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Abstract
With a prevalence of 0.8 to 1.2%, epilepsy represents one of the most
frequent chronic neurological disorders; 30 to 40% of patients suffer from
drug-resistant epilepsy (that is, seizures cannot be controlled adequately
with antiepileptic drugs). Epilepsy surgery represents a valuable treatment
option for 10 to 50% of these patients. Epilepsy surgery aims to control
seizures by resection of the epileptogenic tissue while avoiding
neuropsychological and other neurological deficits by sparing essential
brain areas. The most common histopathological findings in epilepsy
surgery specimens are hippocampal sclerosis in adults and focal cortical
dysplasia in children. Whereas presurgical evaluations and surgeries in
patients with mesial temporal sclerosis and benign tumors recently
decreased in most centers, non-lesional patients, patients requiring
intracranial recordings, and neocortical resections increased. Recent
developments in neurophysiological techniques (high-density
electroencephalography [EEG], magnetoencephalography, electrical and
magnetic source imaging, EEG-functional magnetic resonance imaging
[EEG-fMRI], and recording of pathological high-frequency oscillations),
structural magnetic resonance imaging (MRI) (ultra-high-field imaging at 7
Tesla, novel imaging acquisition protocols, and advanced image analysis
[post-processing] techniques), functional imaging (positron emission
tomography and single-photon emission computed tomography
co-registered to MRI), and fMRI significantly improved non-invasive
presurgical evaluation and have opened the option of epilepsy surgery to
patients previously not considered surgical candidates. Technical
improvements of resective surgery techniques facilitate successful and safe
operations in highly delicate brain areas like the perisylvian area in
operculoinsular epilepsy. Novel less-invasive surgical techniques include
stereotactic radiosurgery, MR-guided laser interstitial thermal therapy, and
stereotactic intracerebral EEG-guided radiofrequency thermocoagulation.
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Introduction
Epilepsy has a prevalence of 0.8 to 1.2% and thus represents 
one of the most frequent chronic neurological disorders1,2. 
In about 30 to 40% of patients, seizures cannot be controlled 
adequately with antiepileptic drugs; that is, these patients suf-
fer from drug-resistant epilepsy3,4. Epilepsy surgery represents 
a valuable treatment option for 10 to 50% of these patients4 and 
has been shown to be significantly superior to continued antiepi-
leptic drug treatment regarding seizure control and quality of life  
in both children and adults5–7. The goals of epilepsy surgery 
are seizure control by resection of the epileptogenic tissue on 
the one hand while sparing essential brain areas to avoid neu-
ropsychological and other neurological deficits on the other 
hand3,4,8–10. This can be achieved only by a thorough presurgi-
cal evaluation clearly delineating epileptogenic and essential 
brain areas and by defining selective resection strategies in  
each individual patient3,8–10. Several excellent articles recently 
reviewed presurgical evaluation and surgical treatment of 
patients with drug-resistant epilepsy3,4,8–10. Here, we will focus 
on some selected recent developments, but we make no claim  
of providing an exhaustive review.

Trends in presurgical evaluation and surgical 
treatment in the last few decades
Blumcke et al.11 reported the largest series of histopathological 
findings of resected brain tissue. The tissue in this series was 
obtained from 9523 patients who underwent epilepsy surgery 
for drug-resistant epilepsy in 36 European centers between 1990 
and 2014. The most common pathologies were hippocampal 
sclerosis (36.4%), tumors (mainly ganglioglioma; 23.6%), 
and malformations of cortical development (19.8%). No his-
topathological diagnosis could be established in 7.7%. Whereas  
the most common diagnosis in adults was hippocampal scle-
rosis (44.5%), focal cortical dysplasia represented the most  
prevalent finding in children (39.3%). Several significant changes 
in patients undergoing presurgical evaluation and epilepsy  
surgery occurred in the last few decades12–18. Whereas pre-
surgical evaluations continually increased over time, surgi-
cal interventions remained stable or decreased in recent years,  
resulting in an increasing number of evaluated patients ulti-
mately not undergoing surgery18,19. Specifically, the number of 
patients with mesial temporal sclerosis and benign tumors who 
were evaluated and ultimately underwent surgery decreased 
over time in most centers. The same holds true for the number 
of temporal lobe resections in general16,18. Reasons for the  
decrease of mesial temporal epilepsy surgery are intensively 
debated and could be explained by a decreasing incidence of 
Ammon’s horn sclerosis, by a reduction of the prevalent pool, or 
by alternative treatment options available for these patients15,19–21.  
On the contrary, non-lesional patients, patients requiring intrac-
ranial recordings, and neocortical resections increased16,18.  
Furthermore, more evaluated patients did not undergo surgery 
since patients were not suitable for surgery (a circumstance due  
mainly to missing identification of a circumscribed epilep-
togenic zone) or since more patients offered surgery by physi-
cians opted against it18. Finally, in some centers, an increase in 
patients willing to undergo less-invasive surgeries—for example,  
stereotactic radiosurgery, magnetic resonance (MR)-guided 

