-IR signaling complex and PI(3,4,5)P3 

generation. (a) Left: Cells were treated with 125 ng/mL IGF-I and then harvested at the 

indicated times. Immunoprecipitation (IP) with antibodies against p110α, p110β, or IGF-IR 

is indicated at the left of the images. Western blotting using the primary antibodies noted to 

the right of the images was performed as described in Materials and Methods. For phospho-

Akt and total Akt, Western blotting was performed without immunoprecipitation (Lysate). 

Right: Cells were treated with 125 ng/mL IGF-I for 7-minutes before harvesting. 

Immunoprecipitation and Western blotting was performed as described directly above. 

Numbers below blots indicate band density as compared to unstimulated control cells, which 

was set at 1.0. Shown are representative results from three independent experiments. (b) 
Cells were reverse-transfected as described in Figure 1b. Forty-eight hours after transfection, 

cells with were treated with 125 ng/mL IGF-I and then harvested after 7-minutes. 

Immunoprecipitations were performed on 125 μg cell lysate using antibodies against p110α 
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or p110β followed by kinase reactions and detection of PI(3,4,5)P3 levels by ELISA as 

described in Materials and Methods. Data represent means of triplicate experiments, and 

error bars indicate SD.
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Figure 4. 
p110β knockdown, but not catalytic inhibition, reduces IGF-I-mediated ERK 

phosphorylation and IGF-IR internalization. (a) Cells were reverse-transfected and 

maintained as described in Figure 1b. Forty-eight hours after transfection, cells were 

harvested or treated with 125ng/ml IGF-I for 30-minutes and then harvested for protein 

lysates. Western blotting was performed using antibodies indicated to the right of the 

respective images. Blots are representative of two independent experiments. (b) 95% 

confluent C2C12 myoblasts were pre-treated with TGX-221 at the indicated concentrations 
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for 1-hour before addition of 20 μM LPA or 125 ng/mL IGF-I for 30-minutes. Western blots 

using the antibody against the indicated protein were then performed. (c) Quantity of IGF-IR 

at the cell surface after IGF-I administration was determined by biotin labeling and 

immunoprecipitation of surface proteins. Left Panel: cells were treated with 125 ng/ml IGF-I 

for the indicated times, labeled with sulfo-NHS-SS-biotin, and isolated according to the 

procedure described in “Materials and Methods.” The amount of IGF-IR located at the cell 

surface determined by Western blot after immunoprecipitation with NeutrAvidin Agarose; 

levels of total IGF-IR and GAPDH were determined by analyzing total cell lysate prior to 

immunoprecipitation. Columns represent quantified levels of surface IGF-IR divided by 

total IGF-IR normalized to untreated control, which was set at 1.0. Right Panel: cells were 

treated with 125 ng/ml IGF-I for 30-minutes after pre-treatment with negative control 

siRNA (unlabeled) for 48-hours, si-Con for 48-hours and TGX-221 for 1-hour 

(“TGX-221”), or 5 nM siRNA against p110β (“si-p110β”) for 48-hours. Surface and total 

levels of indicated proteins were determined as described above. Columns represent 

quantified levels of surface IGF-IR divided by total IGF-IR from two independent 

experiments normalized to untreated control, which was set at 1.0. Asterisk indicates 

significant difference from unstimulated cells as determined by ANOVA with Tukey's HSD 

test post hoc (P < 0.05). Error bars represent SD.
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Figure 5. 
p110α is necessary for IGF-I-mediated protection from H2O2-induced apoptosis. (a) 
Approximately 95% confluent myoblasts were treated with 125ng/ml IGF-I for 30-minutes 

in the indicated lanes. Some cells were then treated for an additional 4-hours with 400 μM 

H2O2, as indicated. For cells treated with p110α inhibitor (p110αi), cells were pre-treated 

for an additional hour prior to IGF-I, H2O2, or IGF-I + H2O2 addition. Control cells were 

treated with DMSO (p110αi diluent) and/or water (H2O2 and IGF-I diluent), as appropriate. 

