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Abstract: The present study investigated the effects of ultrasound (28 kHz, 60 W at 71 ◦C for 37 min)
combined with sous-vide cooking (at 71 ◦C for 40, 60, 80, 100, 120 min) on the textural quality, water
distribution, and protein characteristics of spiced beef. Results showed that the spiced beef treated
with conventional cooking (CT) had the highest cooking loss (41.31%), but the lowest value of shear
force (8.13 N), hardness (55.66 N), springiness (3.98 mm), and chewiness (64.36 mJ) compared to
ultrasound-assisted sous-vide (USV) and sous-vide cooking (SV) groups. Compared with long-time
thermal treatment, USV heating within 100 min enhanced the water retention of spiced beef by
maintaining the lower values of cooking loss (16.64~25.76%), T2 relaxation time (242.79~281.19 ms),
and free water content (0.16~2.56%), as evident by the intact muscle fibers. Moreover, the USV group
had relatively lower carbonyl content, but higher sulfhydryl content compared to CT and SV groups.
More protein bands coupled with a minor transformation from α-helixes to β-turns and random coils
occurred in USV40~USV80. In conclusion, these results indicated that USV treatment within 100 min
positively affected the textural quality and water retention of spiced beef by moderate protein oxidation.

Keywords: ultrasound; sous-vide cooking; spiced beef; textural quality; water retention

1. Introduction

Spiced beef is a traditional Chinese sauce pickled product made from beef as the pri-
mary raw material, seasoned with seasonings and spices, and then pre-cooked, soaked, and
cooked. Consumers appreciate its delicious flavor and nutritional benefits [1]. However, the
processing of spiced beef is facing some problems including backward production methods,
high cooking loss, difficulty in maintaining flavor, and unsuitability for industrial produc-
tion [2]. Thus, current research focuses on improving production efficiency while maintaining
product quality and reducing cooking loss using appropriate processing methods.

Sous-vide cooking is a food processing method in which ingredients are vacuum-
packed and then heated at a temperature of 50~80 ◦C for a long time [3]. Numerous studies
have reported that sous-vide cooking could effectively reduce moisture loss and slow down
the oxidation of meat during the cooking process [4,5]. Moreover, the heating parameters of
sous-vide cooking could be precisely controlled to give consistent and repeatable results [6].
The possibility of food contamination during processing was reduced to a certain extent
due to the vacuum and oxygen-free environment [7]. However, long-term heating would

Foods 2022, 11, 2251. https://doi.org/10.3390/foods11152251 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods11152251
https://doi.org/10.3390/foods11152251
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-7327-0330
https://doi.org/10.3390/foods11152251
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods11152251?type=check_update&version=1


Foods 2022, 11, 2251 2 of 15

lead to higher energy consumption, which did not match the goal of increasing production
efficiency. Therefore, how to improve the heating efficiency of sous-vide cooking is an
essential issue in the meat industry.

Ultrasound in meat processing was extensively studied for curing, tenderization, and
sterilization. It was proved effective in shortening the processing time and maintaining meat
quality [8]. For example, Kang et al. [9] reported that ultrasound-assisted curing treatments
could improve the curing efficiency and tenderness of beef. Zhang et al. [2] found that
ultrasound-assisted cooking could improve the eating quality of marinated beef and inhibit
the growth of the microorganisms during storage. Additionally, Pohlman et al. [10] proved
that ultrasound treatment could significantly improve heat transfer efficiency and reduce
the cooking loss of beef. Therefore, we speculated that combining ultrasound and sous-vide
cooking is feasible to improve the heating efficiency and edible quality of meat products.

Unfortunately, studies rarely focus on spiced beef processed by ultrasound-assisted
sous-vide cooking. In particular, the changes in textural quality and water retention
of spiced beef under the synergistic effects of ultrasound and sous-vide cooking and
their possible mechanisms are still indistinct. Therefore, the main objectives of this study
were: (1) to assess the effect of ultrasound-assisted sous-vide cooking on the textural
quality and water retention of spiced beef; (2) to evaluate the protein characteristics of
spiced beef treated with ultrasound-assisted sous-vide cooking by measuring carbonyl,
sulfhydryl content, and protein structure; and (3) to clarify the possible mechanisms of
the physicochemical quality changes in spiced beef under the synergistic treatment by
partial least squares discriminant analysis (PLS-DA). The results could provide a theoretical
reference for processing high-quality spiced beef products.