laser interstitial thermal therapy, stereotactic intracerebral elec-
troencephalography (SEEG)-guided radiofrequency thermoco-
agulation (RFTC), deep brain stimulation (DBS), and responsive  
neurostimulation (RNS)—who had previously refused open  
surgery can be observed22.

Presurgical evaluation – general issues
Each presurgical evaluation starts with a so-called phase 1 
evaluation. Investigations required in all patients include high- 
resolution MR imaging (MRI), video scalp electroencephalography 
(EEG), and detailed neuropsychological assessment8,23.

If these investigations yield converging evidence on the 
localization of the epileptogenic zone and provide sufficient  
information on the risk of potential postoperative deficits, the  
patient may be referred to surgery directly.

If there are ambiguous results concerning localization of 
the epileptogenic zone, the following additional phase 1  
investigations can be applied8,24:

- advanced structural imaging techniques for detection of  
epileptogenic lesions on MRI;

- interictal high-resolution EEG (HD-EEG), interictal magne-
toencephalography (MEG), interictal electrical source imaging 
(ESI), interictal magnetic source imaging (MSI), and interictal  
EEG-functional MRI (EEG-fMRI) for accurate delineation of  
the irritative zone25;

- interictal 18F-fluoro-deoxyglucose (FDG) positron emission 
tomography (PET) or interictal PET with other tracers to  
localize the functional deficit zone;

- ictal single-photon emission computed tomography (SPECT), 
ictal HD-EEG, ictal ESI, and in selected cases ictal MSI and ictal 
EEG-fMRI to localize the ictal onset zone.

Depending on the lateralization and localization of the planned 
resection, the risk of potential postoperative deficits can be 
further clarified by the following complementary phase 1  
investigations8:

- fMRI, MEG, and Wada test for lateralization and localization  
of language functions;

- fMRI and Wada test for prediction of postoperative memory 
decline;

- tractography of Meyer’s loop and visual field testing to assess the 
risk of postoperative visual field defects;

- fMRI and tractography of pyramidal tract to assess the  
risk of postoperative motor deficits.

Although most centers agree on the essential methods of 
phase 1 evaluation (that is, high-resolution MRI, video scalp  
EEG, and detailed neuropsychological assessment), there is a 
lot of variability across the international community, and some 
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routinely require procedures (for example, PET, SPECT, and 
MEG) that others may relegate to later stages of the evaluation. 
If the epileptogenic zone cannot be localized with sufficient 
certainty with these non-invasive techniques, if non-invasive  
techniques yield divergent results and/or if the presumed  
epileptogenic zone is located in close proximity to function-
ally important brain areas and the patient is still considered a  
reasonable surgical candidate, intracranial EEG (IEEG) can be 
applied during a so-called phase 2 evaluation8,24–26.

Chronic extraoperative IEEG techniques include the following:
- extraoperative IEEG through open craniotomy (CEEG); after 
the open craniotomy, subdural grids or strips or a combination 
of depth electrodes and subdural electrodes are placed under  
direct observation;

- SEEG using intracerebral depth electrodes; usually 5–18 
multicontact electrodes are inserted through a twist drill hole 
or burr hole under general anesthesia. The electrodes are 
placed stereotactically with a frame, under neuronavigational  
guidance, or, robotic assistance. The trajectories of the electrodes 
have to be planned thoroughly to avoid crossing blood vessels;

- hybrid extraoperative EEG (HEEG) consisting of a hybrid of 
CEEG and SEEG;

- foramen ovale IEEG with multicontact electrodes placed to  
lie along the long axis of the hippocampus (usually bilaterally);

- epidural IEEG using epidural peg electrodes, allowing  
sampling from several cortical areas, even distant ones26.

It should be mentioned that in many centers there has been a 
shift from CEEG to SEEG, which is less invasive and much 
more comfortable for patients. Ideally, the modality best suited  
for each individual patient should be applied in accordance  
with standardized protocols26.

