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Abstract

The formation of the complex network architecture of neural systems is subject to multiple structural and functional
constraints. Two obvious but apparently contradictory constraints are low wiring cost and high processing efficiency,
characterized by short overall wiring length and a small average number of processing steps, respectively. Growing
evidence shows that neural networks are results from a trade-off between physical cost and functional value of the
topology. However, the relationship between these competing constraints and complex topology is not well understood
quantitatively. We explored this relationship systematically by reconstructing two known neural networks, Macaque cortical
connectivity and C. elegans neuronal connections, from combinatory optimization of wiring cost and processing efficiency
constraints, using a control parameter a, and comparing the reconstructed networks to the real networks. We found that in
both neural systems, the reconstructed networks derived from the two constraints can reveal some important relations
between the spatial layout of nodes and the topological connectivity, and match several properties of the real networks.
The reconstructed and real networks had a similar modular organization in a broad range of a, resulting from spatial
clustering of network nodes. Hubs emerged due to the competition of the two constraints, and their positions were close
to, and partly coincided, with the real hubs in a range of a values. The degree of nodes was correlated with the density of
nodes in their spatial neighborhood in both reconstructed and real networks. Generally, the rebuilt network matched a
significant portion of real links, especially short-distant ones. These findings provide clear evidence to support the
hypothesis of trade-off between multiple constraints on brain networks. The two constraints of wiring cost and processing
efficiency, however, cannot explain all salient features in the real networks. The discrepancy suggests that there are further
relevant factors that are not yet captured here.
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Introduction

It is widely appreciated that complex neuroanatomical networks

are the physiological basis for brain dynamics, information

processing and mental function [1–5]. In the last years,

understanding the organization of neural systems and structural-

functional relationship using graph theoretical approaches and

methods of complex network research has attracted a great deal of

interest [6–16]. Neural systems possess several pronounced

network features, including the small-world property [17–19]

characterized by short path lengths and high clustering [7,12,13],

hub nodes with much larger degree than the average node degree

of the network [20–22] and network modules broadly coinciding

with functional subdivisions of the systems [14,23–27]. While these

features of neural networks are similar to those in many other real-

world complex networks [28–30], the mechanisms underlying the

formation of such complex network organization are still poorly

understood.

The simultaneous existence of modules and hubs is an

ubiquitous mesoscopic structural property in neural networks,

and may play a significant role in the information processing and

functioning of the systems. It was shown that cortical brain

connectivity comprises dense communities, which are more

densely linked internally than externally [24,25,27]. Such a

modular organization was observed in structural networks

obtained from tract-tracing studies [14], or diffusion spectrum

imaging tractography [21], across various species, such as human

[21,31–33], cat [34], rhesus Macaque monkey [35] and C. elegans
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[36] as well as in functional networks derived from EEG/MEG,

fMRI and MEA experiments [31,37–39]. The modules of the

cortical network, in broad agreement with functional subdivisions

of the cerebral cortex, are spatially segregated — as the areas

within the same functional subsystems (visual, auditory etc.) are

mostly spatially co-localized [22,36,40,41]. A recent study [42]

showed that that modularity similar to that in human functional

networks can be obtained based on an objective function

combining the number of common nearest neighbors with a

power-law decay of connections over distance, implying that

modularity may be closely related to local connections.

Highly connected hub nodes have been shown in the structural

network of the human brain, constructed by diffusion tensor

approaches and based on 70–90 cortical gray matter areas [43–45]

or in cortical networks based on 998 region-of-interest [21], as well

as in functional networks using fMRI [46] or other imaging

techniques (EEG, MEG, MEA) [39], also in other species, such as

Macaque cortex [20] and C. elegans [47]. Hubs could effectively

integrate information that is segregated due to the existence of

modules [22]. In agreement with this idea, the identified high-

degree hubs were mostly multimodal association regions [16,22].

Moreover, in a recent study of brain pathology, a MEG study of

connectivity provided additional evidence that a degradation of

the small-world property in patients with Alzheimer’s disease was

due to disease-related changes in hubs [48].