2. Materials and Methods
2.1. Materials and Chemicals

Six male Chinese Simmentals (18 months old, the average weight of 600 ± 10 kg) were
selected at random from Shandong Huasheng Halal Meat Co., Ltd. (Jining, China). All
cattle were fed under the same rearing conditions and slaughtered following the same
standard commercial procedures. After being slaughtered, the anterior tendons were
divided from the cattle and aged for 72 h. Salt, sugar, cooking wine, soybean sauce, and
spices were provided by Suguo Supermarket Co., Ltd. (Yangzhou, China). All chemicals
were of at least analytical grade and bought from China Pharmaceutical Group Co., Ltd.
(Beijing, China).

2.2. Preparation of Meat and Curing Solution

After reaching 72 h of ageing, the connective tissue and the visible fat were removed
from the anterior tendons. Each anterior tendon was randomly divided into four pieces
(8 cm × 6 cm × 3 cm) with a weight of 150 ± 5 g, and then vacuum-packed and stored
at −40 ◦C.

The curing solution was prepared according to the methods of Zou et al. [11] with
slight modifications. Based on the weight of meat, a condiment was prepared by mixing
90 g/kg soybean sauce, 150 g/kg cooking wine, 15 g/kg salt, and 50 g/kg sugar. The
spices were prepared by mixing 25 g/kg spring onions, 25 g/kg ginger, 5 g/kg star anise,
5 g/kg cinnamon, 0.3 g/kg cloves, 2.5 g/kg Shannai, 1 g/kg cumin, 2.5 g/kg incense leaves,
2.1 g/kg grass fruit, and 1 g/kg licorice in a piece of gauze and wrapping them up. The
above condiments and spices were added to the water to be heated. The power of the
electromagnetic furnace (C22-HT2218, Midea Living Appliances Manufacturing Co., Ltd.,
Foshan, China) was first set to 1600 W, and the curing solution was maintained at a boil for
10 min. Then, the power was adjusted to 800 W, 50 min was maintained, and the power
was adjusted to 300 W and maintained for 60 min. Finally, the boiled curing solution was
cooled and stored at 4 ◦C.
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2.3. Preparation of Spiced Beef

The processing of spiced beef under different thermal treatments is shown in Figure 1.
All meat samples were thawed in the refrigerator (0~4 ◦C) for 24 h in advance, and then
marinated for 10 h with 3 g/kg salt (based on meat weight). The marinated samples were
randomly divided into seven processing treatment groups of six each (n = 42).
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assisted sous-vide cooking of spiced beef for 40~120 min.

Ultrasound-assisted sous-vide cooking of spiced beef: The marinated samples were
transferred to self-sealing bags and added to the curing solution (1:2, m/v). The plastic bags
containing the muscles and the marinade were placed in a vacuum tumbler (HkS-30VT,
Hakexun Industrial & Trading Co., Ltd., Wuxi, China) for 120 min (−0.08 MPa, 0~4 ◦C,
7 r/min) and then removed. The self-sealing bags were placed at 0~4 ◦C to allow the
muscles to continue to soak for 24 h. After being removed from the self-sealing bags,
the meat samples were evacuated in vacuum bags. The muscles in vacuum bags were
randomly divided into five groups of six each (n = 30) and placed in a piece of ultrasonic-
assisted cooking equipment (RC-1000LG, Renchuan Technology Co., Ltd., Langfang, China)
(ultrasonic frequency: 28 kHz, ultrasonic power: 60 W, ultrasonic time: 37 min, cooking
temperature: 71 ◦C). The spiced beef was cooked for 40, 60, 80, 100, and 120 min and then
removed. The curing solution was poured out of the vacuum bag and recorded as USV40,
USV60, USV80, USV100, and USV120.

Sous-vide cooking of spiced beef: Muscle pre-cooking treatment was consistent with
ultrasound-assisted sous-vide cooking of spiced beef. The vacuum packaged samples
(n = 6) were placed in a constant temperature water bath (HH-6, Boke Bioindustries Ltd.,
Jinan, China) for sous-vide cooking (cooking temperature: 71 ◦C, cooking time: 120 min).
The sous-vide cooking of spiced beef was recorded as SV.