Intraoperative electrocorticography (ECoG) where IEEG record-
ings and electrical stimulation mapping (ESM) are performed 
intraoperatively prior to, during, and often following resection 
using subdural, depth, or wick electrodes placed under 
direct visualization or guided by neuronavigation represents  
an additional option, especially in patients with cortical  
dysplasia, tuberous sclerosis, or scalp EEG with continuous  
epileptiform discharges (CEDs), when extraoperative intracra-
nial EEG is not feasible and finally when surgery is performed 
adjacent to language or motor cortex25. The diagnostic utility,  
strengths and limitations, risks/morbidities, and specific indi-
cations of various IEEG techniques were summarized in a  
consensus-based expert recommendation26.

Neurophysiological techniques
Recent advances in clinical neurophysiology include localiza-
tion of the irritative zone (that is, the interictal spike zone with 
ESI, MSI, and EEG-fMRI). ESI and MSI represent biophysical  
models which allow us to calculate from the EEG resp. MEG  

signals measured on the scalp the intracerebral neuronal sources 
generating these signals, that is solving the so-called inverse 
problem of clinical neurophysiology27,28. Localization accu-
racy and sensitivity of EEG can be significantly improved when 
the number of electrodes is increased beyond the standard 
10-20 system29 and when montages sampling inferior tempo-
ral areas with electrodes around and below the ears and on the 
cheeks and neck are used30,31. HD-EEG set-ups currently use  
128 to 256 EEG electrodes32,33. In a study comparing various 
non-invasive techniques (that is, structural MRI, HD-ESI, PET, 
and SPECT), the combination of MRI and HD-ESI offered the 
highest predictive value for postoperative seizure freedom34. 
The sensitivity of MEG for the detection of interictal spikes 
on ECoG was assessed in a study using simultaneous 
MEG and ECoG recordings35. Of all of the interictal ECoG  
spikes, 56% had an interictal MEG counterpart. The rates of 
association between MEG and ECoG were at least 90% in the 
interhemispheric and frontal orbital regions; about 75% in the 
superior frontal, central, and lateral temporal regions; but only 
about 25% in the mesial temporal region35. Recently, spec-
tral and functional connectivity properties of non-invasively  
obtained HD-EEG and MEG virtual electrodes matched those 
of SEEG recordings. HD-EEG and MEG virtual electrodes 
therefore might be used for optimal SEEG planning, making 
the localization of the seizure onset zone safer and more 
successful36. The yield of simultaneous scalp EEG-fMRI  
studies (40 to 70% of recordings remain inconclusive and this 
is due principally to the absence of interictal epileptiform dis-
charges during simultaneous recordings or lack of hemody-
namic changes correlated to interictal epileptiform discharges) 
can be significantly increased by building epilepsy-specific elec-
troencephalographic voltage maps using averaged interictal  
epileptiform discharges recorded during long-term clinical moni-
toring outside the scanner, computing the correlation of these  
maps with EEG recordings in the scanner for each time frame, 
and using the time course of this correlation coefficient as a 
regressor for fMRI analysis to map hemodynamic changes 
related to these epilepsy-specific maps (topography-related  
hemodynamic changes)37. With this technique, scalp EEG-
fMRI results can be obtained even in the absence of visu-
ally detectable spikes during the EEG-fMRI session37. In a  
recent study in 53 children including MRI-negative cases, 
the combination of EEG-fMRI with ESI could localize the  
seizure onset zone with high accuracy and predicted surgical  
outcome in all patients38.

Localizations obtained by interictal ESI, MSI, and EEG-
fMRI showed excellent agreement both with the irritative 
zone delineated by intracranial electrodes and with the epi-
leptogenic zone defined by other investigations32,35,36,39,40.  
Furthermore, complete resection of the irritative zone defined by 
these methods resulted in a favorable surgical outcome32,38,39,41.

Recently, ictal ESI was successfully applied for localization 
of the ictal onset zone42–50. Ictal MSI is also feasible but is lim-
ited by the fact that long-term MEG recordings cannot be 
performed and it remains difficult to catch seizures during  
short-term MEG recordings51–54.

Page 4 of 13

F1000Research 2019, 8(F1000 Faculty Rev):1818 Last updated: 29 OCT 2019



It should be noted that automated techniques exist to  
perform both interictal and ictal ESI25,42.

Pathological high-frequency oscillations (pHFOs) in the fre-
quency range of 100 to 600 Hz are considered biomarkers of 
epileptogenic tissue55–58. It could be shown that pHFOs, while 
initially recorded only on invasive EEG, can also be recorded 
non-invasively on scalp EEG and MEG57,59–62. pHFOs are of  
high localizing significance, and removal of brain areas gen-
erating pHFOs predicts a favorable postsurgical seizure  
control57,63–65. Recently, it was shown that pHFO activity may 
change during surgery and that removal of post-resection 
pHFO can further improve surgical outcome66. However, the 
added value of pHFOs compared with interictal spikes is still  
discussed in the community and combined measures of spikes  
and pHFOs might improve identification of epileptogenic tissue67.