What factors influence the formation of modules and hubs is still

an open question. Nonetheless, the organization of neural

networks is frequently attributed to fundamental constraints, such

as metabolic cost [49], signal propagation efficiency [50],

evolutionary history [51] and others. It has been speculated that

the network organization is the result of an economical trade-off

between the physical cost and the functional values of the topology

[52]. But it is still not well understood what these functional

constraints are and what the relationship is between network

properties and functional values, in spite of intensive research on

complex brain networks over the last decade.

One of the most extensively discussed aspects is the constraint of

wiring cost [53–68], which is related to the possible minimization

of neural wiring volume [54,62] or wiring length

[55,58,59,61,63,65,69] in the nervous system. Most previous

studies investigated whether the actual component placement

layout of neural systems has been optimized for wiring minimi-

zation, by comparing the actual wiring cost to the perturbed

component placement while keeping the network connectivity as

in the real systems [55,59,63–65,69]. In coarse-grained data sets, it

was found that the wiring length of the Macaque prefrontal areas

[59] and C. elegans ganglia is optimized [55]. However, in other

networks, such as those linking Macaque or cat visual cortical

areas, the wiring was found not to be fully optimized, but relatively

more optimal than other subsets of the cortex [64]. Moreover the

wiring of the whole neural network of the Macaque cortex and C.

elegans neuronal network appeared not to be optimized under the

single wiring cost constraint– the total wiring could be decreased

to 64% of the original length in Macaque and to 52% in C. elegans

[63] when applying the component placement optimization (CPO)

to minimize the total wiring length while preserving the specific

network connectivity. Alternatively, it has been suggested that

constraints such as signal propagation efficiency, measured by the

global minimization of processing steps across the network, may

shape the organization of neural systems [63,68,70,71].

Generally none of the single constraints is likely able to account

for all the functional values of the network. However, the

processing efficiency perhaps is the most established network

measure shown to correlate with functional performance in

normal subjects and dysfunction in various brain diseases. As

large-scale information processing and communication systems,

neural networks favor reducing the number of intermediate

transmission steps in order to respond quickly, with the tendency

to minimize the average shortest path length (i.e., graph distance)

[50,72]. Minimizing the graph distance has some important

functional advantages. First, a small number of intermediate

transmission steps might reduce energy consumption during signal

processing. In fact, about 50% of the brain’s energy is used to drive

signal processing, suggested by halved brain energy consumption

in deep anesthesia that blocks neural signaling [73]. Second,

minimizing the graph distance would increase the speed of signal

processing, ultimately leading to faster behavior for decisions and

actions [50]. Third, minimizing the graph distance enables

neighboring and distant brain areas (or neurons) to receive signals

nearly simultaneously to allow synchronous functional processing

[74–77]. Fourth, since there exists abundant noise in signal

transmission (e.g., ionic channel noise or synaptic noise) [50,78] as

well as a high failure rate for signal transmission (between 50%

and 90% in individual synapses [50]), minimizing the path length

would limit the interference by noise and increase the robustness of

neural systems [72]. Indeed, the global efficiency (the inverse of

the average shortest paths) of the resting-state brain network has

been found to be strongly associated with the intelligence

quotient(IQ) [79–82]. In disease, it was found that the efficiency

of the human cortical network was disrupted in a manner

proportional to the extent of white matter lesions [83–87].

Therefore, the graph distance/processing efficiency could be

taken as a representative measure conferring functional value of

brain networks.