Conventional cooking methods of spiced beef: The marinated samples (n = 6) were
added to the pot in cold water, heated to boiling, and maintained at boiling temperature
for 5 min before being removed and washed in cold water. Subsequently, the muscles
were placed in a pot containing the prepared curing solution for heating. The power of
the electromagnetic furnace was first set to 1600 W, and the curing solution was boiled for
10 min. Then, the power was adjusted to 800 W, maintained for 50 min, and finally, the
power was adjusted to 300 W and maintained for 60 min. The heating time of conventional
spiced beef was controlled at 120 min and recorded as CT.
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2.4. Meat Quality Testing
2.4.1. Measurement of Cooking Loss

The cooking loss was detected as previously described by Xia et al. [12] with a slight
modification. The surface of anterior tendons samples obtained from all muscles was
dried and weighed as W1 after 24 h of thawing. After being cooked, the surfaces of the
spiced beef samples were dried and weighed as W2. Cooking loss was calculated using the
following formula:

Cooking loss (%) =
W1 − W2

W1
× 100 (1)

2.4.2. Measurement of Warner–Bratzler Shear Force (WBSF)

The WBSF was assessed by referring to the method of Ge et al. [13]. Each spiced beef
sample obtained from random meat blocks was cut into three long strips (1 cm × 1 cm × 3 cm)
parallel to the direction of muscle fibers. The strip was cut perpendicular to the direction
of muscle fibers using a digital display muscle tenderness meter with a 50-kg load sensor
(C-LM3B, Yangzhou University, Yangzhou, China). The test speed was 250 mm/min. The
maximum peak of shear force was recorded, and the WBSF was expressed in Newtons (N).

2.4.3. Analysis of Texture Profile

The textural properties were determined according to the method of Wang et al. [14].
Approximately 5 g samples were cut from random spiced beef blocks (2 cm× 2 cm × 2 cm).
The measurement was carried out by using a texture analyzer (TA-XT. plus, Stable Mi-
cro Systems, Godalming Surrey, UK) with a P/100 column probe, a pre-test speed of
60 mm/min, a test speed of 120 mm/min, a test deformation of 60%, and a trigger force of
0.4 N. Each spiced beef sample’s hardness, springiness, and chewiness were measured.

2.4.4. Analysis of Microstructure by Light Microscopy

The spiced beef samples obtained from random meat blocks were cut into three cubes
(2.5 mm × 2.5 mm × 2 mm), which were then fixed in 4% (w/v) tissue fixative at 4 ◦C
for 12 h. The samples were then fixed and embedded in paraffin. Thin slices were then
made from the paraffin samples. The slides were dewaxed, stained with hematoxylin and
eosin, and sealed with a coverslip. The samples were observed with an optical 200× light
electron microscope (IX73 IX71, Iroda Instruments & Equipment Co., Nanjing, China), and
histological images were obtained for analysis.

2.4.5. Low-Field Nuclear Magnetic Resonance (LF-NMR) Analysis

Water distribution was measured by the method of Wang et al. [15]. The 2D T1-T2
relaxation measurements were performed on an LF-NMR Analyzer (AccuFat-1050, Magmai
Co., Ltd., Nanjing, China). Approximately 25 g samples were cut from spiced beef with
different thermal treatments (2.5 cm × 5 cm × 1 cm) and placed in cylindrical glass tubes
for NMR measurements. T1-T2 spectroscopy of the spiced beef samples, to determine relax-
ation times, was obtained by IR-CPMG (Infrared-Carr-Purcell-Meiboom-Gill) sequences.
Four independent scan repetitions were conducted for one sample. Other parameter set-
tings: receiving gain: 120, echo interval: 0.2 ms, number of samples: 3000, interval time: 2 s,
operating temperature: 36 ◦C, spectrometer frequency: 10 MHz.

2.5. Protein Properties Testing
2.5.1. Extraction of Total Protein

Approximately 2 g spiced beef samples of each treatment group were added with
8 mL 2% (w/v) sodium dodecyl sulfate (SDS) and homogenated in the ice bath (9500 r/min,
2 × 30 s; 13,500 r/min, 2 × 30 s). The mixture was centrifuged for 20 min (4000× g), and
the supernatant was retained as total protein extraction. The concentration of proteins was
measured by the Biuret method.
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2.5.2. Carbonyl Content Determination