Cortico-cortical evoked potentials (CCEPs) in conjunction 
with neuroimaging techniques like diffusion tensor imag-
ing (DTI) have recently been successfully applied to identify  
both epileptogenic and functional networks68–72.

Structural neuroimaging
Progress in structural neuroimaging has revolutionized presur-
gical epilepsy evaluation in recent years73–75. Structural neu-
roimaging aims to identify an epileptogenic lesion responsible 
for the patient’s seizures which in turn significantly increases 
the chances of postoperative seizure freedom76,77. However, 15 
to 30% of patients with drug-resistant epilepsy remain MRI-
negative; that is, no structural lesion can be identified73,78,79. A  
widely accepted imaging protocol for epilepsy-specific imag-
ing based on six sequences could identify 99.4% of 2740 epi-
leptogenic lesions and provides a reasonable balance between 
diagnostic accuracy and clinical feasibility80. This protocol 
includes 3D volumetric T1-weighted imaging (1-mm isotropic 
voxels) (detection of malformations of cortical development and  
application of post-processing techniques), axial and coronal 
T2-weighted (T2/short tau inversion recovery [STIR]) imag-
ing (assessment of hippocampal architecture and cystic tissue 
components of other lesions), axial and coronal fluid-attenuated  
inversion recovery (FLAIR) sequences (detection of hippoc-
ampal sclerosis, focal cortical dysplasia, tumors, inflammation, 
and scars), and axial T2* gradient echo or susceptibility- 
weighted (Hemo/Calc) sequences (identification of vascular 
and calcified lesions such as cavernomas and arteriovenous  
malformations)73,80. 

The detection of lesions, especially of focal cortical dyspla-
sia and hippocampal sclerosis, can be significantly increased by 
improvements of imaging hardware (including ultra-high-field 
imaging at 7 Tesla), by novel imaging acquisition protocols,  
and by advanced image analysis (post-processing) techniques73.

Ultra-high-field imaging at 7-Tesla MRI in patients with hip-
pocampal sclerosis showed a strong correlation between MRI 
and histology with sensitivity and specificity values up to 100%  
for the detection of pathology in various hippocampal sub-
fields81. Seven-Tesla MRI including whole-brain FLAIR and 

gradient-recalled echo (GRE) images could detect epilep-
togenic focal cortical dysplasia not visible at conventional field  
strengths in a third of cases, while gliosis remained undetected82.

Advances in imaging acquisition protocols can be useful to 
detect lesions which cannot be identified by using routine 
imaging protocols73. Double inversion recovery suppresses 
the signals from both cerebrospinal fluid (CSF) and normal 
white matter and therefore enhances the detection of corti-
cal lesions otherwise masked by white matter or CSF signal83.  
Arterial spin labeling provides a quantitative measure of 
regional cerebral blood flow (rCBF) and demonstrated a reduced 
regional perfusion in the seizure onset zone - in good agree-
ment with hypometabolism on PET - in MRI-negative patients84.  
Neurite orientation dispersion and density imaging (NODDI) 
represents an advanced diffusion imaging technique that pro-
vides more detailed information on tissue microstructure,  
including intracellular volume fraction, a marker of neurite 
density, and was helpful to identify focal cortical dysplasia in  
MRI-negative patients85.

Several post-processing methods, including voxel-based mor-
phometry, T2-relaxometry, surface-based morphometry, or DTI 
recently combined with machine learning approaches, can be 
useful for the identification of lesions not apparent on visual  
MRI analysis73,74,86–94.

