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Summary
Objective: The aim is to provide a comprehensive review of 
state-of-the art omics approaches, including proteomics, metabo-
lomics, cell-free DNA, and patient cohort matching algorithms in 
precision oncology.
Methods: In the past several years, the cancer informatics 
revolution has been the beneficiary of a data explosion. Different 
complementary omics technologies have begun coming into 
their own to provide a more nuanced view of the patient-tumor 
interaction beyond that of DNA alterations. A combined approach 
is beneficial to the patient as nearly all new cancer therapeutics 
are designed with an omics biomarker in mind. Proteomics and 
metabolomics provide us with a means of assaying in real-time 
the response of the tumor to treatment. Circulating cell-free DNA 
may allow us to better understand tumor heterogeneity and 
interactions with the host genome.
Results: Integration of increasingly available omics data 
increases our ability to segment patients into smaller and 
smaller cohorts, thereby prompting a shift in our thinking about 
how to use these omics data. With large repositories of patient 
omics-outcomes data being generated, patient cohort matching 
algorithms have become a dominant player.
Conclusions: The continued promise of precision oncology is 
to select patients who are most likely to benefit from treatment 
and to avoid toxicity for those who will not. The increased public 
availability of omics and outcomes data in patients, along with 
improved computational methods and resources, are making 
precision oncology a reality.
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The Continued Promise of 
Cancer Informatics
The future of cancer informatics is pred-
icated on the continued development of 
methodologies that can identify key altered 
pathways that are susceptible to molecular 
targeted or immunologic therapies [1]. The 
increasing customization of medical treat-
ment to specific patient characteristics has 
been possible through continued advances 
in a) our understanding of the physiologic 
mechanisms of disease through the pro-
liferation of omics data (e.g., proteomics, 
metabolomics), and b) computing systems 
(e.g., patient matching algorithms) that facil-
itate matching and development of targeted 
agents [2]. These advancements allow for 
improved outcomes and for reduced expo-
sure to the adverse effects of unnecessary 
treatment. They can help us better decipher 
the inter- (between patients) and intra- 
(different tumors within the same patient) 
tumor heterogeneity that is often a hurdle 
to treatment success and can contribute to 
both treatment failure and drug resistance 
[3]. Importantly, omics-based cancer med-
icine is here. In 2017, nearly 50% of the 
early-stage pipeline assets and 30% of late-
stage molecular entities of pharmaceutical 
companies involved the use of biomarker 
tests [4]. Further, over a third of recent drug 
approvals have had DNA-based biomarkers 
included in their original US Food and Drug 
Administration (FDA) submissions [5]. We 
are also thinking about cancer informatics 
differently. Algorithmically, there has been 

a shift from gene signatures to nonlinear 
approaches such as neural networks and 
advanced aggregative techniques to model 
complex relationships among patients [6]. 
Importantly, these approaches are the root 
of cohort matching algorithms that aim 
to find “patients like my patient.” Results of 
these algorithms are simpler to understand 
and have propelled the growth of clinical 
trials matching algorithms. National trials 
such as the NCI-MATCH [7], which pair pa-
tient tumors with specific tumor alterations 
to targeted medications, are a simplistic first 
step in this paradigm shift. The ability to 
perform complex matching, and matching 
rules, has relied on the growth of aggregated 
patient datasets and the ability to quickly 
assess tumor omics data.

This brief review focuses on three can-
cer omics data growth areas – proteomics, 
metabolomics, and circulating tumor and 
cell-free DNA. These omics approaches all 
try to enhance our current complex model 
of relationships among genes. We will also 
touch upon the paradigm shift from singular 
omics signatures to patient cohort matching 
– a shift that may potentially more readily 
take advantage of the large repositories of 
omics data that are being created. Figure 1 
underscores the foci of this review. 

Within the past several years, tumor om-
ics technologies have been integrating into 
clinical practice. Concurrently, we have in-
creased our understanding of the underlying 
pathophysiology of not only the tumor, but 
also the patient/tumor interaction through 
this omics data. Acquisition of this omics 
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data, which is a focus of this review, has re-
quired improvements in detection techniques 
and data analysis. For example, assaying pro-
teins using immunohistochemistry (IHC), 
the usage of singular antigens that bind to 
single proteins of interest in cancer tissue, is 
now being supplanted by mass spectrometry 
– which allows massively parallel identifica-
tion of hundreds of proteins simultaneously. 
However, it has taken improved computer 
performance (and super computer clusters) 
to accurately identify this large number of 
proteins in a reasonable amount of time. 
This advancing field, proteomics, provides 
a far more accurate readout as compared to 
IHC – which is often subjective and difficult 
to parallelize. 

Similarly, metabolite biomarkers have tra-
ditionally been singular molecules detected 
by immunoassay in the clinic. The chemo-
therapeutic drug methotrexate, for example, 
has levels that are detected via immunoassay 
for quantification purposes [8]. However, 
immunoassays only measure singular known 
metabolites and it is well known that com-
binations of metabolites are more clinically 
relevant than singular metabolites. With 
this in mind, metabolomics has emerged 
as a new omics field of study that aims to 
measure abundances of all small molecules 
detectable in biospecimens including blood, 
tissue, urine, and breath, among others. Typ-
ically, mass spectrometry (MS) and nuclear 
magnetic resonance (NMR) techniques are 
applied for measuring hundreds to thousands 
of metabolites in a given sample. 

Advanced DNA sequencing, which 
ushered in the genomic revolution, has also 
improved greatly. Our ability to perform 
DNA sequencing with trace amounts of 
starting material (low-passage reads) with 
improved fidelity and detection is allowing 
us to detect circulating tumor DNA from the 
blood. Circulating tumor DNA (ctDNA) is 
tumor-derived fragmented DNA circulating 
in blood along with cell free DNA (cfDNA) 
from other sources (including normal cells) 
measuring about 150bp. ctDNA provides an 
overview of the genomic reservoir of different 
tumor clones and genomic diversity. ctDNA 
may finally provide a means of assaying in-
tra-patient tumor heterogeneity – allowing 
us to get a sense of the relative abundance of 
genomic alterations across metastatic deposits 

within a patient. In the following sections, we 
will delve into each of these areas that have 
been introduced in the above.

Proteomics
Description of Technology: The field of 
molecular therapeutics is a relatively novel 
approach that targets abnormalities in sig-
naling pathways that play critical roles in 
tumor development and progression. While 
the genetic abnormalities of many condi-
tions have been studied intensively, they 
do not always correlate with the phenotype 
of the disease. One possible explanation of 
this phenomenon is the lack of predictable 
changes in protein expression and function 
based solely on genetic information. One 
gene can encode for multiple proteins; pro-
tein concentration is temporally dynamic and 
protein compartmentalization is paramount 
to function; proteins are post translationally 
modified. All of this complexity leads to 
the importance of studying the proteome. 
Proteomics is fundamentally the study of 
proteins and their structure, functional sta-
tus, localization, and interactions. This has 
only been possible as our understanding of 
proteins and their post-translational land-
scape has been investigated. Kinases and 
phosphatases that control the reversible pro-
cess of phosphorylation and are dysregulated 
in many diseases including cancer have been 
studied individually for many years. Howev-
er, only with the application of larger scale 

technologies can we begin to understand the 
networks that control cellular phenotypes. 
Protein and lipid phosphorylation regulates 
cell survival signaling. Targeting kinases and 
phosphatases has proven to be paramount for 
improving therapeutic intervention in some 
diseases. In this regard, it is critical to define 
qualified cellular targets for cancer diagnosis 
and prognosis, as well as accurately predict 
and monitor responsiveness to therapies. 
Mutation profiling of selected genes or the 
whole exome can provide insights into pos-
sible activated pathways; however, to look at 
specific end points that can be targetable, one 
must examine the functional units of these 
mutational events, i.e., the protein. 

Recent Advancements: There are multiple 
ways to examine events at the level of the 
protein. These range from Western blot level 
technologies which can examine a few pro-
teins at a time, to mass spectrometry-based 
(MS-based) shotgun proteomics which can 
theoretically measure a very large subset, 
if not the entire, proteome. Broadly, most 
proteomic studies can be broken down 
into two categories: array-based and direct 
measurement. Array-based proteomic mea-
surements are typically dependent on an 
antibody or substrate for a specific protein. 
Antibody-based proteomics platforms have 
been examined for the last 40 years and are 
still yielding exciting results. The most com-
monly used techniques for multiplexed as-
says are reverse phase protein arrays (RPPA), 
multiplexed immunofluorescence, and anti-
body-based chips/beads. These techniques 

Fig. 1   Selected data and algorithm growth areas in cancer medicine.
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provide a quantitative assay that analyzes 
nanoliter amounts of sample for potentially 
hundreds of proteins simultaneously. These 
antibody-based assays determine quantita-
tive levels of protein expression, as well as 
protein modifications such as phosphoryla-
tion, cleavage, and fatty acid modification 
[9-11]. Most techniques either array com-
plex proteins samples and then probe with 
specific antibodies (e.g., RPPA), or array 
antibodies or specific ligands and then probe 
with a protein mixture. In essence, these 
assays have major strengths in identifying 
and validating cellular targets, character-
izing signaling pathways and networks, as 
well as determining on and off target activity 
of novel drugs. One downside to array-based 
systems is the inherent reliance on quality 
antibodies or known substrates, which may 
or may not exist for all proteins of interest in 
a particular study. However, recent work has 
demonstrated a tissue-based map of the hu-
man proteome utilizing transcriptomic and 
multiplexed IHC-based techniques [12]. 
Similarly, The Cancer Protein Atlas (TCPA, 
http://tcpaportal.org/tcpa/) has examined 
samples collected during The Cancer Ge-
nome Atlas (TCGA) project and annotated 
selected samples with RPPA results. These 
initiatives provide a rich source of data at 
multiple levels from genes to transcripts to 
proteins [13]. 

Direct measurement techniques are based 
on the identification and quantification of the 
protein itself without utilizing analyte-based 
technologies that are solely dependent on the 
quality of the antibody. Most direct measure-
ment techniques are based on MS approach-
es. MS-based proteomics techniques can be 
organized as bottom-up shotgun approaches 
which are able to accurately identify multiple 
proteins from complex mixtures. Comple-
mentary methods including stable isotope 
labeling (SILAC), tandem mass tags (TMT), 
and isobaric tags (iTRAQ) can be used in 
tandem with bottom-up approaches to mea-
sure relative or absolute concentrations of 
some or all proteins in complex mixtures. 
One of the inherent weaknesses of early MS-
based approaches was the limited ability for 
absolute quantification of protein amounts. 
Given that many signaling events within cells 
are based upon changes in post-translational 
modifications with very small changes in to-

tal protein concentration, it was of particular 
interest to develop techniques that allowed 
for quantification of these changes. Perhaps 
one of the most exciting recent advances 
in MS-based proteomics techniques is the 
application of selected/multiple reaction 
monitoring (SRM/MRM) to quantify cer-
tain peptides of interest [14]. In contrast 
to array-based techniques described above, 
SRM-based methods can accurately measure 
multiple peptides from a single protein and 
theoretically measure multiple post-transla-
tional modifications simultaneously, inde-
pendent of reliance on antibodies. In a study 
of multiple MS-based platforms, strong 
quantitative correlation to an immunoas-
say-based platform was observed for SRM 
using a synthetic peptide internal standard 
[15]. This contrasted to poor correlation for 
spectral counting, extracted ion chromato-
grams (XIC), and non-normalized SRM. 
The inherent flexibility of the various sectors 
associated with MS-based assay systems also 
allows for multiple questions to be asked 
that may not be feasible with antibody-based 
systems. For example, MS imaging can 
provide a molecular resolution of 2D tissue 
specimens [16]. This will allow for not only 
identification but also spatial relationships 
between biomarkers within samples. This 
enhanced level of information may be critical 
for defining pathway interactions or even 
more accurate molecular diagnostics. 