To date, however, most studies either considered the influence

of just a single constraint (mostly wiring minimization) [53–55,57–

62,64–66], or evaluated two constraints (such as the metabolic cost

constraint and the propagation efficiency constraint) separately

[63]. However, this approach does not mean that the two

constraints are independent. In fact, they may have partly opposite

impact on network organization. The processing efficiency

constraint favors network shortcuts that link topologically distant

parts of the network, which may take the form of long-distance

connections, in which case they would act against the metabolic

cost constraint of wiring length minimization. Conversely, wiring

Author Summary

What are essential relationships between fundamental
physical constraints and the architecture of neural
systems? Most existing investigations have considered a
single constraint, either wiring cost or processing path
efficiency, and little is known about how characteristic
neural network features, such as the simultaneous
existence of modules and hubs, are related to the
constraints from multiple requirements. Here we empha-
sized the competition between the global wiring cost and
an important functional requirement, path efficiency, as
factors in forming Macaque cortical connectivity and C.
elegans neuronal connections. By comparing real to
reconstructed networks using optimization under multiple
constraints, we found that several network features are
related to the competition of these two constraints, in
particular the simultaneous formation of network modules
and hubs. However, not all the properties of the real
networks could be attributed to these two constraints,
suggesting that, likely, there exists additional structural or
functional requirements.

Trade-off between Constraints in Neural Systems

PLOS Computational Biology | www.ploscompbiol.org 2 March 2013 | Volume 9 | Issue 3 | e1002937



minimization favors the creation of links among spatially adjacent

network nodes, which may also be topological neighbors (cf. Fig.

S3 in [63]). Such networks with mainly local connections typically

possess low path efficiency due to a large average number of

processing steps. In conclusion, the two constraints need to be

considered in combination. The coexistence of modular organi-

zation and hubs in networks could be, at least partially, understood

by a balance of these two constraints. Indeed, there is growing

evidence to support the idea that neural network connectivity is

not optimized either to minimize connection costs or to maximize

advantageous topological properties, but rather is an economical

trade-off between the physical cost and the adaptive value of its

topology [88], see [52] for a recent extensive review. It has been

proposed that the cost-efficiency balance of the human functional

network [89] may be related to the behavioral performance in

cognitive tasks [79], but the anatomical mechanism underlying

such desirable functional connectivity is not clear.

In the present work we explored the relationship between

multiple constraints and complex network architecture by

systematically testing the effect of the competition of multiple

constraints. We considered the neuronal network of C. elegans

[63,65,90,91] and the cortico-cortical network of the non-human

primate (Macaque) brain based on tract-tracing studies [63,92], for

which information is available for both the spatial positions of the

nodes and the network connectivity. In a previous analysis of the

Macaque cortical network [27,63], the division of the motor areas

was not very highly resolved, which feature might induce biased

results when analyzing network modules and spatial clustering.

Therefore, in the present work we first improved the data set by a

more detailed division of the motor areas based on the CoCoMac

database [92], extending the former 6 motor areas to 15 areas with

an additional 128 connections (see Materials and Method and Fig. S1

for the adjacency matrix). Different from the CPO method, in our

scheme we compared the real network connectivity to recon-

structed networks derived from multiple constraints by fixing the

spatial position of each network node and the total number of

(directed) connections as in the real networks. The reconstructed

networks were obtained under various balancing conditions of

wiring cost and processing efficiency constraints. As in previous

studies [53–55,57–66], we used the total physical distance of the

wiring Lp to represent the effect of the wiring cost constraint, and

the total graph distance of the shortest paths Lg to represent the

influence of the processing efficiency constraint, and defined an

objective function L as a combination of both constraints using a

weight parameter a, namely, L~(1{a)LgzaLp, with Lg and Lp

appropriately normalized. So a~0, or a~1 corresponds to a

single constraint of path efficiency or wiring cost, respectively.

Then we reconstructed the connections of the network with the

help of a simulated annealing approach to minimize the objective

function L at different values of a, starting from 50 random

configurations (see Materials and Methods). We studied the general

properties of the competition between the two constraints in a 1D

model with one-dimensional uniform spatial layout of nodes and

directed connections. For the real neural networks, we investigated

the modularity and hub properties of the reconstructed networks

and studied the relationship to the spatial layout and compared

them to those of the real networks. We found that for certain

intervals of balancing these two constraints, the reconstructed

networks showed a very similar modular structure and similar

spatial positions of the hubs as the real networks. These results are

also related to the nonuniform layout and clustering of the network

nodes (neurons for C. elegans and areas for Macaque cortical brain)

in space. Despite the observed agreements, there still exists

significant discrepancies between model and real networks,

suggesting that there are additional functional requirements to

be considered in the future.