Neuropsychological assessment
Cognitive impairments in epilepsy can be caused by underly-
ing pathology, seizures, interictal spikes, antiepileptic drugs, 
and psychiatric comorbidities95. Although neuropsychologi-
cal assessment remains an essential investigation during pre-
surgical evaluation, the advent of high-resolution structural and 
functional brain imaging as well as sophisticated EEG analy-
sis techniques has shifted the main focus of neuropsychology 
from localization toward prediction of postsurgical cognitive  
outcome and quality control of epilepsy surgery95–97. The 
major factors determining postsurgical neuropsychologi-
cal performance include functional integrity of the resected  
tissue, functional reserve capacity of the remaining brain, the 
degree of functional plasticity, postoperative control of epileptic  
activity, and the effects of quantitative and qualitative  
postsurgical antiepileptic drug changes10,97–99. However, it is 
still not possible to predict with certainty which patient will  
experience disabling functional loss on an individual scale100. 
Several studies showed stable or even improved long-term 
postsurgical cognitive outcomes, especially in seizure-free  
patients101–103. In regard to cognitive outcomes of different 
surgical approaches, individual and selective surgery preserv-
ing functional brain tissue and fiber tracts, thus minimizing 
collateral damage, should be preferred104. Although radiosur-
gery or thermocoagulation should be advantageous from this 
perspective, no clear scientific evidence of a superior cogni-
tive outcome of these procedures compared with conven-
tional open surgery currently exists98. Recommendations for  
a standardized neuropsychological assessment in the preop-
erative evaluation and postoperative follow-up of epilepsy  
surgery patients have been published by the International League 
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Against Epilepsy (ILAE) Neuropsychology Task Force Diag-
nostic Methods Commission105,106. Neuropsychological assess-
ments of patients undergoing MRI-guided stereotactic laser 
amygdalohippocampectomy resulting in very small focal 
lesions showed outcomes not consistent with prevailing mod-
els of brain function. Thus, the hippocampus does not appear 
to be an essential component of neural networks underlying 
naming, verbal fluency, object and person recognition, and  
declarative verbal memory107,108. Furthermore, white matter 
tracts have been proven to be crucial for language and seman-
tic networks. The basal temporal language area is likely a criti-
cal hub in the language network109. Therefore, MRI-guided 
stereotactic laser amygdalohippocampectomy offers a unique 
opportunity to study structure–function brain relationships and 
to reappraise many of our models of cognitive networks107.  
Moreover, traditional neuropsychological assessment does 
not include many cognitive domains of potentially high clini-
cal relevance, including category-specific naming and fluency 
as well as object and face recognition, for epilepsy patients 
in their everyday lives110. Future neuropsychological test-
ing should integrate sensory and linguistic/semantic infor-
mation with the existing knowledge of the patient, explore  
memory consolidation over long periods of time, and 
attempt to relate cognition to features of signal processing 
in order to better assess cognitive networks and to provide 
objective measures accounting for subjective cognitive  
complaints of the patients110.

Positron emission tomography and single-photon 
emission computed tomography
The role of PET and SPECT in presurgical evaluation was 
recently reviewed by several authors8,73,74,111. FDG-PET assess-
ing interictal brain dysfunction (that is, the functional deficit 
zone) has been used during presurgical evaluation for more than 
35 years112. In mesial temporal lobe epilepsy (MTLE), FDG-
PET shows a widespread ipsilateral hypometabolism involving 
the temporal lobe (that is, mesial temporal structures, temporal 
pole, and lateral temporal cortex) as well as extratemporal areas  
(including the insula, the frontal lobe, perisylvian regions, 
and the thalamus). This hypometabolism is more pronounced 
in right as compared with left MTLE113. The topography of 
hypometabolism on PET showed a strong correlation with 
the extent of the electroclinical network defined by clinical  
seizure semiology and EEG113. Homotopic contralateral hyper-
metabolism indicating possible compensatory mechanisms 
was relatively higher in patients with left-sided MTLE and in 
female patients but was lower with longer disease duration, later  
onset of epilepsy, and higher seizure frequency113. These find-
ings indicate that MTLE is not a focal but rather a network 
disease that can affect interconnected and even distant brain  
areas114,115. Hypometabolic patterns on FDG-PET were predictive 
for surgical outcome in patients with MTLE116,117. Specifically, 
non-class IA outcome correlated with extratemporal meta-
bolic changes whereas class IA outcome was associated with a  
focal anteromesial temporal hypometabolism116.

In MRI-negative temporal lobe epilepsy (TLE), a hypometabo-
lism ipsilateral to the presumed epileptogenic zone is a predictor  
for a favorable surgical outcome118. Thus, in patients with 

MRI-negative FDG-PET–positive TLE, an excellent surgical 
outcome can be achieved after anterior temporal lobectomy 
(and this is very similar to the outcome in patients with  
hippocampal sclerosis on MRI)119–121. These patients probably 
do not need to undergo intracranial recordings, especially if  
seizures arise from the non-dominant temporal lobe120,121.