The protein carbonyl content was measured by slightly modifying the method de-
scribed by Zhang et al. [16]. Protein solution (200 µL, 2 mg/mL) was added to 1 mL of 20%
(w/v) trichloroacetic acid (TCA). The above mixture was centrifuged at 4 ◦C (12,000× g,
5 min). After centrifugation, the protein precipitate was washed with TCA (1 mL, 10%,
w/v) and centrifuged (12,000× g, 5 min). Then, the protein precipitate was mixed with
2 mL of 10 mM 2, 4-dinitrophenylhydrazine (dissolved in 2 M HCl) and incubated at
37 ◦C for 30 min. Then, 1 mL of 2 M HCl was added to the blank control tube, thoroughly
vortexed, and reacted for 30 min at 37 ◦C away from light. The solution was centrifuged
at 12,000× g for 5 min at 4 ◦C. Then, the supernatant was discarded, and 1 mL of TCA
(20%, w/v) was added to precipitate the protein. After centrifugation, the precipitate was
washed with 1 mL of ethanol and ethyl acetate (1:1, v/v) to remove unreacted DNPH
(2,4-dinitrophenylhydrazine) until no yellowing was observed. The pellet was dissolved in
2 mL of guanidine hydrochloride (6 M, dissolved in 20 mM of PBS buffer at pH 7.0), kept
at 4 ◦C for 12 h, and centrifuged at 12,000× g for 5 min. The supernatant absorbance was
measured using a spectrophotometer at 370 nm (U-3900, Hitachi Corp., Tokyo, Japan). The
sample mixed with 2 M HCl instead of 2,4-dinitrophenylhydrazine was used as a blank.
The carbonyl content was calculated using an absorption coefficient of 22,000 M−1 cm−1

and expressed as nmol/mg protein.

2.5.3. Sulfhydryl Content Determination

Free and total sulfhydryl (SH) contents were determined according to the method
described by Kang et al. [17]. For free SH group content, 100 µL of protein solution
(2 mg/mL) was added to 1 mL of Tris buffer A (50 mM Tris-HCl, 10 mM Ethylene diamine
tetraacetic acid, 0.6 M KCl, pH 8.3), followed by 20 µL of 10 M 5, 5-dithiol-bis (2-nitrobenzoic
acid) (dissolved in 100 mM Tris-HCl, pH 7.0). Then, the solution was placed at 25 ◦C for
60 min. For total SH content, 100 µL of protein solution (2 mg/mL) was added to 1 mL of
Tris buffer B (50 mM Tris-HCl, 10 mM Ethylene Diamine Tetraacetic Acid, 0.6 M KCl, 8 M
urea, pH 8.3), followed by 20 µL of 10 M 5,5-dithiol-bis(2-nitrobenzoic acid) (dissolved in
100 mM Tris-HCl, pH 7.0). Then, the solution was placed at 25 ◦C for 30 min. The mixture
was centrifuged for 5 min (10,000× g), and the absorbance value in the supernatant was
measured at 412 nm. The SH content was calculated using a molar extinction coefficient of
13,600 M−1 cm−1. The result was expressed as nmol/mg protein.

2.5.4. Fourier Transform Infrared (FTIR) Spectroscopy Analysis

Protein secondary structure content was determined according to the method of
Gangidi et al. [18] with slight modifications. The spiced beef samples were vacuum freeze-
dried and ground, and then scanned by placing an appropriate amount of sample on the
diamond ATR attachment (Cary 5000, Varian Co., Palo Alto, CA, USA). The parameters
were set as follows: measuring range: 400~4000 cm−1, number of scans: 100, scanning
rate: 0.63 cm/s, resolution: 32 cm−1. The acquired spectra were judged by evaluating the
second derivative spectra, and the amide I band (1700~1600 cm−1) was used to analyze the
secondary structure.

2.5.5. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) Analysis

The protein solution (3 mg/mL) was mixed with a 5 × loading buffer with or without
β-mercaptoethanol. The mixture was boiled at 100 ◦C for 10 min. Subsequently, 7 µL of a
mixture or 3 µL of molecular standard marker (Thermo Fisher Scientific Co., Ltd., Shanghai,
China) was loaded in each lane of the precast gel (12% polyacrylamide, 10 wells) (GenScript
Co., Ltd., Piscataway, NJ, USA). Electrophoresis was performed using a Mini-Protean Tetra
System (Bio-RadLaboratories, Hercules, CA, USA). The electrophoresis parameters were
80 V for 30 min, followed by 110 V for approximately 70 min at 4 ◦C. After separation,
the gel was stained for 60 min with Coomassie Brilliant Blue (0.1%, w/v), and decolorized
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using a decolorizing solution (methanol (10%, w/v), acetic acid (10%, w/v; 1:1)) until the
bands became clear.

2.6. Statistical Analysis

All measurements were independently replicated at least three times, and a completely
randomized design was used. The results were expressed as the mean ± standard deviation.
Statistical analysis was performed by ANOVA (Analysis of variance) using SPSS (Statistical
Product Service Solutions) 19.0 (SPSS Inc., Chicago, IL, USA). Duncan’s multiple range
test evaluated significant differences between groups when p < 0.05. Partial least squares
discriminant analysis (PLS-DA) was performed using the SIMCA software (v.14.1, Sartorius
Stedim Co., Ltd., Aubagne, France).