Clinical Utility: Proteomics has a significant 
role to play in the translational analysis of 
patient tissue samples. The US National 
Institutes of Health (NIH) has recognized 
the importance of clinical proteomics with 
the establishment of the Office of Clinical 
Cancer Proteomics Research (OCCPR). 
One of the largest working groups estab-
lished through the OCCPR is the Clinical 
Proteomic Tumor Analysis Consortium 
(CPTAC). Vasaikar et al., with support from 
the CPTAC, recently published a new data 
portal that links TCGA clinical genomics 
data with MS-derived proteomics data in 
a similar fashion to the work performed by 
the TCPA utilizing RPPA arrays [13, 17]. 
Of note, the CPTAC initiative has produced 
a number of publications [18-22] and freely 
available datasets for use by the broader 
omics community. As an example, Mundt et 

al. have recently published an MS-based pro-
teomics study on patient-derived xenografts 
to identify potential mechanisms of intrinsic 
and adaptive resistance to phosphoinositide 
3-kinase inhibitors that will likely have clin-
ical impact in the near future [21]. Much of 
the clinical utility of proteomics research will 
be driven by sample availability and quantity 
with accurate links to clinical data. While 
RPPA analysis requires very small amounts 
of sample, there is also a limited proteome 
sample space to test. MS-based techniques 
can test for a wide sample space of the pro-
teome, but this requires a sample size that can 
hinder research. More recent MS techniques 
that are focused on quantitative analysis of a 
subset of the proteome can be done on smaller 
sample sizes and likely represent the future of 
MS-based clinical tests. 

Data Challenges: Proteomics is a rela-
tively new field in the world of large scale 
omics datasets. Older technologies that are 
array-based have relative straightforward 
datasets. Most RPPA datasets are reported in 
normalized linear or Log

2
 median centered 

scales based on the detection ranges of the 
specific equipment being utilized. There 
is minimal data manipulation outside of 
identifying the linear range of each sample 
being measured through the use of internal 
standards and then extrapolating absolute 
quantification through interpolation of a 
standard curve [23]. However, with the ex-
plosion of MS-based proteomic techniques, 
cross platform data analysis and sharing 
have been associated with their fair share 
of growing pains. The Human Proteome 
Organization (HUPO) has taken the lead 
in defining requirements for proteomic 
submission and repositories. Such tasks that 
our colleagues in the genomics world have 
taken for granted over the past 15 years are 
now being reinvented for the proteomics 
field. The inherent complexity of proteom-
ics data and the multiple platforms utilized 
make sharing data a non-trivial affair. There 
is also an issue of technology outpacing our 
reporting ability. While peptide and spec-
tral libraries have been and continue to be 
important for most MS proteomic analysis 
and deposition (PRIDE and PeptideAtlas 
being the major resources) [24-26], there 
is also a need for a common library of 
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molecular transitions with the explosion of 
SRM/MRM techniques. PASSEL has been 
and continues to be the leading resource 
for SRM transition datasets [27]. Probably 
the most important advance in dataset 
submission and dissemination has been 
the continued development of the proteome 
exchange (PX) consortium. Beginning in 
2011, the PX consortium has continually 
added on members to allow common data 
formats for all proteomic datasets. This 
will allow remarkable opportunities for 
data reanalysis and reinterpretation that our 
genomics colleagues have been enjoying for 
more than 10 years. 

Future Directions: As more data from multi-
ple tumor types become available, the ability 
to link genome to proteome, and ultimately 
phenotype and treatment choices, becomes 
less of a holy grail and more a clinical reality. 
The integrated information will display the 
potential therapeutic targets or biomarkers 
to accurately predict or rapidly define intra-
cellular signaling networks and functional 
outcomes affected by therapeutics. Clinical-
ly, we are starting to see this through large 
basket-type trials incorporating genomic 
data matched to targeted drugs, independent 
of tumor type. The understanding of the 
proteomic context of a genomic alteration 
will be key to expanding the repertoire of 
successful biomarker-driven clinical trials. 
RPPA- and MS-based phosphoproteome 
investigation is already being explored in the 
context of pathway activation and targeted 
therapies. Similarly, utilizing targeted ge-
nomic mutation panels identifies a subset of 
ovarian cancer patients that may be sensitive 
to poly ADP ribose polymerase (PARP) inhi-
bition, but incorporating proteomic analysis 
can also help identify possible responders in 
genomically unselected populations treated 
with cytotoxic chemotherapy and/or PARP 
inhibitors [28-31]. 

Metabolomics
Description of Technology: The overall aim 
in metabolomics studies is to measure levels 
of small molecules, less than 1,500 Daltons, 
in a given biospecimen (e.g., blood, tissue, 

urine, breath). The combination of various 
extraction (e.g., enrichment of lipids or 
protein-bound metabolites) and analytical 
techniques generates metabolic profiles that 
span many known and unknown metabolic 
pathways. Such metabolic profiles are a 
rich resource for defining phenotypes of 
distinct diseases such as cancer, and they 
reflect alterations in the genome, epigenome, 
proteome, and environment (exposures and 
lifestyle). For this reason, metabolomics is 
increasingly applied to complement other 
omics characterization of cells and clini-
cal samples [32, 33], and is invaluable for 
uncovering putative clinical biomarkers, 
therapeutic targets, and aberrant biological 
mechanisms and pathways that are associat-
ed with cancer [34-40]. 

Metabolites can be categorized as endog-
enous, naturally produced by the host or cells 
under study, or exogenous, including drugs, 
foods, and cosmetics among others. While 
the goal is to measure all metabolites in a 
given biospecimen, analogous to measuring 
all gene levels in transcriptomic studies, 
current analytical acquisition techniques 
can only capture a fraction of metabolites 
given one assay or platform [36, 41]. For 
example, as of April 2018, the Human 
Metabolome Database [41-43] contains 
information on 114,100 metabolites, yet 
only 22,287 (19.5%) have been detected in 
human biospecimens. Also, unlike genomics 
and transcriptomics where one can measure 
genome-wide features (e.g., expression, 
variants) with one assay, metabolomics 
requires multiple analytical techniques and 
instrumentation for a broad coverage of 
metabolites (e.g., polar and nonpolar metab-
olites). In practice, a specific combination 
of sample preparation (e.g., enrichment of 
nonpolar metabolites) and analytical tech-
nique is often optimized for a certain class 
of compounds (e.g., lipids) [36].

The two main analytical approaches for 
measuring metabolites are NMR and MS 
[44-47]. Abundance detection by MS is 
typically preceded by a molecule separation 
technique such as liquid (LC) or gas (GC) 
chromatography. While NMR is considered 
the gold standard for compound identifica-
tion (when analyzing singular compounds 
in pure form) and produces quantitative 
measures, MS-based methods are more 

sensitive (e.g., able to detect low abundance 
metabolites) and detect more (e.g., several 
hundreds to thousands) metabolites [48]. 

Of note, metabolomics studies can be 
classified as targeted [49] or untargeted 
[50]. In targeted studies, a small (~1-150) 
panel of metabolites with known chemical 
characteristics and annotations are measured 
and the sample preparation and analytical 
platform used are optimized to minimize 
experimental artifacts. Examples of artifacts 
are fragmentation and adduct formation 
(e.g., addition of sodium or hydrogen ions) in 
electrospray ionization [51]. Measurements 
can be performed using standards and thus 
produce quantitative or semi-quantitative 
measurements. In contrast, untargeted 
metabolomics aims to detect all possible 
metabolites given a biospecimen. Untargeted 
approaches yield relative measurements of 
thousands of signals that represent known 
metabolites, experimental artifacts (e.g., 
adducts), or unidentified metabolites [52]. 
While many more metabolites can be cap-
tured with untargeted approaches, it is very 
challenging to annotate signals and identify 
metabolites [51]. Verification of metabolite 
identity requires prediction of elemental 
composition from accurate masses, and 
eventually, further experimentation (NMR 
being the gold standard) that requires the 
use of a purified standard for the metabolite 
of interest [45, 53-56]. If a purified standard 
is not commercially available, one must be 
synthesized in-house and thus this validation 
process could take several years. Ultimately, 
a targeted approach is favorable if there is a 
priori knowledge on the biological system or 
disease under study because measurements 
are quantitative and the data quality is high 
[52]. However, despite the high level of noise 
and the increased complexity in data analy-
sis, untargeted approaches are favorable for 
discovering novel biomarkers or generating 
data-driven hypothesis [52].

Recent Advancements: As metabolomics 
strategies are increasingly being applied in 
biomedical research, advances in automation 
and improved quantification of NMR- and 
MS-based methods are producing high 
throughput, reproducible data [44, 57, 58]. 
Integration of NMR and LC-MS techniques 
is increasingly applied to enhance repro-
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ducibility, metabolite identification, and to 
ensure measurement integrity [59]. Such 
improvements in data acquisition techniques 
are critical for expanding the coverage of 
metabolites that can be reliably measured. At 
the same time, these advances are producing 
larger data, requiring the construction of da-
tabases and the development of data analysis 
methods, tools, and pipelines. Currently, 
the two major sources of publicly available 
data are the Metabolomics Workbench [60] 
and MetaboLights [61]. The Metabolomics 
Workbench, sponsored by the NIH Common 
Fund, also provides access to analytical 
protocols (e.g., sample preparation and anal-
ysis), metabolite standards, computational 
tools, and training. While metabolomics data 
is very informative, for example, to uncover 
putative clinical biomarkers, understanding 
how metabolites are produced and their func-
tion further deepens our understanding of 
disease phenotypes and mechanisms. In turn, 
this mechanistic understanding can guide the 
search for putative drug targets. With this in 
mind, integration of metabolomics data with 
other omics datasets, including genome, 
proteome, and microbiome, is increasingly 
performed [62, 63]. Integration of omics 
datasets includes numerical integration 
techniques such as canonical correlations or 
multivariate modeling, and network/pathway 
based approaches [64-69]. Furthermore, 
open-source user-friendly software for 
metabolomics analysis and interpretation 
through pathway analysis has been critical 
for guiding analysis and interpretation of 
the data. Examples include XCMS [70, 71], 
MetaboAnalyst [72, 73], and Metabox [74]. 