In MRI-negative extratemporal lobe epilepsy (ETLE), FDG-
PET co-registered with MRI is highly sensitive to detect focal 
cortical dysplasia and thus significantly improves diagno-
sis and surgical outcome of these patients122. In a recent series 
of patients with histologically proven focal cortical dysplasia 
type 2 with negative or doubtful MRI, FDG-PET co-registered 
with MRI correctly localized the focal cortical dysplasia in 83%  
of patients, resulting in excellent surgical outcome after lim-
ited resections (seizure-free outcome in 94% of patients and 
Engel class IA in 72%)123. Automated easy-to-use quantifica-
tion of FDG PET-computed tomography was clearly superior 
to visual analysis for the identification of the epileptogenic 
zone in patients with probable frontal cortical dysplasia  
(concordance for automated quantification 72.7% versus 22.7% 
for visual analysis)124. Recently, machine learning approaches 
using a classifier based on optimized cortical surface sampling 
of combined MRI and PET features were superior to both quan-
titative MRI and multimodal visual analysis for the detection  
of focal cortical dysplasia (93% versus 82% versus 68%)125.

Ictal SPECT provides information on changes of rCBF—
which is considered a surrogate marker of increased neuronal  
activity—in the seizure onset zone. Ictal SPECT is applied  
primarily in MRI-negative extratemporal cases or in patients  
with discordant findings from other investigations74. The sen-
sitivity and specificity of visual ictal SPECT interpretation 
(that is, visual comparison of ictal and interictal studies) can 
be significantly improved by subtraction SPECT co-registered 
to MRI (SISCOM) (that is, subtracting interictal from ictal 
SPECT with co-registration to MRI)126. However, a major  
limitation of SISCOM is that normal physiologic variations 
between scans cannot be accounted for127. Statistical paramet-
ric mapping (SPM)-based methods using a normal database can 
identify changes in rCBF which are statistically significantly 
different from normal on a voxel-by-voxel basis. One of these  
methods—statistical ictal SPECT co-registered to MRI (STA-
TISCOM)—was superior to SISCOM in patients with TLE128. 
Recently, a commercially available and easy-to-use soft-
ware package (MIMneuro, MIM Software Inc., Cleveland, 
OH, USA) became available for ictal/interictal SPECT and 
MRI analysis. In a recent article, these three methods were  
systematically compared127. STATISCOM, closely followed by 
MIMneuro, showed the best performance for seizure localization, 
and both were superior to SISCOM127.

Functional magnetic resonance imaging
fMRI is used mainly for localization of eloquent cortex 
and to predict postoperative language as well as memory  
outcomes8,73,74. Recently, the American Academy of Neurol-
ogy (AAN), in a practice guideline, assessed diagnostic accu-
racy and prognostic value of fMRI in determining lateralization  
and predicting postsurgical language and memory outcomes129.
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The authors performed a meta-analysis and concluded that lan-
guage lateralization based on fMRI was concordant with the 
Wada test in MTLE (concordance rate of 87%) and in ETLE 
(concordance rate of 81%) but that data were insufficient for 
temporal tumors or lateral temporal cases129. Indeed, fMRI 
has replaced the Wada test for language lateralization in many  
centers73,74. According to the practice guideline, fMRI is pos-
sibly effective to predict postsurgical language deficits in 
patients undergoing temporal lobectomy129. A stronger left 
temporal activation during a semantic decision task predicted 
a greater postoperative naming decline with a sensitivity of  
100%, a specificity of 73%, and a positive predictive value of 
81% and was superior to the predictive value of the Wada test 
(sensitivity of 92%, specificity of 45%, and positive predictive  
value of 67%)130. In patients with left TLE, left frontal MRI 
activation during a verbal fluency task predicted a postopera-
tive decline in verbal naming after left temporal lobe resections  
with good sensitivity (100%) but poor specificity (33%) and a 
positive predictive value of 60%131. Auditory and visual nam-
ing tasks eliciting anterior temporal activations are more  
related to naming and can provide more consistent predic-
tive values with higher specificity132. A recent machine learn-
ing study used a support vector regression (SVR) model and the 
results of multimodal presurgical language mapping, including  
fMRI, MEG, transcranial magnetic stimulation, and high-
gamma ECoG (hgECoG), to predict postoperative language 
outcome. The SVR model consisting of fMRI and MEG was 
the optimal model that facilitated the best trade-off between  
model complexity and prediction accuracy133.

In regard to language localization in patients with resections 
close to language cortex, cortical stimulation mapping from 
chronically indwelling electrodes or during awake craniotomy 
is generally considered the necessary gold standard73,134. How-
ever, in a recent study in patients with frontal lobe epilepsy, a 
significant postoperative naming decline was observed when  
the resection overlapped with language fMRI activation, even 
when electrocortical stimulation results were negative for  
language function in these areas135. These findings support the  
role of fMRI for presurgical language localization74.