3. Results and Discussion
3.1. Changes in Cooking Loss and Warner–Bratzler Shear Force

As shown in Figure 2A, the CT treatment had the highest cooking loss (41.31%),
followed by the SV, USV80, USV100, and USV120 groups. The lowest value of the cooking
loss was found in the USV40 treatment (16.64%), but there were no significant differences
(p > 0.05) in cooking loss between USV80, USV100, USV120, and SV groups, which indicated
that ultrasound-assisted sous-vide treatment could better improve the water retention of
spiced beef. As presented in Figure 2B, compared with CT treatment, a significant increase
(p < 0.05) of shear force was observed in SV and USV treatment. The result could be
attributed to collagen dissolving and myofibril destruction by continuous heating with
higher temperatures in conventional cooking treatment [19,20]. USV80, USV100, USV120,
and SV groups all had relatively higher values of shear force, which could be mainly caused
by heat-induced changes in muscle structure and protein denaturation during heating [21].
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Figure 2. Changes in cooking loss (A) and shear force (B) of spiced beef under different thermal treat-
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3.2. Changes in Texture Properties

As shown in Table 1, the cooking time, USV treatment, and interaction significantly
affected (p < 0.05) the hardness, springiness, and chewiness value of spiced beef. The
samples under CT treatment had the lowest hardness value (55.66 N) due to the destruction
of tissue structure by long-time heating with higher temperatures. The highest hardness
was observed in the USV120 treatment (98.25 N), but had no significant difference (p > 0.05)
compared to the SV treatment. Compared with USV120 and SV treatments, the hardness
was significantly reduced (p < 0.05) in samples under the USV40~USV100 treatment. The
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result might be attributed to the damage of tissue cells and the leakage of intracellular
compounds due to the cavitation effect of ultrasound [22]. As presented, the effect of
ultrasound-assisted sous-vide cooking on the hardness depends on the heating time, so by
increasing the time from 40 to 120 min, the hardness increased.

Table 1. Effect of different thermal treatments on the textural properties of spiced beef.

Sample ID Hardness (N) Springiness (mm) Chewiness (mJ)

CT 55.66 ± 4.48 c 3.98 ± 0.64 c 64.36 ± 9.50 c

SV 96.34 ± 5.58 a 4.59 ± 0.34 b 210.80 ± 11.85 ab

USV40 85.91 ± 4.36 bc 4.55 ± 0.25 b 191.37 ± 13.65 b

USV60 92.62 ± 5.60 b 4.60 ± 0.37 b 203.04 ± 18.70 b

USV80 92.19 ± 1.19 b 4.98 ± 0.22 ab 222.98 ± 13.27 a

USV100 93.57 ± 2.70 b 4.90 ± 0.16 ab 218.65 ± 16.80 a

USV120 98.25 ± 4.05 a 5.33 ± 0.55 a 246.27 ± 16.25 a

CT: conventional cooking spiced beef; SV: sous-vide cooking of spiced beef; USV40~USV120: ultrasound-assisted
sous-vide cooking of spiced beef for 40~120 min. Different letters in the same column indicate statistically
significant difference (p < 0.05).

According to Table 1, the springiness and chewiness value of spiced beef in USV treat-
ment showed an increasing trend with the extension of heating time. The spiced beef heated
for 80~120 min with USV treatment had a significantly higher value (p < 0.05) of springiness
and chewiness than that in CT and SV groups, which was related to the moisture loss in
the tissue that increased the elasticity of proteins by the relatively long-time heating with
USV treatment [23]. Liu et al. [24] found that the water-holding capacity was significantly
correlated with the springiness of meat. The changes in the texture of spiced beef were
consistent with the cooking loss. As a result, the low-intensity ultrasound combined with
low-temperature and short-time heating could reduce the damage to myofibrillar structures
and alleviate the chewy and hard texture caused by heating alone [25,26]. Our findings
suggested that USV treatment exhibited a notable improvement in maintaining the tex-
tural properties of spiced beef, and the heating time is recommended to be controlled at
80~100 min.

3.3. Changes in Light Microscopy

As shown in Figure 3, in CT treatment, the fiber membranes were damaged to a higher
degree due to the long-time heating with higher temperature, as evident by the blurred
borders of the adjacent muscle fibers, which explained the mechanism of the higher cooking
loss and loose texture of spiced beef under conventional treatment. Compared with CT
and SV treatment, the gap between muscle fibers was enlarged in the samples treated
with USV. The result might be ascribed to the cavitation effect of ultrasound by expanding
myofibrillar internal space to retain more water [27,28], which corresponded to our findings
in cooking loss (Figure 2A). Moreover, the USV40 and USV60 groups had neatly aligned
muscle fibers and larger diameters. Nevertheless, the extension of cooking time decreased
the muscle fiber diameter but increased the fiber gap. Notably, the muscle fibers of spiced
beef under USV treatment remained intact throughout the cooking process, which further
confirmed that the higher water-holding capacity and texture quality of spiced beef could
be maintained by USV.