Results

Competition between cost and efficiency constraints
leads to the coexistence of hubs and local connections

The qualitative properties of the competition between the

constraints at different values of a were found to be quite common

for the 1D model (Fig. 1), the real Macaque cortical network

(Fig. 2) and C. elegans neuronal network (Fig. 3), the latter two

having highly non-uniform spatial layout of nodes. These

properties can be most clearly seen in the 1D model. In addition

to Lp and Lg, we used several parameters such as the number of

hubs Nhub, the average degree of the hubs SKhubT and the fraction

of spatially local connections Pnearest to characterize the recon-

structed optimal networks at various a values (see Materials and

Methods). The results are summarized below.

At a~0, the network is only optimized by the processing

efficiency constraint and achieves minimization of the topological

distance. The optimal network configuration depends on the

density of connections. If the initial network is sparse (roughly,

connection probability pv1=
ffiffiffiffiffi
N
p

), as in the 1D model

(p~5%v1=
ffiffiffiffiffi
N
p

~7%, Fig. 1A) or C. elegans neuronal network

(p~3:82%v1=
ffiffiffiffiffi
N
p

~5:8%, Fig. 3C)), the reconstructed network

is characterized by a single hub connecting to all other nodes while

the rest of connections appears to be random. The position of the

hub node is arbitrary. A single hub is very effective for reducing

the graph distance when the network is sparse enough, because the

path length between any pair of nodes is either 1 (direct link) or 2

(connected through the hub). When the network becomes denser

(pw1=
ffiffiffiffiffi
N
p

), such as the Macaque cortical network

(p~23:7%w1=
ffiffiffiffiffi
N
p

~10:2%), the pathlength between any pair

of nodes in a random network cannot be larger than 2. It is then

very unlikely to obtain a single hub when optimizing from an

initially random configuration. Thus, the reconstructed network

connections appear to be random (Fig. 2C). The dependence of

the network configuration on the connection density is also more

systematically shown in the 1D model (Fig. S2).

At a~1, the processing efficiency constraint plays no role while

the wiring cost constraint is fully dominant, and the network has

the minimal total wiring length. Most of the connections are local

and there is no hub (Nhub~0) in any of the three systems (Figs. 1A,

2F, 3F). For the 1D model or the reconstructed networks of the

Macaque, all the connections are local (Pnearest~1:0, Fig. 4J,K);

Lp is reduced to 53:5% of that in the real Macaque network

(Fig. 4B). As for the C. elegans network, many neurons in the head

and tail are very densely distributed with very small distance

among them, while the distance between neighboring neurons in

the ventral cord is much larger. Therefore, significant numbers of

non-nearest but short-distant connections within the head or the

tail let the physical distance Lp become very small, only 1:25% of

the real C. elegans (Fig. 4C), but Pnearest is clearly smaller than 1.0

(Fig. 4L)). And in the real networks, the spatial layout of the

network nodes is non-uniform, forming spatial clusters; these local

connections make the adjacency matrix become non-uniform,

showing some clustered pattern similar to the original network

connectivity (Figs. 2F, 3F). Spatial clustering and module

organization in the reconstructed and real networks are studied

below.