Data Challenges: Unlike genomics, a 
reference metabolome does not exist and 
it is currently impossible to measure all 
metabolites in a given biospecimen. This 
lack of reference causes many data analysis 
issues, particularly for untargeted metabo-
lomics studies where the identification of 
metabolites is difficult to pin down [75]. 
The field also suffers from multiple metab-
olite naming conventions. In fact, different 
naming conventions are more appropriate for 
certain types of data acquisition techniques. 
For example, while untargeted metabolo-
mics approaches cannot resolve differing 
stereochemistry or double bond position/

geometry, other approaches can identify 
metabolites with more or less granularity 
[60]. Translation services, including Refmet 
[60] and the Chemical Translation Service 
[76] help in that regard. Also, the multitude 
of data acquisition techniques makes it dif-
ficult to organize the data in a standardized 
fashion [77]; instrumentation vendors have 
specific data formats that are tied to propri-
etary software and conversion of these file 
formats to open source formats can require 
specif ic operating systems or software 
licenses. Differences in how the data was 
generated also make it difficult to compare 
results across studies. With many missing 
identities and different resolution of iden-
tification, it is difficult to map a metabolite 
from one study to another. Standardization 
is thus critical to handle such challenges 
but is in their nascence [60, 77]. Standard 
protocols for downstream data analyses, 
including quality control, transformation/
normalization, and differential analysis, 
are also difficult to establish, namely due to 
differences in experimental study design and 
data acquisition. Although publicly available 
tools and software aim to provide standard 
approaches [70-74, 78], detailed descriptions 
of parameters (e.g., mass divided by charge 
number [m/z] range allowed for binning 
features) and cutoffs used are often lacking 
in published work and makes reproducibility 
of results difficult. 

Clinical Utility: Metabolomics plays an 
increasing role in clinical and transla-
tional research as large initiatives such as 
the Consortium of Metabolomics Studies 
(https://epi.grants.cancer.gov/comets/) and 
the NIH Common Funds Metabolomics 
Program (https://commonfund.nih.gov/
metabolomics) are generating large-cohort 
metabolomics datasets (>1,000 participants). 
Because metabolomics profiles help define 
disease phenotypes and reflect alterations 
in the genome, epigenome, proteome, and 
environment (exposures and lifestyle), me-
tabolites are ideal candidates for biomarker 
discovery in many diseases including cancer 
[37-39, 79-81]. With this in mind, metabo-
lomics is playing a larger role in precision 
medicine, requiring continued efforts in data 
acquisition and analysis [82]. Metabolomics 
is also increasingly integrated with other 

omics information and is analyzed in the 
context of biological pathways and networks, 
with the aim of identifying mechanisms that 
underlie diseases and finding novel therapeu-
tic targets [34].

Future Directions: In October 2017, the 
NIH Common Fund has released funding 
opportunities to promote efforts in public 
accessibility and reuse of metabolomics 
data, development of computational tools 
for analysis (including omics integration) 
and interpretation of metabolomics data, 
and development of approaches to identify 
unknown metabolites. Thus, we antici-
pate further development in open-source, 
publicly available computational tools and 
infrastructures to facilitate metabolomics 
analysis. Since metabolomics is increasingly 
applied to biospecimens from large (>1000) 
cohorts and consortia, it is now possible 
to integrate other omics data, as well as 
clinical and environmental contexts in the 
analyses. The complexity of harmonizing 
data across cohorts and incorporating clin-
ical and environmental data necessitates 
further standardization and computational 
infrastructure. Of special interest, the impact 
of alterations in the microbiome (dysbio-
sis) on metabolic pathways is particularly 
relevant since these dysbiosis-metabolome 
relationships can be causative or indicative 
of a myriad of human diseases [83, 84] 
including obesity and diabetes [85-87], 
cardiovascular diseases [88-90], inflamma-
tory diseases [91], and cancer [64, 92, 93]. 
We thus suspect an increase in multi-tiered 
studies that apply a holistic approach to 
understanding diseases, including integra-
tion of molecular information from host 
and environment. Concurrently, as pathway 
information and identification of metabolites 
increases, strategies that take into account 
the kinetics of metabolites (e.g., metabolic 
flux and networks) will become more and 
more applicable for clinical metabolomics 
studies. Lastly, while the classical view of the 
molecular dogma is that metabolites levels 
are modulated by the epigenome, genome, 
and proteome, there have also been examples 
where metabolites regulate epigenetic events 
(i.e., going against the grain of the molecu-
lar dogma direction) [94-96]. The future of 
metabolomics and its potential in uncovering 
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biomarkers and deciphering mechanisms 
will surely necessitate modeling of complex 
bi-directional relationships within omics and 
environmental context information. 

Cell-free DNA
Description of Technology: Both normal 
and malignant cells shed DNA into the 
circulation and next-generation sequencing 
technologies are capable of detecting small 
amounts of cfDNA, making the blood a 
potential repository for tumor genomic 
profiling. „Liquid biopsy“, once validated, 
could enable the detection of cancer as a 
screening tool, track evidence for residual 
disease after cancer treatment, monitor pa-
tients for response to therapy, and discover 
meaningful mechanisms of resistance to 
cancer therapies. With this wealth of previ-
ously unavailable information, liquid biopsy 
could lead to the development of new assays, 
biomarkers, and targeted treatments to help 
cancer patients live longer, better lives. It is 
important to note that cell-free/circulating 
tumor DNA is only one aspect of ‘liquid 
biopsies,’ and there are multiple advances 
with other assays outside of the scope of this 
review, including circulating tumor cells [97-
100], other nucleic acids [101], exosomes 
and other extracellular vesicles [102-104], 
and integrated biomarkers [105].

The presence of cell-free nucleic acids 
in the blood was first described in 1947 by 
Mandel and Métais [106] and three decades 
later, Leon et al. demonstrated that cancer 
patients had greater amounts of cfDNA 
relative to healthy controls [107]. Stroun et 
al. demonstrated both that tumor DNA was 
detectable specifically in plasma [108, 109] 
and that specific genomic alterations could 
be identified [110]. Of note, cfDNA is dis-
tinct and not derived from circulating tumor 
cells, although they are correlated and both 
increased in patients with advanced cancer 
[111]. Major advancements in cfDNA were 
first made in the field of perinatology, leading 
to the early minimally invasive detection of 
fetal chromosomal anomalies from maternal 
plasma in widespread clinical use today 
[112]. The remarkable advances in sequenc-
ing technology over the past two decades, 

from Sanger sequencing to allele-specific 
PCR to the advent of massively parallel 
sequencing (‘next generation sequencing’) 
[113, 114], along with advances in bioin-
formatics analysis [115] and rapid reduction 
in cost have facilitated increasing ability to 
interrogate cfDNA to profile tumors. 

Recent Advancements: To date, most clin-
ical applications of cfDNA sequencing 
have focused on tracking specific mutations 
[111, 116-122] or sequencing targeted pan-
els of cancer-related genes [123-127], par-
ticularly in metastatic cancer. In general, 
cfDNA is present in a greater proportion of 
patients and in larger amounts in metastatic 
cancers relative to primary tumors. In the 
metastatic setting, particularly in cancer 
types that are in many cases inaccessible 
(e.g., lung primary or metastases) or are 
higher risk lesions to sample in terms of 
potential complications, cfDNA genomic 
approaches may offer potential benefits 
relative to tumor biopsy. Tumors are known 
to be heterogeneous and biopsies inherently 
only sample a small localized region of a 
single metastatic site [128], introducing 
potential bias that may be overcome by 
cfDNA as a ‘sink’ of all metastatic sites in 
a patient [129]. Taking a patient-centered 
approach in the metastatic setting is critical 
– avoiding painful and inconvenient biop-
sies has the potential to improve quality 
of life. In one study, 34% of breast cancer 
patients undergoing metastatic biopsy 
described anxiety pre-biopsy and 59% 
described post-biopsy pain [130].

Clinical Utility: The only FDA-approved 
‘liquid biopsy’ companion diagnostic to date 
is the cobas® EGFR Mutation Test v2 for 
the detection of exon 19 deletions or exon 
21 (p.L858R) substitution mutations in the 
epidermal growth factor receptor (EGFR) 
gene to identify patients with metastatic 
non-small cell lung cancer eligible for 
treatment with erlotinib [131]. However, in 
cancers harboring mutations that are known 
to be prognostic or predictive, plasma-based 
cfDNA assays have demonstrated utility in 
disease management and are increasingly 
used clinically [132-134]. In addition, 
cfDNA targeted panel sequencing assays of 
cancer-related genes are used in lieu of met-

astatic tumor biopsy sequencing in clinical 
practice, including commercial tests such 
as Guardant360® and FoundationACT® 
[126, 135]. In the clinical setting, genomic 
profiling via cfDNA has been associated with 
more rapid turnaround of genomic results 
than tissue biopsies, frequently due to delays 
in accessing or obtaining tissue [136]. In the 
non-metastatic setting, there is great interest 
and excitement around the potential to devel-
op patient tumor-specific panels of mutations 
for the highly sensitive detection of minimal 
residual disease after initial cancer treatment 
[137, 138]. In addition, multiple groups and 
commercial ventures are pursuing whether 
cfDNA could be used as a novel screening 
approach for cancer diagnosis [139], includ-
ing the STRIVE Breast Cancer  Screening 
Cohort (NCT03085888) supported by Grail, 
Inc. However, the optimal technical approach 
for cfDNA as a detection methodology 
remains unclear and large studies to assess 
sensitivity and specificity are only recently 
underway. Another approach is to incor-
porate cfDNA into a multi-analyte assay 
for cancer screening, such as CancerSEEK 
[105]. The CancerSEEK assay integrates 
a cfDNA PCR-based assay for a panel of 
common cancer mutations with established 
circulating protein biomarkers.

The promise of cfDNA is immense yet 
there remain several key unresolved chal-
lenges, including how well tumor-derived 
cfDNA mirrors tissue-derived tumor DNA, 
how to analyze tumor-normal DNA admix-
ture present in circulation, how to better 
assess tumor-derived fraction of cfDNA, 
and how to account for clonal hematopoiesis 
of indeterminate potential (CHIP). While 
cfDNA appears to demonstrate overall high 
concordance with tumor biopsies [140-142], 
it is unclear whether cfDNA can serve as a 
comprehensive proxy for tumor biopsy in 
all contexts. Further, assays vary in their de-
tection and reporting of genomic alterations 
from plasma [143]. 