3.4. Changes in Water Migration and Distribution

Low-field nuclear magnetic resonance (LF-NMR) is a rapid and non-destructive tech-
nique for determining proton relaxation properties associated with water status in mus-
cles [29]. Previous studies on the moisture state of meat products mainly focused on
T2 relaxation [30], while applying the two-dimensional (2D) LF-NMR T1-T2 relaxation
spectroscopy technique to spiced beef was rarely reported. The 2D LF-NMR spectroscopy
technique could collect all IR and CPMG sequence parameters and obtain both transverse
and longitudinal relaxation properties [31]. As shown in Figure 4, the T1 and T2 relaxation
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NMR spectra were presented in the left and upper parts of the figure, respectively. Three
central populations could be observed in the 2D T1-T2 relaxation NMR spectra, which
referred to three forms of water in spiced beef. From left to right, these represented bound
water (T2b, in the range of 0.1~10 ms), immobilized water (T21, in the range of 10~100 ms),
and free water (T22, in the range of 100~1000 ms) [32,33].
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The changes in relaxation time and their peak areas for different states of moisture in
spiced beef are shown in Table 2.

Table 2. Effect of different thermal treatments on LF-NMR relaxation time and peak areas of water
forms in spiced beef.

Sample ID T1 (ms) T2 (ms) P1 (%) P2 (%) P3 (%)

CT 666.03 ± 18.59 a 315.06 ± 10.58 a 2.04 ± 0.04 d 89.80 ± 2.14 b 8.16 ± 0.55 a

SV 609.70 ± 20.14 ab 300.54 ± 10.21 ab 9.80 ± 0.53 c 86.27 ± 2.21 bc 3.93 ± 0.68 b

USV40 347.05 ± 12.50 d 281.19 ± 9.56 b 11.90 ± 0.75 b 85.71 ± 3.02 c 2.39 ± 0.84 c

USV60 397.94 ± 10.53 c 280.87 ± 8.74 b 2.24 ± 0.25 d 96.47 ± 4.05 a 1.29 ± 0.15 cd

USV80 386.15 ± 11.27 c 242.79 ± 7.55 c 3.54 ± 0.37 d 95.70 ± 3.57 a 0.76 ± 0.10 d

USV100 488.85 ± 10.83 b 261.27 ± 6.39 bc 10.26 ± 0.90 b 87.18 ± 2.56 bc 2.56 ± 0.24 c

USV120 424.34 ± 15.56 bc 308.88 ± 7.87 ab 19.44 ± 0.27 a 77.78 ± 2.30 d 2.78 ± 0.50 c

Different letters in the same column indicate statistically significant difference (p < 0.05).
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With the extension of cooking time, T1 relaxation time increased gradually in USV
groups, but it was significantly lower (p < 0.05) than in CT and SV groups. The prolongation
of T1 relaxation time meant more free water migrated from the muscle, which might be
attributed to the weakening water–protein interaction caused by long-time heating [34,35].
T2 relaxation time significantly decreased (p < 0.05) in USV groups heating for 40~80 min,
but significantly increased (p < 0.05) at 100~120 min of heating. The result was related to
the improvement of water retention capacity in spiced beef due to the cavitation effect
of ultrasound, whereas the continued heating destroyed the integrity of myofibrils and
accelerated the movement of internal moisture out of muscle tissue [36,37]. Moreover, the
T2 relaxation time of spiced beef under CT treatment was significantly higher (p < 0.05) than
that in SV and USV, which was mainly attributed to the severe denaturation of protein and
damage to muscle fiber meshwork by long-time heating with higher temperature, which
ultimately caused an obvious water loss between muscle cells [38,39]. The result was in
accordance with our findings on cooking loss and the microstructure of spiced beef.

As presented, the content of immobilized water represented by P2 accounted for the
largest proportion of the total water forms, reaching up to over 95% in samples treated with
USV heating for 60 and 80 min. P3 represented the free water content in spiced beef and
reached the highest value of 8.16% in CT treatment. These results further indicated that
appropriate cooking time of USV treatment could obtain better water-holding capacity for
meat, whereas long-time heating by CT and SV treatment was not conducive to improving
water retention.