For 0vav1, the processing efficiency and wiring cost

constraints combine their impact, resulting in two distinct regimes,

depending on the networks. When a is positive, but not very large,

Trade-off between Constraints in Neural Systems
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such as a~0*0:3 for the 1D model (Fig. 1B,C), a~0*0:8 for

Macaque (Fig. 2D) and a~0*0:3 for C. elegans (Fig. 3D), there is a

single hub connecting to all the other nodes in all the three systems

(kin~kout~N{1). Most of the other connections are linked to the

nearest neighbors, and Pnearest is close to 1.0 in the 1 D model

(Fig. 4J) and the reconstructed networks of Macaque (Fig. 4K), but

is clearly smaller in C. elegans for the reason stated above

(Pnearest*0:65, Fig. 4L). This single, global hub is a very effective

configuration to provide high efficiency, when the other connec-

tions are short-distance due to the cost constraint. While the

placement of the hub is arbitrary in the 1D model due to a

symmetrical spatial layout (Fig. 1B,C), it is unique in the

reconstructed networks of Macaque and C. elegans, located close

to the global geographical center of the whole network, as will be

Figure 2. Comparison of reconstructed and original connectivity of Macaque cortical network. The left two plots (A and B) are for the
original network. (A) Layout placement of 103 areas and connections between them. (B) Adjacency matrix, the output (kout) and input (kin) degrees of
the areas. The right four plots (C–F) show adjacency matrices and the degrees of areas in the reconstructed networks at various values of a. (C) a~0,
(D) a~0:4, (E) a~0:9 and (F) a~1. The index of the cortical areas is the same for (C–F) and the names of the areas are listed in Table S1 of Supporting
Information (SI).
doi:10.1371/journal.pcbi.1002937.g002

Figure 1. Constructed networks in a 1D model. There are 200 nodes uniformly placed on a one-dimensional circle linked by a total of 2000
directed connections. Shown are the adjacency matrices obtained at various a values, as indicated on the top of the plots. The nodes are indexed by
their locations on the circle, common for all panels. (A) a~0, (B) a~0:1, (C) a~0:3, (D) a~0:6, (E) a~0:8 and (F) a~1.
doi:10.1371/journal.pcbi.1002937.g001

Trade-off between Constraints in Neural Systems
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Figure 3. Comparison of reconstructed and original connectivity of C. elegans neuronal network. The left two plots (A and B) are for the
original network. (A) Layout placement of 276 neurons and connections between them. (B) Adjacency matrix and the output (kout) and input (kin)
degrees of the areas. The right four plots (C–F) show adjacency matrices and the degrees of areas in the reconstructed networks at various values of
a. (C) a~0, (D) a~0:3, (E) a~0:6 and (F) a~1. The index of the neurons is the same for (C–F) and the names of the neurons are listed in Table S2 of SI.
doi:10.1371/journal.pcbi.1002937.g003

Figure 4. Properties of the reconstructed networks as functions of a. Results are shown for the 1D model (left panel), Macaque cortical
network (middle panel) and the C. elegans neuronal network (right panel). (A, B, C) Lg and Lp (normalized) of the reconstructed networks (with
triangles or dots respectively), which are compared to those in the original networks in B and C. (D, E, F) Nhub, the number of hubs in the
reconstructed networks vs. a. Here a node with z-score of total degrees (input and output) larger than 2 is considered as a hub. (G, H, I) The average
degree of the hubs in the reconstructed networks. (J, K, L) The probability Pnearest of connections to the spatial nearest-neighbors. The results are
obtained by averaging over 50 realizations of the reconstructed networks for each a. In most cases the error bars are smaller than the symbol size.
The dashed lines are the corresponding results for the real network.
doi:10.1371/journal.pcbi.1002937.g004

Trade-off between Constraints in Neural Systems
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discussed in detail below. In this regime, Lp, Lg, Nhub and Pnearest

are all constant with respect to a, since the optimal network

configuration does not change with a, though the speed of

convergence in the optimization process does. While both Lg and

Lp in the reconstructed networks are smaller than those in the real

networks in this region, Lp is much more smaller (reduced to

55:2% in Macaque and to 25:8% in C. elegans, see Fig. 4B,C).