Data Challenges: Circulating DNA in plas-
ma is an admixture of both normal DNA 
shed primarily from leukocytes as well as 
tumor DNA, which presents challenges for 
analysis and interpretation of sequencing 
data. In the context of a large amount of 
tumor-derived DNA in the circulation (high 
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‘tumor fraction’), for example tumor fraction 
greater than 10%, standard next-generation 
sequencing approaches may be applied. 
However, in many contexts, tumor fraction 
is incredibly low particularly at diagnosis, 
in the setting of minimal residual disease, 
or in some ‘low cfDNA shedding’ cancer 
types and patient tumors. Highly specific 
assays may detect tumor fractions as low as 
0.02% for panel sequencing and 0.00025% 
using such as digital droplet PCR for specific 
known alterations [138]. A major remaining 
challenge is to understand the sensitivity of 
assays for mutation detection to ensure that 
a negative test truly reflects the absence of 
tumor-derived DNA and not a limitation of 
assay or bioinformatic approaches. 

As cfDNA assays seek to expand the 
breadth of sequencing (e.g., whole genome 
sequencing), efficient and cost-effective 
methods to screen blood samples for ade-
quate amounts of tumor-derived DNA will be 
critical. Although sequencing costs continue 
to decline, identifying samples unlikely to 
provide usable sequence data should improve 
efficiencies. Most assays that determine 
tumor fraction depend on prior knowledge 
of tumor-specific mutations. Recent efforts 
suggest that low-coverage (approximately 
0.1X) whole genome sequencing of cfDNA 
may offer the ability to quantify tumor frac-
tion without the need for prior knowledge of 
tumor mutations [140].

Another challenge involves deconvo-
lution of genomic alterations present in 
leukocytes as a consequence of CHIP from 
tumor-specific alterations [144, 145]. CHIP 
is the expansion of a clonal hematopoietic 
progenitor identif ied through common 
genomic alterations, present in increasing 
frequency as individual’s age. Typically, 
‘normal’ DNA to distinguish germline from 
somatic tumor mutations is derived from 
peripheral blood cells and the frequency 
of CHIP – potentially more than 10% of 
patients over the age of 65 – suggests that 
methods to identify and account for CHIP 
will be critical.

Although most efforts to date have 
focused on tracking specific alterations 
known to be present in a tumor biopsy 
or sequencing targeted panels of can-
cer-related genes, there is growing evi-
dence that cfDNA offers the potential to 

obtain exome- and genome-level tumor 
sequencing data. Works from several 
groups have demonstrated the feasibility 
of genome-wide copy number analysis in 
cancer patients from plasma via shallow 
or low-coverage sequencing of cfDNA 
[140, 146-149]. Further efforts in this 
regard demonstrate feasibility of exome 
sequencing of cfDNA in the context of 
adequate tumor fraction [140-142, 146]. 
Comprehensive profiling is useful; par-
ticularly as blood can readily be collected 
serially, enabling tracking of the evolution 
of resistance as patients are on therapy. 
As we gain a greater understanding of the 
importance of non-driver mutations and 
regulatory elements in carcinogenesis and 
cancer progression, more comprehensive 
tumor genomic profiling from blood offers 
the potential for discovery in addition to 
detection, response tracking, or biomarker 
identification. In addition, more sensitive 
methods of detecting and isolating tumor-de-
rived DNA or alterations from plasma may 
improve assay sensitivity [150, 151]. 

Future Directions: cfDNA is increasingly 
prevalent in oncology practice, from the 
first FDA-approved cfDNA biomarker to 
commercial cfDNA targeted panel sequenc-
ing assays. However, a recent American 
Society of Clinical Oncology (ASCO) and 
College of American Pathologists joint 
review reinforced that widespread use in 
clinical practice is not yet recommended 
until there is evidence of clinical validity and 
utility [152]. Despite this, there is growing 
evidence that personalized, highly sensitive 
mutation-based assays will be feasible for 
assessment of minimal residual disease and 
potentially tracking for early recurrence 
detection. These advances may translate 
to cfDNA assays that could be used for 
screening and early primary detection as 
well yet require clinical validation first. 
Finally, technological and computational 
advances are facilitating comprehensive 
genomic profiling exclusively from plasma. 
There remains the hope that new minimally 
invasive ‘liquid biopsy’ assays could improve 
outcomes by identifying cancer earlier and 
more specifically while also facilitating a 
greater understanding of novel susceptibil-
ities and targets.

Cohort Matching Algorithms
Description of Technology: Traditional 
biomarker analysis focuses on trying to 
figure out what distinguishes one patient 
from another patient. Broadly speaking, 
cohort-matching algorithms are either cen-
tered around similar features, or on similar 
outcomes. Using feature selection methods, 
biomarkers with the strongest association to 
the feature of interest are identified and then 
validated in an independent test set. These 
biomarker selection processes universally 
assume that there is a global, ground truth 
regarding the biomarker-phenotype relation-
ship that is stable across multiple settings 
[153]. Unfortunately, this biomarker selec-
tion paradigm results in a tendency to divide 
patients into increasingly small subsets that 
may have no clinical relevance. Moreover, 
this fragmentation of previously “common” 
diseases results in a collection of “rare” sub-
types that are then progressively challenging 
to study [154, 155] as there are an endless 
number of biomarker-subtype-therapy com-
binations. An alternative to this biomarker 
proliferation is the idea of trying to bin 
patients together based on potential outcome 
similarity – pattern-matching at a patient lev-
el. In other words, rather than focus on how 
patients are dissimilar, focus on how sets of 
patients respond similarly to a medication. 
In other words, one can leverage omics/
phenomics comparisons at a patient level 
through more holistic pattern matching. This 
allows any number of omics technologies to 
define a patient-patient similarity strength.

Recent Advances: There currently is not a 
standard means of patient matching using 
omics data. There are an assortment of varied 
heuristics and cohort matching metrics [156-
158]. Feature matching algorithms assume 
that retained features are critical determi-
nants of outcomes such as survival and are 
optimal for situations where the biomarker 
is directly linked to the outcome. A straight-
forward approach to feature matching is 
to assign matches based on exact feature 
overlap -- for two patients to be a match 
they must share all features. Foundation 
Medicine’s PatientMatch tool [159] is an 
example of this exact matching approach. 
More complex feature matching schemes 
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have also been developed using Bayesian 
approaches [160]. Other feature matching 
algorithms include the PHenotypic Interpre-
tation of Variants in Exomes (PHIVE) that 
matches human phenotypic profiles to glean 
the variants found in whole exome sequencing 
in mouse models [157] and DECIPHER [161] 
that enables international querying of karyo-
type, genetic, and phenotypic information for 
matches. In contrast to feature matching, the 
outcome-matching approach allows features 
to be weighted based on their discrimina-
tory power. Frequently used algorithms are 
weighted K-nearest neighbor, random forest 
techniques, and deep learning (e.g., artifi-
cial neural networks) [162-164]. Outcomes 
matching attempts to match patients with oth-
er patients who may have a similar outcome 
to the same therapy based on phenotypic and 
omic predictors. A patient’s features could 
potentially be compared not just from patient 
to patient (e.g., Patients Like Me) to infer out-
comes but also from patient to cell lines (e.g., 
the Connectivity Map project [165]) and from 
a patient’s electronic health record (EHR) to 
separate patient’s EHRs [166].

Clinical Utility: The landscape today is 
dominated by feature matching strategies. 
These have been applied to clinical trial 
recruitment most notably for such national 
endeavors as the NCI-MATCH trial. Much of 
feature matching algorithms today have been 
focused on improving clinical trials accrual 
by prompting physicians to generate referrals 
[167]. Although seemingly simple, clinical 
trials matching algorithms have shown up 
to a 90% reduction in time spent identifying 
trial candidates [168]. GeneYenta matches 
phenotypically similar patients in regard to 
rare diseases [169] by weighting predictive 
features. Algorithms have been written to 
evaluate single nucleotide variant (SNV) 
frequencies between patients and non-
small cell lung cancer cell lines to predict 
chemotherapeutic response [156]. Startup 
efforts such as MatchTX (http://match-tx.
com) are attempting to reimagine social 
networking tools to help clinicians find best 
patient matches. Although the data sources, 
data types, and methods are heterogeneous, 
matching techniques at their core employ 
heuristic approaches to discover and vet the 
best profiles from large clinical databases. 

Data Challenges: Cohort matching algo-
rithms need to be capable of subsuming 
disparate data types and methods of com-
parison. Unfortunately the data types used in 
the matching process are varied and can be 
subjective or objective phenotypic measure-
ments. Definitions of pathogenicity [170] 
remain a huge problem as do incomplete 
datasets and datasets lacking standardized 
ontologies. Preprocessing steps will need to 
be developed to organize the data into viable 
features to be used by matching algorithms. 
A further complication is the possibility that 
predictive models may require subsuming 
disparate unstandardized data-types simul-
taneously [63, 171]. EHR and omics interop-
erability remain a primary impediment to 
more robust algorithm generation. This will 
require a concerted standardization among 
data sets including vocabulary mapping and 
normalization.

Future Directions: As interoperability is a 
key impediment to the omics revolution, this 
has spurred efforts such as the Genomic Data 
Commons [172] which aims to “provide a uni-
fied data repository that enables data sharing 
across cancer genomic studies in support of 
precision medicine.” Other consortia efforts 
such as the Global Alliance for Genomics 
and Health (GA4GH) [173] and Health Level 
Seven International’s Fast Healthcare Interop-
erability Resources (FHIR) [174] are enabling 
the development of application programming 
interfaces (APIs) and standards convergence. 
For example, the GA4GH Beacon Project 
allows federated queries to detect the exis-
tence of specific genomic variants across a 
variety of genome resources. Coalescing large 
datasets such that meaningful matching can 
occur has also been a thrust of recent develop-
ments. ASCO has also built a learning system 
called CancerLinQ [175] to help facilitate 
integration of data from multiple participat-
ing community oncology practice sites in an 
attempt to standardize data, facilitate research, 
and provide personalized cancer care through 
patient matching. Academic and selected 
larger oncology groups are participating in 
consortia such as ORIEN [173], GENIE 
[176], and the International Cancer Genome 
Consortium (ICGC) [177] and are building 
their respective frameworks for identifying 
patient cohorts. The “Sync for Science” 

[178] endeavor sponsored by the NIH and 
the Office of the National Coordinator for 
Health Information Technology is going to 
permit patients to directly donate their data 
to be used to support innovative match-based 
algorithms for predictive purposes and thus 
contributing to precision medicine research. 
Sync for Science is also an integral part of 
the patient engagement portion of the NIH 
‘All of Us’ initiative (https://allofus.nih.gov). 
Enhancing and perhaps complicating the 
field further, individual hospital systems 
such as the Swedish Cancer Institute and the 
Henry Ford Hospital system are developing 
their own precision medicine repositories. 
Commercial pathology laboratories – such as 
Caris and Foundation Medicine – have their 
internal datasets to mine. Other efforts like 
Syapse’s Open Precision Oncology Network 
[179] allow aggregated cancer genomics data 
to be pulled from all participating health 
systems. These consortia and businesses 
all rely on patient matching as part of their 
core strengths. 