3.5. Changes in Protein Oxidation

The carbonyl and sulfhydryl (SH) content are considered as important indicators of
protein oxidation [40]. As shown in Figure 5A, the carbonyl content in CT treatment was
significantly higher (p < 0.05) than that in SV and USV groups, which might be attributed to
the rapid moisture loss and destruction of the protein–water complex structure by long-time
heating with higher temperature [41]. For the USV group, the carbonyl content gradually
increased with prolonged cooking time, and leveled off at 100~120 min of cooking. In
addition, the carbonyl content in the USV group was significantly lower (p < 0.05) than that
in the SV treatment. This phenomenon was related to the encapsulation of some protein
oxidation sites and peptide chains resulting from the cavitation effect of ultrasound, and the
short-time heating with low-temperature was insufficient to expose those sites entirely [26].
The result was similar to the previous report by Yin et al. [42].
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Sulfhydryl (SH) groups are easily oxidized to form disulfide bonds and a variety
of dioxides during meat processing, ultimately resulting in a reduction of sulfhydryl
content [43]. As shown in Figure 5B, the total and free SH content in the CT group was
significantly lower (p < 0.05) than that in USV and SV treatment, which was consistent
with the result of carbonyl content. The free SH content in USV samples significantly
decreased (p < 0.05) during heating, suggesting the increment of protein oxidation levels by
prolonged cooking time. Notably, the total SH content in the SV group was significantly
lower (p < 0.05) than that in USV40, USV60, and USV80 samples, but had no significant
difference (p > 0.05) with USV120 samples. The result indicated that the synergistic effect of
prolonged low-temperature heating and ultrasound could further deepen oxidation levels
by altering the protein structure [44,45].

3.6. Changes in Secondary Structure

As shown in Figure 6, the total absorbance of protein amino acid residues and the peak
shapes were significantly changed with the prolonged cooking time. The amide I band
(1600~1700 cm−1) is caused by the C=O, C−N stretching vibration, and the Cα−C−N,
N−N in-plane bending vibration, which is the main spectral band reflecting the secondary
structure of proteins [46]. Protein denaturation could be expressed as the transition of
the α-helix (1646~1664 cm−1) and β-sheet (1615~1637 cm−1, 1682~1700 cm−1) to β-turns
(1664~1681 cm−1) and random coils (1637~1645 cm−1) due to the increase of hydrophobicity
and the destruction of hydrogen bonds [47,48].
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The α-helix content decreased significantly (p < 0.05) with prolonged heating in USV
samples. Simultaneously, the β-sheet content decreased to the minimum value of 31.67%
when cooked for 100 min (Table 3). The α-helix is primarily an ordered arrangement within
protein molecules that is stabilized by intramolecular hydrogen bonds, while the β-sheet
is an ordered arrangement between proteins maintained by intermolecular hydrogen
bonds [49]. The above results were mainly related to the weakening of hydrogen bonds
due to the synergistic treatment of ultrasound and long-time heating. Notably, the β-turn
and random coil content in USV100 and USV120 samples had no significant difference
(p > 0.05) with CT and SV groups, which might be attributed to the changes in isoelectric
point and hydrophobicity, caused by protein oxidation and degradation resulting from
long-time heating [50].
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Table 3. Changes in relative protein secondary structure content of spiced beef under different
thermal treatments.

Sample ID Secondary Structure Content (%)

α-Helix β-Sheet β-Turn Random Coil

CT 23.35 ± 0.07 c 36.01 ± 0.02 a 15.81 ± 0.04 a 24.83 ± 0.05 a

SV 24.09 ± 0.08 b 34.25 ± 0.10 b 16.20 ± 0.03 a 25.46 ± 0.03 a

USV40 33.42 ± 0.04 a 35.14 ± 0.15 b 10.94 ± 0.08 b 20.50 ± 0.08 b

USV60 33.78 ± 0.14 a 34.94 ± 0.03 b 10.91 ± 0.13 b 20.37 ± 0.13 b

USV80 32.75 ± 0.05 ab 36.26 ± 0.09 a 10.68 ± 0.07 b 20.31 ± 0.07 b

USV100 25.86 ± 0.15 b 31.67 ± 0.11 c 16.87 ± 0.04 a 25.59 ± 0.04 a

USV120 23.89 ± 0.13 c 35.21 ± 0.21 b 15.85 ± 0.07 a 25.05 ± 0.07 a

Different letters in the same column indicate statistically significant difference (p < 0.05).