In patients with TLE, re-organization of memory-encoding 
networks involves both ipsi- and contra-lateral temporal 
but also extratemporal brain areas136. Furthermore, dynamic  
postoperative changes of these networks occur after left and right 
temporal lobe resections in both verbal and visual domains137. 
Specifically, the contralateral hippocampus influences memory 
outcome 12 months after surgery137. The AAN practice guide-
line recommended memory fMRI to lateralize and predict 
verbal and non-verbal memory outcome after temporal  
lobe surgery129. In left TLE, left anterior hippocampal but 
also left frontal fMRI activation during verbal encoding cor-
related significantly with greater verbal memory decline after  
left anterior temporal lobe resections while ipsilateral posterior  
hippocampal activation was associated with better postopera-
tive verbal memory outcome138,139. In right TLE, predominantly 
right anterior hippocampal activation during face encoding 
was predictive of a greater decline of visual memory after 

right anterior temporal lobe resection while predominantly 
right-sided posterior hippocampal activation correlated with  
better postoperative visual memory138. In a recent study, lat-
eralization of memory fMRI activations using a picture rec-
ognition paradigm predicted postoperative verbal and visual 
memory outcome independent of the type of lesion, the side  
of the epileptic focus, or the type of preoperative memory profile 
(typical or atypical)140.

Nevertheless, it should be mentioned that, during presur-
gical epilepsy evaluation in a clinical setting, correct and  
clinically useful interpretation of fMRI strongly depends on 
the individual investigator’s and center’s expertise. Indeed, 
the authors of the AAN practice guideline stated that there is  
still a great need for further research in this area and that clini-
cians should carefully advise patients of the risks and benefits 
of fMRI versus Wada test during discussions concerning the 
choice of a specific modality in each individual case129. In  
conclusion, both the Wada test and fMRI have their specific  
indications and limitations.

Surgical techniques
Resective epilepsy surgery is still primarily lesion-directed 
because complete resection of an epileptogenic lesion repre-
sents the major determinant for a favorable surgical outcome8. In 
non-lesional TLE, surgery can be performed on the basis of non-
invasive phase 1 investigations, especially if seizures arise from 
the non-dominant hemisphere. On the contrary, in non-lesional  
extratemporal epilepsies, resections have to rely on an exact 
delineation of the electro-clinically defined seizure onset  
zone by intracranial recordings26,141.

Epilepsy surgeries requiring an operculoinsulectomy pose sig-
nificant difficulties because the perisylvian area is highly vas-
cular, deep, and functional. Recently, successful surgical 
treatment of operculoinsular epilepsy (Engel class I seizure 
control in 80% of patients) with an acceptable long-term  
complication rate was reported142.

Novel surgical techniques in clinical use include stereotac-
tic radiosurgery, MR-guided laser interstitial thermal therapy  
(MgLiTT), and SEEG-guided RFTC8,10.

A 2016 meta-analysis on stereotactic radiosurgery in TLE includ-
ing 13 studies showed a pooled seizure-free rate of 50.9% (with 
a significant heterogeneity between studies ranging from 0 to 
86%)143. The most frequent adverse events were visual field 
deficits, headache, and verbal memory impairment143. A sys-
tematic review and practice guideline of the International  
Stereotactic Radiosurgery Society concluded that radiosur-
gery was effective to control seizures in MTLE (possibly 
with better neuropsychological outcomes and quality-of-life 
metrics in selected subjects compared with microsurgery)  
and that radiosurgery had a better risk-benefit ratio for small  
hypothalamic hamartomas compared with surgical methods.  
However, the delayed therapeutic effect with ongoing sei-
zures carries significant morbidity and mortality risks. For 
other indications, including corpus callosotomy, cavernomas 
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malformations, and ETLE, evidence was insufficient to make  
recommendations144.

MgLiTT entails the focused application of thermal energy in 
the form of intense light to tissue anywhere within the intrac-
ranial space in conjunction with real-time MR thermography, 
which is used to monitor the delivery of this energy producing a 
5- to 20-mm-diameter ablation zone145. MgLiTT has been used 
for the treatment of various epileptogenic conditions, includ-
ing MTLE, hypothalamic hamartomas, periventricular nodular 
heterotopia, tuberous sclerosis, cortical dysplasia, cavernous  
hemangiomas, and insular encephalomalacia146,147. In MTLE, 
seizure outcome was similar to or slightly worse than that of  
open surgery while cognitive outcome was better107,108,145,147–150. 
In a series of 71 hypothalamic hamartoma patients operated 
with MgLiTT, 93% were free of gelastic seizures at one year. 
One patient experienced a significant memory deficit, and 
one patient experienced worsening diabetes insipidus. Thus, 
MgLiTT represents a safe and effective surgical option for the  
treatment of hypothalamic hamartomas151. Advantages of 
MgLiTT include its minimally invasiveness with better toler-
ability and quicker recovery time, fewer major complications, 
possibly a lower degree of adverse cognitive effects and 
the fact that it can be repeated and does not preclude  
subsequent surgery10,147.