Conclusion
The sequencing of the genome has ushered in 
a new era of personalized cancer informatics. 
But the DNA genome is simply a first layer 
in a complex biological environment from 
which many omics data can be overlaid. We 
are in a time of growth. Metabolomics and 
proteomics are driving us closer to the tumor 
phenotype, and importantly, its response to 
treatment in real-time. ctDNA/cfDNA may 
help understand the clonal tumor evolution 
using non-invasive methods with the patient. 
These new omics datatypes will more than 
certainly help us tailor and adjust therapy for 
oncology patients. With these new datatypes 
and the understanding that data must be 
centralized, we are witnessing, too, an ex-
plosion of clinical/omics datasets aggregated 
by consortia and industry partners. As these 
datasets grow, so too, will be the need for 
more sophisticated cohort matching algo-
rithms to bring clarity and useful actionable 
insights. These are exciting times. The cancer 
omics revolution continues to march forth 
rapidly and hopefully continues to improve 
our ability to practice precision oncology.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



IMIA Yearbook of Medical Informatics 2018

219

The Omics Revolution Continues: The Maturation of High-Throughput Biological Data Sources

References
1.	 Goossens N, Nakagawa S, Sun X, Hoshida Y. 

Cancer biomarker discovery and validation. Transl 
Cancer Res 2015;4(3):256-69.

2.	 U.S. Food and Drug Adminstration. Paving the 
way for personalized medicine: FDA’s role in a 
new era of medical product development; 2013. 
Available from: https://dx.advamed.org/sites/
dx.advamed.org/files/resource/fda_report_on_pav-
ing_the_way_for_personalized_medicine.pdf. 
Accessed May 9, 2018. 

3.	 Catenacci DV. Next-generation clinical trials: 
Novel strategies to address the challenge of 
tumor molecular heterogeneity. Mol Oncol 
2015;9(5):967-96.

4.	 Akhmetov I, Bubnov RV. Assessing value of inno-
vative molecular diagnostic tests in the concept of 
predictive, preventive, and personalized medicine. 
EPMA J 2015;6:19.

5.	 Koren G. Personalized medicine-disregarding 
the obvious: analysis of trends among articles 
published on “Personalized Medicine”. Ther Drug 
Monit 2015;37(5):559.

6.	 LeCun Y, Bengio Y, Hinton G. Deep learning. 
Nature 2015;521(7553):436-44.

7.	 Brower V. NCI-MATCH pairs tumor muta-
tions with matching drugs. Nat Biotechnol 
2015;33(8):790-1.

8.	 Bouquie R, Gregoire M, Hernando H, Azoulay C, 
Dailly E, Monteil-Ganiere C, et al. Evaluation of 
a methotrexate chemiluminescent microparticle 
immunoassay: comparison to fluorescence po-
larization immunoassay and liquid chromatogra-
phy-tandem mass spectrometry. Am J Clin Pathol 
2016;146(1):119-24.

9.	 Yang JY, Yoshihara K, Tanaka K, Hatae M, Masu-
zaki H, Itamochi H, et al. Predicting time to ovarian 
carcinoma recurrence using protein markers. J Clin 
Invest 2013;123(9):3740-50.

10.	Cardnell RJ, Feng Y, Diao L, Fan YH, Masrorpour 
F, Wang J, et al. Proteomic markers of DNA repair 
and PI3K pathway activation predict response to 
the PARP inhibitor BMN 673 in small cell lung 
cancer. Clin Cancer Res 2013;19(22):6322-8.

11.	Sohn J, Do KA, Liu S, Chen H, Mills GB, Hor-
tobagyi GN, et al. Functional proteomics charac-
terization of residual triple-negative breast cancer 
after standard neoadjuvant chemotherapy. Ann 
Oncol 2013;24(10):2522-6.

12.	Uhlen M, Fagerberg L, Hallstrom BM, Lindskog 
C, Oksvold P, Mardinoglu A, et al. Proteomics. 
Tissue-based map of the human proteome. Science 
2015;347(6220):1260419.

13.	Li J, Akbani R, Zhao W, Lu Y, Weinstein JN, 
Mills GB, et al. Explore, visualize, and analyze 
functional cancer proteomic data using the Cancer 
Proteome Atlas. Can Res 2017;77(21):e51-e4.

14.	Vidova V, Spacil Z. A review on mass spectrom-
etry-based quantitative proteomics: Targeted and 
data independent acquisition. Anal Chim Acta 
2017;964:7-23.

15.	Hoofnagle AN, Becker JO, Oda MN, Cavigiolio 
G, Mayer P, Vaisar T. Multiple-reaction moni-
toring-mass spectrometric assays can accurately 
measure the relative protein abundance in complex 

mixtures. Clin Chem 2012;58(4):777-81.
16.	Mao X, He J, Li T, Lu Z, Sun J, Meng Y, et al. 

Application of imaging mass spectrometry for the 
molecular diagnosis of human breast tumors. Sci 
Rep 2016;6:21043.

17.	Vasaikar SV, Straub P, Wang J, Zhang B. Linke-
dOmics: analyzing multi-omics data within and 
across 32 cancer types. Nucleic Acids Res 2017.

18.	Chen TW, Lee CC, Liu H, Wu CS, Pickering CR, 
Huang PJ, et al. APOBEC3A is an oral cancer 
prognostic biomarker in Taiwanese carriers of an 
APOBEC deletion polymorphism. Nat Commun 
2017;8(1):465.

19.	Huang KL, Li S, Mertins P, Cao S, Gunawardena 
HP, Ruggles KV, et al. Proteogenomic integration 
reveals therapeutic targets in breast cancer xeno-
grafts. Nat Commun 2017;8:14864.

20.	Mertins P, Mani DR, Ruggles KV, Gillette MA, 
Clauser KR, Wang P, et al. Proteogenomics con-
nects somatic mutations to signalling in breast 
cancer. Nature 2016;534(7605):55-62.

21.	Mundt F, Rajput S, Li S, Ruggles KV, Mooradian 
AD, Mertins P, et al. Mass spectrometry-based 
proteomics reveals potential roles of NEK9 and 
MAP2K4 in resistance to PI3K inhibitors in triple 
negative breast cancers. Cancer Res 2018.

22.	Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, 
McDermott JE, et al. Integrated proteogenomic 
characterization of human high-grade serous 
ovarian cancer. Cell 2016;166(3):755-65.

23.	Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, 
Mills GB, et al. Reverse phase protein array: 
validation of a novel proteomic technology and 
utility for analysis of primary leukemia specimens 
and hematopoietic stem cells. Mol Can Ther 
2006;5(10):2512-21.

24.	Desiere F, Deutsch EW, Nesvizhskii AI, Mallick 
P, King NL, Eng JK, et al. Integration with the 
human genome of peptide sequences obtained 
by high-throughput mass spectrometry. Gen Biol 
2005;6(1):R9.

25.	Farrah T, Deutsch EW, Hoopmann MR, Hallows 
JL, Sun Z, Huang CY, et al. The state of the human 
proteome in 2012 as viewed through PeptideAtlas. 
J Proteome Res 2013;12(1):162-71.

26.	Vizcaino JA, Cote RG, Csordas A, Dianes JA, 
Fabregat A, Foster JM, et al. The PRoteomics 
IDEntifications (PRIDE) database and associated 
tools: status in 2013. Nuc Acids Res 2013;41(Da-
tabase issue):D1063-9.

27.	Farrah T, Deutsch EW, Kreisberg R, Sun Z, 
Campbell DS, Mendoza L, et al. PASSEL: the 
PeptideAtlas SRMexperiment library. Proteomics 
2012;12(8):1170-5.

28.	Lee JM, Hays JL, Annunziata CM, Noonan 
AM, Minasian L, Zujewski JA, et al. Phase I/Ib 
study of olaparib and carboplatin in BRCA1 or 
BRCA2 mutation-associated breast or ovarian 
cancer with biomarker analyses. J Natl Cancer Inst 
2014;106(6):dju089.

29.	Endris V, Stenzinger A, Pfarr N, Penzel R, 
Mobs M, Lenze D, et al. NGS-based BRCA1/2 
mutation testing of high-grade serous ovarian 
cancer tissue: results and conclusions of the 
first international round robin trial. Virch Archiv 
2016;468(6):697-705.

30.	Matulonis UA, Penson RT, Domchek SM, 
Kaufman B, Shapira-Frommer R, Audeh MW, et al. 

Olaparib monotherapy in patients with advanced 
relapsed ovarian cancer and a germline BRCA1/2 
mutation: a multistudy analysis of response rates 
and safety. Ann Oncol 2016;27(6):1013-9.

31.	Domchek SM, Aghajanian C, Shapira-Frommer 
R, Schmutzler RK, Audeh MW, Friedlander M, et 
al. Efficacy and safety of olaparib monotherapy 
in germline BRCA1/2 mutation carriers with 
advanced ovarian cancer and three or more lines 
of prior therapy. Gyn Onc 2016;140(2):199-203.

32.	Zhang A, Sun H, Xu H, Qiu S, Wang X. Cell 
metabolomics. OMICS 2013;17(10):495-501.

33.	LaConti JJ, Laiakis EC, Mays AD, Peran I, Kim 
SE, Shay JW, et al. Distinct serum metabolomics 
profiles associated with malignant progression 
in the KrasG12D mouse model of pancreat-
ic ductal adenocarcinoma. BMC Genomics 
2015;16 Suppl 1:S1.

34.	Johnson CH, Ivanisevic J, Siuzdak G. Metabolom-
ics: beyond biomarkers and towards mechanisms. 
Nat Rev Mol Cell Biol 2016;17(7):451-9.

35.	Hakimi AA, Reznik E, Lee CH, Creighton CJ, 
Brannon AR, Luna A, et al. An integrated metabol-
ic atlas of clear cell renal cell carcinoma. Cancer 
Cell 2016;29(1):104-16.

36.	Clish CB. Metabolomics: an emerging but power-
ful tool for precision medicine. Cold Spring Harb 
Mol Case Stud 2015;1(1):a000588.

37.	Mathe EA, Patterson AD, Haznadar M, Manna 
SK, Krausz KW, Bowman ED, et al. Noninvasive 
urinary metabolomic profiling identifies diagnostic 
and prognostic markers in lung cancer. Cancer Res 
2014;74(12):3259-70.

38.	Terunuma A, Putluri N, Mishra P, Mathe EA, Dors-
ey TH, Yi M, et al. MYC-driven accumulation of 
2-hydroxyglutarate is associated with breast cancer 
prognosis. J Clin Invest 2014;124(1):398-412.

39.	Armitage EG, Southam AD. Monitoring cancer 
prognosis, diagnosis and treatment efficacy using 
metabolomics and lipidomics. Metabolomics 
2016;12:146.

40.	Liesenfeld DB, Habermann N, Owen RW, Scalbert 
A, Ulrich CM. Review of mass spectrometry-based 
metabolomics in cancer research. Cancer Epide-
miol Biomarkers Prev 2013;22(12):2182-201.