The insensitivity of the optimal configuration to a in this regime

can be understood from the objective function

L~(1{a)LgzaLp. The variation is DL~(1{a)DLgzaDLp,

where DLgw0 and DLpv0 with increasing a. The network

configuration would change with a only if DLv0, i.e.,

D
Dlg

Dlp
Dv

a

1{a
. However, for the Macaque network, we found that

D
Dlg

Dlp
Dw4 for any perturbation to the configuration obtained at

a~0:1 (a single global hub and all other local links). When av0:8,
a

1{a
v4, thus D

Dlg

Dlp
Dw

a

1{a
, then DLw0, and the configuration

change cannot be accepted by the optimization. Only when
a

1{a
w4 (aw0:8), it becomes possible to have D

Dlg

Dlp
Dv

a

1{a
for

certain perturbations, and a configuration change will happen. For

this reason, in all the three networks, the optimal solution is the

same in a range of a values, depending on the spatial layout of the

network.

With further increase of a, the influence of the wiring cost

constraint becomes stronger. A single hub is no longer found,

because very long-distant connections are prohibited and the

systems move into a different regime (0:4vav0:9 for the 1D

model, 0:8vav0:96 for Macaque and for C. elegans

0:3vav0:99). Several smaller hubs emerge, with connections

extending to nodes in their spatial neighborhood, and the

connection range of such regional hubs becomes smaller at larger

a, as can be most clearly seen in the 1D model (Figs. 1D,E), and is

also true in the real networks (Figs. 2E and 3E). Consequently, Lp

is further reduced slightly, but Lg increases and is close to that of

the real network (Fig. 4B,C). As shown below, the spatial positions

of the hubs in the reconstructed networks are close to the real hubs

in the two original networks.

When a is very close to 1.0, where the efficiency constraint is

weak while the wiring cost constraint is almost fully dominant,

most of the connections are local and there are no pronounced

hubs (Nhub~0). Lg increases quickly and becomes larger than that

in real networks.

We also found that for all a values, the input and output

degrees of the nodes in the reconstructed networks are largely

symmetrical (Fig. S3A and Fig. S3C). While the input and output

degrees were found to be significantly correlated in the real

networks (Fig. S3B and Fig. S3D), the discrepancy between the

optimization model and real data is quite large, because this model

does not include possible requirements that could generate the

asymmetry, for instance, input-output information flowing as

in real networks (e.g., from sensory neurons to motor neurons in

C. elegans).

The above results show that the coexistence of local connections

and hubs in the cortical networks could be a solution to the

multiple constraints of wiring cost and processing efficiency. There

is a regime (a~0:8*0:96 for Macaque and a~0:3*0:99 for C.

elegans) in which the competition of the constraints can allow the

formation of several hubs connecting to many of the nodes in the

neighborhood. Here, Lg in the reconstructed networks is very

close that of the real networks, but Lp can be much smaller. In the

following sections, we show that both the modular structure and

the positions of hubs are quite similar to the real networks in this

regime.

Modules in network connectivity and spatial clustering of
nodes

The above results (Figs. 2D–F and 3D–F) showed the

emergence of a modular organization in the reconstructed

networks similar to the real ones, which is derived from the non-

uniform spatial distribution of the nodes and the local connections

due to the constraints. In order to further explore these relations,

we examined the relation between the spatial clustering of nodes

and the modules in network connectivity both in the real and

reconstructed networks, and compared the similarity between the

modules in the real and reconstructed networks.

Macaque cortical network. In the the real Macaque

cortical network, the nodes (which represent the centers of mass

of the cortical areas) are distributed non-uniformly in the three-

dimensional space due to size variations of the areas. Visual

inspection of a two-dimensional layout in Fig. 5A suggested that

the nodes could be divided into two spatially separated clusters.

This was confirmed by clustering analysis (see Materials and

Methods), shown by different colors (blue and red) of the nodes in

Fig. 5A. Such spatial clustering was found to be quite robust in

data sets with different parcellations of the areas. The clustering of

this more highly resolved data set with finer division of the motor

areas (N~176) was compared with a parcellation of N~103 areas

[93] (see Materials and Methods) and was found to be very similar.

The clustering boundaries of the two data sets differed only by 5

areas (referring to the N~176 dataset) (see Fig. S4 and S5).