Four hours after H2O2 addition, cells were harvested and Western blots performed to detect 
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levels of Caspase-3, PARP, phospho-Akt Ser 473, or total Akt (cleaved Caspase-3 – 17 kDa, 

cleaved PARP – 85 kDa). Numbers 1-8 along the bottom of the Western blots indicate lane 

numbers. Blots are representative of 3-5 independent experiments. (b) Amounts of cleaved 

Caspase-3 and PARP were quantified. Due to heteroscedasticity, values were transformed as 

y =-1*log(y), and significant differences determined by one-way ANOVA followed by 

Bonferroni test post-hoc. Values are expressed relative to unstimulated controls, and the 

original, non-transformed data is shown. Asterisks indicate significant difference from 

control, and double asterisks indicate significant differences from control and H2O2-treated 

cells. Horizontal bars directly below asterisks span columns statistically different from 

control and H2O2-treated cells. “NS” – not significant. (c) Left panel: Approximately 95% 

confluent myoblasts were pre-treated with DMSO (unlabeled) or TGX-221 for 1-hour before 

addition of IGF-I for 30-minutes. Western blots were performed using the indicated 

antibodies. Right panel: Cells were treated with IGF-I, H2O2, or TGX-221 in place of 

p110αi exactly as described in (a). (d) Cells were reverse-transfected with 5 nM negative 

control siRNA (si-Con) or 5 nM siRNA against p110α (si-p110α; Left panel), 5 nM si-Con 

or 5 nM p110β (si-p110β; middle panel), or 10 nM si-Con or 5nM p110α and 5nM p110β 

(si-p110α + β; right panel). Forty-eight hours after transfection, myoblasts were treated with 

125ng/ml IGF-I for 30-minutes in the indicated lanes. Some cells were then treated for an 

additional 4-hours with 400μM H2O2, as indicated. Controls for IGF-I and H2O2 were 

water. Western blotting was performed and the levels of Caspase-3, PARP, and GAPDH (as 

a loading control) analyzed. Intact Caspase-3 and PARP are labeled, and cleaved portions 

are indicated by the arrow (cleaved Caspase-3 – 17 kDa, cleaved PARP – 85 kDa). Numbers 

1-8 along the bottom of images represent lane numbers. Blots are representative of three 

independent experiments. (e) Left panel: Approximately 95% confluent myoblasts were pre-

treated with 0.1% DMSO or increasing concentrations of Akti for 1-hour before addition of 

IGF-I for 4.5 hours. Western blotting was performed using the indicated antibodies. Right 

panel: Cells were reverse-transfected with siRNA against p110β as described above in (d). 
Forty-eight hours following transfection, some cells were pre-incubated with 10 μM Akti. 

Following the 1-hour incubation period, cells were treated with 400 μM H2O2 for 4-hours 

before harvest and Western blotting with the indicated antibodies. Blots are representative of 

two independent experiments.
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Figure 6. 
Pharmacological inhibition of Akt and MEK. (a) Upper panel: Cells were pre-incubated 

with 10 μM MEK inhibitor U0126 or 0.1% DMSO for one hour, and then treated with 125 

ng/ml IGF-I for 30-minutes. Levels of phospho- and total ERK were analyzed by Western 

blot. Lower panel: Cells were pre-incubated with increasing concentrations of U0126 or 

0.1% DMSO for one hour, and then treated with 125 ng/ml IGF-I for 4.5 hours. Levels of 

phospho- and total ERK were analyzed by Western blot. “C”- IGF-I control cells treated 

with water. Right panel: Cells were reverse-transfected and maintained as described in 
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Figure 1b. Myoblasts were pre-treated with Akti or U0126 for 1-hour as indicated. 

Following the pre-incubation period, cells were treated with 125 ng/ml IGF-I for 4-hours in 

the indicated lanes. Western blotting was performed and the levels of Caspase-3, PARP, and 

GAPDH analyzed. Intact Caspase-3 and PARP are labeled, and cleaved portions are 

indicated by the arrow (cleaved Caspase-3 – 17 kDa, cleaved PARP – 85 kDa). Numbers 

1-10 along the bottom of images represent lane numbers. Blots are representative of three 

independent experiments. (b) Myoblasts were pre-treated with 10 μM Akti (upper left 

panel), 10 μM U0126 (upper right panel), or Akti and U0126 (lower panel) for 1-hour, as 

indicated. Following the pre-incubation period, cells were treated with 125 ng/mL IGF-I for 

30-minutes before addition of 400 μM H2O2 as indicated. Western blotting was performed 

as described in (b). Representative blots of two independent experiments for each condition 

are shown.
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Figure 7. 
Proposed mechanism of IGF-I signal transduction in myoblasts. Signaling through IGF-IR 

recruits adaptor molecules including IRS-1 to IGF-IR. This promotes binding of PI3K and 

generation of 3′ lipid phosphoinositides that recruit other molecules, including Akt, to the 

membrane, ultimately resulting in their activation. PI3K p110α catalytic subunit is required 

for Akt activation, but p110β is not. A second pathway includes a non-catalytic action of 

p110β that is associated with IGF-IR internalization and is required for activation of ERK. 

ERK may then phosphorylate IRS-1 at Ser 636/639, inhibiting PI3K binding and promoting 

IRS-1 degradation, thus attenuating IGF-IR signals.
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