41.	Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, 
Young N, et al. HMDB: the Human Metabolome 
Database. Nucleic Acids Res 2007;35(Database 
issue):D521-6.

42.	Wishart DS, Knox C, Guo AC, Eisner R, Young 
N, Gautam B, et al. HMDB: a knowledgebase 
for the human metabolome. Nucleic Acids Res 
2009;37(Database issue):D603-10.

43.	Wishart DS, Jewison T, Guo AC, Wilson M, 
Knox C, Liu Y, et al. HMDB 3.0--The Human 
Metabolome Database in 2013. Nucleic Acids Res 
2013;41(Database issue):D801-7.

44.	Wishart DS. Emerging applications of metabolom-
ics in drug discovery and precision medicine. Nat 
Rev Drug Discov 2016;15(7):473-84.

45.	Wishart DS. Advances in metabolite identification. 
Bioanalysis 2011;3(15):1769-82.

46.	Zhang A, Sun H, Wang P, Han Y, Wang X. Modern 
analytical techniques in metabolomics analysis. 
Analyst 2012;137(2):293-300.

47.	Dunn WB, Bailey NJ, Johnson HE. Measuring 
the metabolome: current analytical technologies. 
Analyst 2005;130(5):606-25.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



220

IMIA Yearbook of Medical Informatics 2018

Mathé et al

48.	Emwas AH. The strengths and weaknesses of NMR 
spectroscopy and mass spectrometry with particu-
lar focus on metabolomics research. Methods Mol 
Biol 2015;1277:161-93.

49.	Roberts LD, Souza AL, Gerszten RE, Clish CB. 
Targeted metabolomics. Curr Protoc Mol Biol 
2012;Chapter 30:Unit 30.2.1-24.

50.	Vinayavekhin N, Saghatelian A. Untargeted me-
tabolomics. Curr Protoc Mol Biol 2010;Chapter 
30:Unit 30.1.1-24.

51.	West JA, Beqqali A, Ament Z, Elliott P, Pinto 
YM, Arbustini E, et al. A targeted metabolomics 
assay for cardiac metabolism and demonstration 
using a mouse model of dilated cardiomyopathy. 
Metabolomics 2016;12:59.

52.	Gelman SJ, Patti GJ. Profiling cancer metabolism 
at the ‘omic’ level: a last resort or the next frontier? 
Cancer Metab 2016;4:2.

53.	Haznadar M, Mathe EA. Experimental and study 
design considerations for uncovering oncometab-
olites. Methods Mol Biol 2017;1513:37-47.

54.	Dona AC, Kyriakides M, Scott F, Shephard EA, 
Varshavi D, Veselkov K, et al. A guide to the 
identification of metabolites in NMR-based me-
tabonomics/metabolomics experiments. Comput 
Struct Biotechnol J 2016;14:135-53.

55.	Watson DG. A rough guide to metabolite iden-
tification using high resolution liquid chroma-
tography mass spectrometry in metabolomic 
profiling in metazoans. Comput Struct Biotechnol 
J 2013;4:e201301005.

56.	Kind T, Fiehn O. Advances in structure elucidation 
of small molecules using mass spectrometry. Bio-
anal Rev 2010;2(1-4):23-60.

57.	Grebe SK, Singh RJ. LC-MS/MS in the clinical 
laboratory - where to from here? Clin Biochem 
Rev 2011;32(1):5-31.

58.	Li DW, Wang C, Bruschweiler R. Maximal clique 
method for the automated analysis of NMR 
TOCSY spectra of complex mixtures. J Biomol 
NMR 2017;68(3):195-202.

59.	Bingol K, Bruschweiler R. Two elephants in the 
room: new hybrid nuclear magnetic resonance and 
mass spectrometry approaches for metabolomics. 
Curr Opin Clin Nutr Metab Care 2015;18(5):471-7.

60.	Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, 
Burant C, et al. Metabolomics Workbench: An 
international repository for metabolomics data and 
metadata, metabolite standards, protocols, tutorials 
and training, and analysis tools. Nucleic Acids Res 
2016;44(D1):D463-70.

61.	Salek RM, Haug K, Conesa P, Hastings J, Wil-
liams M, Mahendraker T, et al. The MetaboLights 
repository: curation challenges in metabolomics. 
Database (Oxford) 2013;2013:bat029.

62.	Menni C, Zierer J, Valdes AM, Spector TD. Mixing 
omics: combining genetics and metabolomics to 
study rheumatic diseases. Nat Rev Rheumatol 
2017;13(3):174-81.

63.	Ritchie MD, Holzinger ER, Li R, Pendergrass SA, 
Kim D. Methods of integrating data to uncover 
genotype-phenotype interactions. Nat Rev Genet 
2015;16(2):85-97.

64.	Johnson CH, Spilker ME, Goetz L, Peterson 
SN, Siuzdak G. Metabolite and microbiome 
interplay in cancer immunotherapy. Cancer Res 
2016;76(21):6146-52.

65.	Alonso A, Marsal S, Julia A. Analytical methods in 

untargeted metabolomics: state of the art in 2015. 
Front Bioeng Biotechnol 2015;3:23.

66.	Kelder T, Conklin BR, Evelo CT, Pico AR. Finding 
the right questions: exploratory pathway analysis 
to enhance biological discovery in large datasets. 
PLoS Biol 2010;8(8):e1000472.

67.	Booth SC, Weljie AM, Turner RJ. Computational 
tools for the secondary analysis of metabolo-
mics experiments. Comput Struct Biotechnol J 
2013;4:e201301003.

68.	Zhang B, Hu S, Baskin E, Patt A, Siddiqui JK, 
Mathe EA. RaMP: A comprehensive relational 
database of metabolomics pathways for pathway 
enrichment analysis of genes and metabolites. 
Metabolites 2018;8(1).

69.	Siddiqui JK, Baskin E, Liu M, Cantemir-Stone CZ, 
Zhang B, Bonneville R, et al. IntLIM: integration 
using linear models of metabolomics and gene ex-
pression data. BMC Bioinformatics 2018;19(1):81.

70.	Gowda H, Ivanisevic J, Johnson CH, Kurczy ME, 
Benton HP, Rinehart D, et al. Interactive XCMS 
Online: simplifying advanced metabolomic data 
processing and subsequent statistical analyses. 
Anal Chem 2014;86(14):6931-9.

71.	Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. 
XCMS Online: a web-based platform to pro-
cess untargeted metabolomic data. Anal Chem 
2012;84(11):5035-9.

72.	Xia J, Wishart DS. Using MetaboAnalyst 3.0 for 
comprehensive metabolomics data analysis. Curr 
Protoc Bioinformatics 2016;55:14.10.1-14.10.91.

73.	Xia J, Sinelnikov IV, Han B, Wishart DS. Metabo-
Analyst 3.0--making metabolomics more meaning-
ful. Nucleic Acids Res 2015;43(W1):W251-7.

74.	Wanichthanarak K, Fan S, Grapov D, Barupal DK, 
Fiehn O. Metabox: A toolbox for metabolomic data 
analysis, interpretation and integrative exploration. 
PLoS One 2017;12(1):e0171046.

75.	Vaniya A, Fiehn O. Using fragmentation trees 
and mass spectral trees for identifying unknown 
compounds in metabolomics. Trends Analyt Chem 
2015;69:52-61.

76.	Wohlgemuth G, Haldiya PK, Willighagen E, 
Kind T, Fiehn O. The Chemical Translation 
Service--a web-based tool to improve standard-
ization of metabolomic reports. Bioinformatics 
2010;26(20):2647-8.

77.	Rocca-Serra P, Salek RM, Arita M, Correa E, Day-
alan S, Gonzalez-Beltran A, et al. Data standards 
can boost metabolomics research, and if there is a 
will, there is a way. Metabolomics 2016;12:14.

78.	Spicer R, Salek RM, Moreno P, Canueto D, 
Steinbeck C. Navigating freely-available software 
tools for metabolomics analysis. Metabolomics 
2017;13(9):106.

79.	Zhang A, Sun H, Yan G, Wang P, Wang X. Metab-
olomics for biomarker discovery: moving to the 
clinic. Biomed Res Int 2015;2015:354671.

80.	Haznadar M, Cai Q, Krausz KW, Bowman ED, 
Margono E, Noro R, et al. Urinary metabolite 
risk biomarkers of lung cancer: a prospective 
cohort study. Cancer Epidemiol Biomarkers Prev 
2016;25(6):978-86.

81.	Patel S, Ahmed S. Emerging field of metabolo-
mics: big promise for cancer biomarker identifi-
cation and drug discovery. J Pharm Biomed Anal 
2015;107:63-74.

82.	Beger RD, Dunn W, Schmidt MA, Gross SS, Kir-

wan JA, Cascante M, et al. Metabolomics enables 
precision medicine: “A White Paper, Community 
Perspective”. Metabolomics 2016;12(10):149.

83.	Shaffer M, Armstrong AJS, Phelan VV, Reisdorph 
N, Lozupone CA. Microbiome and metabolome 
data integration provides insight into health and 
disease. Transl Res 2017;189:51-64.

84.	Garg N, Luzzatto-Knaan T, Melnik AV, Cara-
ballo-Rodriguez AM, Floros DJ, Petras D, et al. 
Natural products as mediators of disease. Nat Prod 
Rep 2017;34(2):194-219.

85.	Devaraj S, Hemarajata P, Versalovic J. The 
human gut microbiome and body metabolism: 
implications for obesity and diabetes. Clin Chem 
2013;59(4):617-28.

86.	Boulange CL, Neves AL, Chilloux J, Nicholson 
JK, Dumas ME. Impact of the gut microbiota 
on inflammation, obesity, and metabolic disease. 
Genome Med 2016;8(1):42.

87.	Sonnenburg JL, Backhed F. Diet-microbiota 
interactions as moderators of human metabolism. 
Nature 2016;535(7610):56-64.

88.	Feng Q, Liu Z, Zhong S, Li R, Xia H, Jie Z, et 
al. Integrated metabolomics and metagenomics 
analysis of plasma and urine identified microbial 
metabolites associated with coronary heart disease. 
Sci Rep 2016;6:22525.

89.	Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison 
BS, Dugar B, et al. Gut flora metabolism of phos-
phatidylcholine promotes cardiovascular disease. 
Nature 2011;472(7341):57-63.

90.	Tang WH, Wang Z, Levison BS, Koeth RA, Britt 
EB, Fu X, et al. Intestinal microbial metabolism 
of phosphatidylcholine and cardiovascular risk. N 
Engl J Med 2013;368(17):1575-84.

91.	Tong M, McHardy I, Ruegger P, Goudarzi M, 
Kashyap PC, Haritunians T, et al. Reprograming 
of gut microbiome energy metabolism by the 
FUT2 Crohn’s disease risk polymorphism. ISME 
J 2014;8(11):2193-206.