Changes in protein secondary structure were significantly associated with water dis-
tribution in meat [51]. Previous studies also revealed a high correlation between cooking
loss and α-helix structures [51,52]. Han et al. [29] suggested that the protein denaturation
and aggregation could convert α-helixes and β-sheets to β-turns and random coils during
heating. Our results further confirmed the relationship between water status and the sec-
ondary structure of meat protein, and explained the reason for poor water-holding capacity
and higher protein oxidation levels occurring in spiced beef treated with conventional and
individual sous-vide cooking.

3.7. Proteolytic Changes

The protein profiles performed by nonreduced and reduced SDS-PAGE from spiced
beef under different thermal treatments were presented in Figure 7. The intensity of the
myosin heavy chain (MHC) band in USV lanes increased compared with CT and SV, but
decreased significantly with prolonged cooking time. As shown in Figure 7B, most of the
reduced MHC and actin bands in USV lanes were restored under reducing conditions,
while those in CT and SV lanes did not fully recover, which indicated that the proteins in CT
and SV samples had been cross-linked as disulfide bonds and as non-disulfide bonds [53].
Kang et al. [9] found that the disulfide bond was mainly responsible for forming the MHC
polymer after prolonged treatment.
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The degradation of protein molecules was mainly characterized by blurring, weak-
ening, and expanding bands at higher molecular weights, while lower molecular weight
regions showed new bands or the deepening of band color [54]. In the present study, the
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USV60~USV120 lanes bands showed deepening at 10~34 kDa, blurring at 43~95 kDa, and
slight diffusion at MHC. The result might be attributed to the oxidative degradation of
meat protein by continuous heating. Notably, most protein bands in CT lanes disappeared,
but they significantly strengthened in USV lanes, further indicating the apparent protein
degradation in spiced beef by conventional cooking. In contrast, USV treatment could
decrease the degrees of protein degradation and aggregation, which was consistent with
the result of protein oxidation.

3.8. Partial Least Squares Discriminant Analysis (PLS-DA)

PLS-DA was carried out by using the protein characteristics as the independent
variable, and the apparent quality indicators, such as textural quality and water distribution,
as the dependent variables (Figure 8). A total of two principal components (Factor 1 and
Factor 2) were extracted and represented 94.80% of the information on the original variables.
As presented, the thermal treatment affecting independent and dependent variables in
the PLS-DA plot was roughly divided into four circle areas. The SV, USV100, USV120,
P1, β−turn, and random coil were distributed in the first quadrant with a significant
correlation, which indicated that the relatively long-time heating by SV and USV treatment
changed the protein conformation to a greater extent, resulting in the migration of bound
water in spiced beef. Total sulfhydryl, free sulfhydryl, shear force, hardness, springiness,
and chewiness were distributed in the second quadrant, suggesting that protein oxidation
had a visible effect on the texture properties of spiced beef. The USV40, USV60, USV80,
α−helix, β−sheet, and P2 were concentrated in the third quadrant, indicating that the USV
treatment with relatively short time heating had a significant effect on the state of immobile
water due to the changes of the α−helix and β−sheet in spiced beef. Furthermore, the CT
treatment, cooking loss, carbonyl, T1, T2, and P3 were located in the fourth quadrant, which
further confirmed that the protein oxidation had an essential effect on the water retention
of spiced beef.
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Notably, the plotting points representing different thermal treatments moved from left
to right with the increase of cooking time and core temperature, suggesting that prolonged
high-temperature heating caused the changes in protein conformation due to the excessive
oxidation, and ultimately damaged the physicochemical qualities of spiced beef. However,
adopting the USV treatment within 100 min could result in the moderate oxidation of
proteins, which positively affected the texture properties and water retention of spiced beef.
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4. Conclusions

This paper found that ultrasound-assisted sous-vide cooking could significantly re-
duce the cooking loss and improve the physicochemical qualities of spiced beef. The shear
force, hardness, chewiness, springiness, and water retention of spiced beef under USV
heating within 100 min were enhanced by the cavitation effect of ultrasound that swelled
the myogenic fibers in beef. Additionally, USV treatment could significantly reduce the
exposure of sulfhydryl and carbonyl groups by increasing the folding of protein structure.
Furthermore, the results of SDS-PAGE, secondary structure, and PLS-DA further indicated
that the USV treatment within 100 min could decrease the levels of protein degradation and
aggregation, which positively affected the textural quality and water retention of spiced
beef. Overall, ultrasound-assisted sous-vide cooking is an efficient and healthy method
for meat processing. We recommend heating for 80~100 min by USV as the most suitable
treatment for high-quality spiced beef.
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