Total or partial destruction of the epileptogenic zone as tailored 
to each patient by SEEG exploration is the goal of SEEG-guided 
RFTC. A radiofrequency generator connected to the electrode 
contacts is used to produce multiple SEEG-guided RFTC lesions 
of epileptic foci152. SEEG-guided RFTC has been performed 
in hippocampal sclerosis, periventricular nodular heterotopias, 
focal cortical dysplasia, tuberous sclerosis and in patients with 
normal MRI152–160. According to a recent review, seizure-free 
rate was rather heterogeneous across studies with a pooled sei-
zure-free rate of 23% and a pooled responder rate of 58%159.  
The highest responder rate was observed in patients with  
nodular heterotopia, the lowest in patients with normal MRI. 
The pooled rate of permanent neurologic deficit was 2.5%. 
The authors concluded that SEEG-guided RFTC represents a 
safe treatment for patients with drug-resistant focal epilepsy  
when conventional resective surgery is not feasible159.

In a significant number of patients with medically refractory  
epilepsy, curative epilepsy surgery cannot be offered since there 
are multiple epileptogenic zones, the epileptogenic zone can-
not be localized at all, or the epileptogenic zone is located 
within functionally relevant brain areas. For these patients, 
various neurostimulation techniques, including vagus nerve  
stimulation (VNS), DBS, and RNS, are becoming an increasingly 
accepted treatment option and therefore should be considered 
in every patient with medically refractory epilepsy who is 
unsuitable for surgery161. However, in contrast to resective and  
ablative epilepsy surgery, these neuromodulatory techniques 
represent palliative procedures resulting in seizure reduction 
at best, and seizure-free outcome only in exceptional cases. A 
recent review found low- to moderate-quality evidence for the 
efficacy and safety of VNS, DBS, and RNS161. Head-to-head 
comparisons between different neuromodulatory techniques 

are missing and, owing to methodological difficulties,  
most probably will not be available in the near future161. There-
fore, at present, it is not possible to decide which treatment 
modality is best suited for a specific patient population and  
thereby allow personalized treatment decisions.

Conclusions
Epilepsy surgery represents a valuable treatment options 
for 10 to 50% of patients with drug-resistant epilepsy. The 
most common histopathological findings in epilepsy surgery  
specimens are hippocampal sclerosis in adults and focal corti-
cal dysplasia in children. Whereas presurgical evaluations and 
surgeries in patients with mesial temporal sclerosis and benign  
tumors recently decreased in most centers, non-lesional 
patients, patients requiring intracranial recordings, and neo-
cortical resections increased. More evaluated patients did not 
undergo surgery since patients were not suitable for surgery  
(due mainly to missing identification of a circumscribed  
epileptogenic zone) or since more patients offered surgery by  
physicians opted against surgery.

The prerequisite for successful epilepsy surgery is a thor-
ough presurgical evaluation clearly defining epileptogenic and 
essential brain areas and designing a resection plan in each 
individual patient. Phase 1 presurgical investigations include 
high-resolution MRI, video scalp EEG, and detailed neuropsy-
chological assessment. If these investigations yield inconclusive  
or ambiguous results, additional non-invasive techniques can 
be used. If the epileptogenic zone cannot be localized with suf-
ficient certainty with non-invasive techniques and the patient 
is still considered a reasonable surgical candidate, intracranial 
recordings with depth or subdural electrodes (or both) can be  
applied during a so-called phase 2 evaluation.

Recent developments in neurophysiological techniques (high-
density EEG, MEG, ESI and MSI, EEG-fMRI, and recording 
of pHFOs), structural MRI (ultra-high-field imaging at 7 Tesla, 
novel imaging acquisition protocols, and advanced image  
analysis [post-processing] techniques), functional imaging 
(PET and SPECT co-registered to MRI), and fMRI significantly 
improved non-invasive presurgical evaluation and have opened  
the option of epilepsy surgery to patients previously not  
considered surgical candidates.

Technical improvements of resective surgery techniques facili-
tate successful and safe operations in highly delicate brain 
areas like the perisylvian area in operculoinsular epilepsy. 
Novel less-invasive surgical techniques include stereotactic  
radiosurgery, MgLiTT, and SEEG-guided RFTC.
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