92.	Contreras AV, Cocom-Chan B, Hernandez-Montes 
G, Portillo-Bobadilla T, Resendis-Antonio O. 
Host-microbiome interaction and cancer: potential 
application in precision medicine. Front Physiol 
2016;7:606.

93.	Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong 
X, et al. Fecal microbiota, fecal metabolome, 
and colorectal cancer interrelations. PLoS One 
2016;11(3):e0152126.

94.	Buescher JM, Driggers EM. Integration of omics: 
more than the sum of its parts. Cancer Metab 
2016;4:4.

95.	Lempradl A, Pospisilik JA, Penninger JM. Explor-
ing the emerging complexity in transcriptional 
regulation of energy homeostasis. Nat Rev Genet 
2015;16(11):665-81.

96.	Etchegaray JP, Mostoslavsky R. Interplay be-
tween metabolism and epigenetics: a nuclear 
adaptation to environmental changes. Mol Cell 
2016;62(5):695-711.

97.	Alix-Panabieres C, Pantel K. Challenges in cir-
culating tumour cell research. Nat Rev Cancer 
2014;14(9):623-31.

98.	Mohan S, Chemi F, Brady G. Challenges and unan-
swered questions for the next decade of circulating 
tumour cell research in lung cancer. Transl Lung 
Cancer Res 2017;6(4):454-72.

99.	Polzer B, Medoro G, Pasch S, Fontana F, Zorzino 

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



IMIA Yearbook of Medical Informatics 2018

221

The Omics Revolution Continues: The Maturation of High-Throughput Biological Data Sources

L, Pestka A, et al. Molecular profiling of single 
circulating tumor cells with diagnostic intention. 
EMBO Mol Med 2014;6(11):1371-86.

100.	 Sparano JA, O’Neill A, Alpaugh K, Wolff AC, 
Northfelt DW, Dang C, et al. Abstract GS6-03: 
Circulating tumor cells five years after diagnosis 
are prognostic for late recurrence in operable 
stage II-III breast cancer. Presented at: San 
Antonio Breast Cancer Symposium. 2017 Dec 
3-9; San Antonio, TX. (abstract)

101.	 Kosaka N, Iguchi H, Ochiya T. Circulating mi-
croRNA in body fluid: a new potential biomarker 
for cancer diagnosis and prognosis. Cancer Sci 
2010;101(10):2087-92.

102.	 Garcia-Romero N, Esteban-Rubio S, Rackov G, 
Carrion-Navarro J, Belda-Iniesta C, Ayuso-Sac-
ido A. Extracellular vesicles compartment in 
liquid biopsies: Clinical application. Mol Aspects 
Med 2018;60:27-37.

103.	 Melo SA, Luecke LB, Kahlert C, Fernandez AF, 
Gammon ST, Kaye J, et al. Glypican-1 identifies 
cancer exosomes and detects early pancreatic 
cancer. Nature 2015;523(7559):177-82.

104.	 Kalluri R. The biology and function of exosomes 
in cancer. J Clin Invest 2016;126(4):1208-15.

105.	 Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, 
Danilova L, et al. Detection and localization of 
surgically resectable cancers with a multi-analyte 
blood test. Science 2018;359(6378):926-30.

106.	 Mandel P, Metais P. Les acides nucléiques du 
plasma sanguin chez l’homme. C R Seances Soc 
Biol Fil 1948;142(3-4):241-3.

107.	 Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. 
Free DNA in the serum of cancer patients and the 
effect of therapy. Cancer Res 1977;37(3):646-50.

108.	 Stroun M, Anker P, Lyautey J, Lederrey C, Mau-
rice PA. Isolation and characterization of DNA 
from the plasma of cancer patients. Eur J Cancer 
Clin Oncol 1987;23(6):707-12.

109.	 Stroun M, Anker P, Maurice P, Lyautey J, Leder-
rey C, Beljanski M. Neoplastic characteristics of 
the DNA found in the plasma of cancer patients. 
Oncology 1989;46(5):318-22.

110.	 Vasioukhin V, Anker P, Maurice P, Lyautey 
J, Lederrey C, Stroun M. Point mutations of 
the N-ras gene in the blood plasma DNA of 
patients with myelodysplastic syndrome or 
acute myelogenous leukaemia. Br J Haematol 
1994;86(4):774-9.

111.	 Dawson SJ, Tsui DW, Murtaza M, Biggs H, 
Rueda OM, Chin SF, et al. Analysis of circulating 
tumor DNA to monitor metastatic breast cancer. 
N Engl J Med 2013;368(13):1199-209.

112.	 Bianchi DW, Parker RL, Wentworth J, Madanku-
mar R, Saffer C, Das AF, et al. DNA sequencing 
versus standard prenatal aneuploidy screening. 
N Engl J Med 2014;370(9):799-808.

113.	 Garraway LA, Lander ES. Lessons from the 
cancer genome. Cell 2013;153(1):17-37.

114.	 MacConaill LE. Existing and emerging technol-
ogies for tumor genomic profiling. J Clin Oncol 
2013;31(15):1815-24.

115.	 Meyerson M, Gabriel S, Getz G. Advances 
in understanding cancer genomes through 
second-generation sequencing. Nat Rev Genet 
2010;11(10):685-96.

116.	 Silva JM, Silva J, Sanchez A, Garcia JM, 
Dominguez G, Provencio M, et al. Tumor DNA 

in plasma at diagnosis of breast cancer patients 
is a valuable predictor of disease-free survival. 
Clin Cancer Res 2002;8(12):3761-6.

117.	 Diehl F, Schmidt K, Choti MA, Romans K, 
Goodman S, Li M, et al. Circulating mutant 
DNA to assess tumor dynamics. Nat Med 
2008;14(9):985-90.

118.	 Higgins MJ, Jelovac D, Barnathan E, Blair B, 
Slater S, Powers P, et al. Detection of tumor 
PIK3CA status in metastatic breast cancer 
using peripheral blood. Clin Cancer Res 
2012;18(12):3462-9.

119.	 Garcia-Murillas I, Schiavon G, Weigelt B, 
Ng C, Hrebien S, Cutts RJ, et al. Mutation 
tracking in circulating tumor DNA predicts 
relapse in early breast cancer. Sci Transl Med 
2015;7(302):302ra133.

120.	 Schiavon G, Hrebien S, Garcia-Murillas I, 
Cutts RJ, Pearson A, Tarazona N, et al. Anal-
ysis of ESR1 mutation in circulating tumor 
DNA demonstrates evolution during therapy 
for metastatic breast cancer. Sci Transl Med 
2015;7(313):313ra182.

121.	 Fribbens C, O’Leary B, Kilburn L, Hrebien 
S, Garcia-Murillas I, Beaney M, et al. Plasma 
ESR1 mutations and the treatment of estrogen 
receptor-positive advanced breast cancer. J Clin 
Oncol 2016;34(25):2961-8.

122.	 Paweletz CP, Sacher AG, Raymond CK, Alden 
RS, O’Connell A, Mach SL, et al. Bias-corrected 
targeted next-generation sequencing for rapid, 
multiplexed detection of actionable alterations 
in cell-free DNA from advanced lung cancer 
patients. Clin Cancer Res 2016;22(4):915-22.

123.	 Rothe F, Laes JF, Lambrechts D, Smeets D, 
Vincent D, Maetens M, et al. Plasma circulating 
tumor DNA as an alternative to metastatic biop-
sies for mutational analysis in breast cancer. Ann 
Oncol 2014;25(10):1959-65.

124.	 Chae YK, Davis AA, Jain S, Santa-Maria C, 
Flaum L, Beaubier N, et al. Concordance of 
genomic alterations by next-generation sequenc-
ing (NGS) in tumor tissue versus circulating 
tumor DNA in breast cancer. Mol Cancer Ther 
2017;16(7):1412-20.

125.	 Forshew T, Murtaza M, Parkinson C, Gale D, Tsui 
DW, Kaper F, et al. Noninvasive identification 
and monitoring of cancer mutations by targeted 
deep sequencing of plasma DNA. Sci Transl Med 
2012;4(136):136ra68.

126.	 Banks KC, Mortimer SAW, Zill OA, Lanman 
RB, Eltoukhy H, Talasaz A. Abstract B140: 
Genomic profiling of over 5,000 consecutive 
cancer patients with a CLIA-certified cell-free 
DNA NGS test: Analytic and clinical validity and 
utility. Mol Cancer Ther 2015;14(12 Supplement 
2):B140-B.

127.	 Pearson A, Smyth E, Babina IS, Herrera-Abreu 
MT, Tarazona N, Peckitt C, et al. High-level 
clonal FGFR amplification and response to 
FGFR inhibition in a translational clinical trial. 
Cancer Discov 2016;6(8):838-51.

128.	 Yates LR, Knappskog S, Wedge D, Farmery 
JHR, Gonzalez S, Martincorena I, et al. Genomic 
evolution of breast cancer metastasis and relapse. 
Cancer Cell 2017;32(2):169-84 e7.

129.	 Siravegna G, Mussolin B, Buscarino M, Corti 
G, Cassingena A, Crisafulli G, et al. Clonal 

evolution and resistance to EGFR blockade in 
the blood of colorectal cancer patients. Nat Med 
2015;21(7):795-801.

130.	 Amir E, Miller N, Geddie W, Freedman O, 
Kassam F, Simmons C, et al. Prospective study 
evaluating the impact of tissue confirmation of 
metastatic disease in patients with breast cancer. 
J Clin Oncol 2012;30(6):587-92.

131.	 cobas EGFR Mutation Test v2 2016. Available 
from: https://www.fda.gov/Drugs/Information-
OnDrugs/ApprovedDrugs/ucm504540.htm. 
Accessed April 12, 2018.

132.	 Sacher AG, Paweletz C, Dahlberg SE, Alden RS, 
O‘Connell A, Feeney N, et al. Prospective calida-
tion of rapid plasma genotyping for the detection 
of EGFR and KRAS mutations in advanced lung 
cancer. JAMA Oncol 2016;2(8):1014-22.

133.	 Thress KS, Paweletz CP, Felip E, Cho BC, 
Stetson D, Dougherty B, et al. Acquired 
EGFR C797S mutation mediates resistance to 
AZD9291 in non-small cell lung cancer harbor-
ing EGFR T790M. Nat Med 2015;21(6):560-2.

134.	 Azad AA, Volik SV, Wyatt AW, Haegert A, Le 
Bihan S, Bell RH, et al. Androgen receptor 
gene aberrations in circulating cell-free DNA: 
Biomarkers of therapeutic resistance in castra-
tion-resistant prostate cancer. Clin Cancer Res 
2015;21(10):2315-24.

135.	 Zill OA, Greene C, Sebisanovic D, Siew LM, 
Leng J, Vu M, et al. Cell-free DNA next-gener-
ation sequencing in pancreatobiliary carcinomas. 
Cancer Discov 2015;5(10):1040-8.

136.	 Pereira AAL, Morelli MP, Overman M, Kee B, 
Fogelman D, Vilar E, et al. Clinical utility of 
circulating cell-free DNA in advanced colorectal 
cancer. PLoS One 2017;12(8):e0183949.

137.	 Tie J, Wang Y, Tomasetti C, Li L, Springer S, 
Kinde I, et al. Circulating tumor DNA analysis 
detects minimal residual disease and predicts 
recurrence in patients with stage II colon cancer. 
Sci Transl Med 2016;8(346):346ra92.

138.	 Newman AM, Bratman SV, To J, Wynne JF, 
Eclov NC, Modlin LA, et al. An ultrasensitive 
method for quantitating circulating tumor 
DNA with broad patient coverage. Nat Med 
2014;20(5):548-54.

139.	 Phallen J, Sausen M, Adleff V, Leal A, Hruban 
C, White J, et al. Direct detection of early-stage 
cancers using circulating tumor DNA. Sci Transl 
Med 2017;9(403):eaan2415.

140.	 Adalsteinsson VA, Ha G, Freeman SS, Choud-
hury AD, Stover DG, Parsons HA, et al. Scalable 
whole-exome sequencing of cell-free DNA re-
veals high concordance with metastatic tumors. 
Nat Commun 2017;8(1):1324.

141.	 Murtaza M, Dawson SJ, Pogrebniak K, Rueda 
OM, Provenzano E, Grant J, et al. Multifocal 
clonal evolution characterized using circulating 
tumour DNA in a case of metastatic breast can-
cer. Nat Commun 2015;6:8760.

142.	 Murtaza M, Dawson SJ, Tsui DW, Gale D, 
Forshew T, Piskorz AM, et al. Non-invasive 
analysis of acquired resistance to cancer ther-
apy by sequencing of plasma DNA. Nature 
2013;497(7447):108-12.

143.	 Kuderer NM, Burton KA, Blau S, Rose AL, 
Parker S, Lyman GH, et al. Comparison of 
2 commercially available next-generation 

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



222

IMIA Yearbook of Medical Informatics 2018

Mathé et al

sequencing platforms in oncology. JAMA Oncol 
2017;3(7):996-8.

144.	 Genovese G, Kahler AK, Handsaker RE, Lind-
berg J, Rose SA, Bakhoum SF, et al. Clonal 
hematopoiesis and blood-cancer risk inferred 
from blood DNA sequence. N Engl J Med 
2014;371(26):2477-87.

145.	 Jaiswal S, Fontanillas P, Flannick J, Manning 
A, Grauman PV, Mar BG, et al. Age-related 
clonal hematopoiesis associated with adverse 
outcomes. N Engl J Med 2014;371(26):2488-98.

146.	 Heidary M, Auer M, Ulz P, Heitzer E, Petru E, 
Gasch C, et al. The dynamic range of circulating 
tumor DNA in metastatic breast cancer. Breast 
Cancer Res 2014;16(4):421.

147.	 Ulz P, Auer M, Heitzer E. Detection of circulat-
ing tumor DNA in the blood of cancer patients: 
An important tool in cancer chemoprevention. 
Methods Mol Biol 2016;1379:45-68.

148.	 Van Roy N, Van der Linden M, Menten B, 
Dheedene A, Vandeputte C, Van Dorpe J, et al. 
Shallow whole genome sequencing on circulat-
ing cell-free DNA allows reliable non-invasive 
copy number profiling in neuroblastoma patients. 
Clin Cancer Res 2017;23(20):6305-14.

149.	 Stover DG, Parsons HA, Ha G, Freeman S, Barry 
WT, Guo H, et al. Genomewide copy number 
analysis of chemotherapy resistant metastatic 
triple-negative breast cancer from cell-free DNA. 
J Clin Oncol 2018;36(6):543-53.

150.	 Ladas I, Fitarelli-Kiehl M, Song C, Adalsteins-
son VA, Parsons HA, Lin NU, et al. Multi-
plexed elimination of wild-type DNA and 
high-resolution melting prior to targeted 
resequencing of liquid biopsies. Clin Chem 
2017;63(10):1605-13.

151.	 Sonnenberg A, Marciniak JY, Rassenti L, Ghia 
EM, Skowronski EA, Manouchehri S, et al. 
Rapid electrokinetic isolation of cancer-related 
circulating cell-free DNA directly from blood. 
Clin Chem 2014;60(3):500-9.

152.	 Merker JD, Oxnard GR, Compton C, Diehn 
M, Hurley P, Lazar AJ, et al. Circulating tumor 
DNA analysis in patients with cancer: American 
Society of Clinical Oncology and College of 
American Pathologists joint review. J Clin Oncol 
2018;Mar 5 [epub ahead of print].

153.	 Lussier YA, Chen JL. The emergence of ge-
nome-based drug repositioning. Sci Transl Med 
2011;3(96):96ps35.

154.	 Johnson T LD, Chen JL. Opportunities for patient 
matching algorithms to improve patient care 
in oncology. JCO Clinical Cancer Informatics 
2017;1(1).

155.	 Hoadley KA, Yau C, Wolf DM, Cherniack AD, 
Tamborero D, Ng S, et al. Multiplatform analysis 
of 12 cancer types reveals molecular classifi-
cation within and across tissues of origin. Cell 
2014;158(4):929-44.

156.	 Dudley JT, Chen R, Butte AJ. Matching cancer 

genomes to established cell lines for personalized 
oncology. Pac Symp Biocomput 2011:243-52.

157.	 Robinson PN, Kohler S, Oellrich A, Sanger 
Mouse Genetics P, Wang K, Mungall CJ, et al. 
Improved exome prioritization of disease genes 
through cross-species phenotype comparison. 
Genome Res 2014;24(2):340-8.

158.	 Wicks P, Vaughan TE, Massagli MP, Hey-
wood J. Accelerated clinical discovery using 
self-reported patient data collected online and 
a patient-matching algorithm. Nat Biotechnol 
2011;29(5):411-4.

159.	 http://investors.foundationmedicine.com/
news-releases/news-release-details/founda-
tion-medicine-launches-ice-2-its-new-ver-
sion-interactive (accessed May 8, 2018).

160.	 Satagopan JM, Sen A, Zhou Q, Lan Q, Rothman 
N, Langseth H, et al. Bayes and empirical Bayes 
methods for reduced rank regression models 
in matched case-control studies. Biometrics 
2016;72(2):584-95.

161.	 Bragin E, Chatzimichali EA, Wright CF, Hurles 
ME, Firth HV, Bevan AP, et al. DECIPHER: da-
tabase for the interpretation of phenotype-linked 
plausibly pathogenic sequence and copy-number 
variation. Nucleic Acids Res 2014;42(Database 
issue):D993-D1000.

162.	 Ma C, Ouyang J, Chen HL, Zhao XH. An effi-
cient diagnosis system for Parkinson’s disease 
using kernel-based extreme learning machine 
with subtractive clustering features weight-
ing approach. Comput Math Methods Med 
2014;2014:985789.

163.	 Chen Y, Cao W, Gao X, Ong H, Ji T. Predicting 
postoperative complications of head and neck 
squamous cell carcinoma in elderly patients 
using random forest algorithm model. BMC Med 
Inform Decis Mak 2015;15:44.

164.	 Belciug S, Gorunescu F. Error-correction learn-
ing for artificial neural networks using the Bayes-
ian paradigm. Application to automated medical 
diagnosis. J Biomed Inform 2014;52:329-37.

165.	 Lamb J. The Connectivity Map: a new tool 
for biomedical research. Nat Rev Cancer 
2007;7(1):54-60.

166.	 Mate S, Kopcke F, Toddenroth D, Martin M, 
Prokosch HU, Burkle T, et al. Ontology-based 
data integration between clinical and research 
systems. PLoS One 2015;10(1):e0116656.

167.	 Embi PJ, Jain A, Clark J, Bizjack S, Hornung R, 
Harris CM. Effect of a clinical trial alert system 
on physician participation in trial recruitment. 
Arch Intern Med 2005;165(19):2272-7.

168.	 Ni Y, Wright J, Perentesis J, Lingren T, Deleger 
L, Kaiser M, et al. Increasing the efficiency of 
trial-patient matching: automated clinical trial 
eligibility pre-screening for pediatric oncol-
ogy patients. BMC Med Inform Decis Mak 
2015;15:28.

169.	 Gottlieb MM, Arenillas DJ, Maithripala S, Maur-

er ZD, Tarailo Graovac M, Armstrong L, et al. 
GeneYenta: a phenotype-based rare disease case 
matching tool based on online dating algorithms 
for the acceleration of exome interpretation. 
Hum Mutat 2015;36(4):432-8.

170.	 Hansen NF. Variant calling from next gen-
eration sequence data. Methods Mol Biol 
2016;1418:209-24.

171.	 Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, 
Brudno M, et al. Similarity network fusion for 
aggregating data types on a genomic scale. Nat 
Methods 2014;11(3):333-7.

172.	 Jensen MA, Ferretti V, Grossman RL, Staudt 
LM. The NCI Genomic Data Commons as 
an engine for precision medicine. Blood 
2017;130(4):453-9.

173.	 Cook-Deegan R, Ankeny RA, Maxson Jones 
K. Sharing data to build a medical informa-
tion commons: from Bermuda to the Global 
Alliance. Annu Rev Genomics Hum Genet 
2017;18:389-415.

174.	 Alterovitz G, Warner J, Zhang P, Chen Y, 
Ullman-Cullere M, Kreda D, et al. SMART 
on FHIR Genomics: facilitating standardized 
clinico-genomic apps. J Am Med Inform Assoc 
2015;22(6):1173-8.

175.	 Miller RS. CancerLinQ Update. J Oncol Pract. 
2016;12(10):835-7.

176.	 Consortium APG. AACR Project GENIE: Power-
ing precision medicine through an international 
consortium. Cancer Discov 2017;7(8):818-31.

177.	 Joly Y, Dove ES, Knoppers BM, Bobrow M, 
Chalmers D. Data sharing in the post-genomic 
world: the experience of the International Can-
cer Genome Consortium (ICGC) Data Access 
Compliance Office (DACO). PLoS Comput Biol 
2012;8(7):e1002549.

178.	 Turvey C, Klein D, Fix G, Hogan TP, Woods S, 
Simon SR, et al. Blue Button use by patients 
to access and share health record information 
using the Department of Veterans Affairs’ 
online patient portal. J Am Med Inform Assoc 
2014;21(4):657-63.

179.	 https://www.syapse.com/news/press-releases/
oncology-precision-network-open-announc-
es-data-sharing-commitments-at-vice-presi-
dent-bidens-cancer-moonshot-summit (accessed 
May 8, 2018)

Correspondence to: 
James L Chen, MD
Division of Medical Oncology and 
Department of Biomedical Informatics
The Ohio State University
320 W 10th Ave 
Columbus, OH, 43210
Tel: +1 614 685 9754 
E-mail: James.Chen@osumc.edu

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.