Unfortunately, network connectivity is not available for this finest

parcellation of N~176 areas. We also examined the spatial

density of the nodes within a radius around a given node, which

we called the neighborhood density (see Materials and Methods), and

found that it was also quite non-uniform due to heterogeneous

area size. As shown in the following sections, many properties of

the reconstructed and original networks of the Macaque cortex are

related to these properties of the spatial layout of the network

nodes.

The connectivity in the original Macaque cortical network

shown in Fig. 5A also suggests that the connections are denser

within spatial clusters than between clusters, indicating that the

spatial clustering of the areas and densely connected network

modules are related to each other. We analyzed modules in the

original Macaque cortical network and the reconstructed networks

(see Materials and Methods). The optimal modularity is Q~0:395 in

the original Macaque network (Fig. 5A), corresponding to two

modules shown by open and filled circles in Fig. 5B. The

modularity did not show uncertainty with respect to the modular

boundaries and is quite significant when compared to the

corresponding random networks with the same number of nodes

and connections (Q~0:08+0:004). We can see that the modules

and spatial clusters have strong overlap, and only 14.6% of the

total nodes are mismatched. An example of a reconstructed

network (a~0:9) is shown in Fig. 5C, which has much fewer

connections between the two spatial clusters than the real network

in Fig. 5A, therefore has a larger optimal modularity Q~0:50 (also

two modules, without uncertainty). The two modules from the

reconstructed networks overlap almost completely with the two

spatial clusters, respectively (Fig. 5D), with only one mismatched

areas (0.97%). We examined the mismatched areas between the

module partitions of the original and the reconstructed network at

various aw0 and found that they were consistent. The number of

the mismatched areas remains small (around 15% of all the areas,
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PLOS Computational Biology | www.ploscompbiol.org 6 March 2013 | Volume 9 | Issue 3 | e1002937



much smaller than the mismatching rate for real networks and

shuffled modules (see Materials and Methods) for all aw0, but is

clearly smaller for a~0:8*0:9 (blue bars in Fig. 5F). The

modularity Q of the reconstructed networks was larger than that in

the real network for aw0 (see supplementary Fig. S6A). Note

when a~0, the reconstructed solution under the single efficiency

constraint is a random-like network without clear modular

structure (modularity Q = 0.096+0.005).

C. elegans neuronal network. The spatial layout and

connectivity of the real C. elegans neural network are shown in

Fig. 6A. There are four network modules, with modularity

Q~0:423 (Fig. 6B, different symbols). Again, there was no

uncertainty in the module partition, and the modularity is

significant compared to the corresponding random networks

(Q~0:175+0:003). Using the spatial clustering method, the

neurons were grouped into three clusters (shown by different

colors). Interestingly, the relationship between connectivity mod-

ules and spatial clusters is similar to the Macaque cortical network.

While not perfect, there exists some overlap between modules and

spatial clusters (Fig. 6B), about 30.8% of the neurons are

mismatched. For the reconstructed network of C. elegans, quite

similar to the Macaque cortical network, there are fewer

connections between different spatial clusters (Fig. 6C, a~0:6)

when compared to the real network, consistent with a larger

modularity Q~0:560+0:012 for four modules. The overlap

between the modules and the spatial clusters is stronger than in the

real network (Fig. 6D), and the ratio of mismatched neurons is

reduced to 11.96%. The number of mismatched neurons between

the modular partitions of the original and the reconstructed

networks remains small (about 28% of all neurons) for 0vav1,

approaching the smallest value (nearly 23%) when a~0:8*0:9,

but increasing clearly for a very close to 1.0 (a~0:995) (blue bars

in Fig. 6F). Again the mismatching rate is much smaller than that

between the real network and shuffled modules. The modularity Q
of the reconstructed networks is larger than that of the real

network for aw0 (see supplementary Fig. S6B). Note that for the

singular constraint of path efficiency at a~0 or of wiring cost at

a~1, the reconstructed networks do not exhibit evident modu-

larity (Q~0:1651+0:001 and Q~0:154+0:009, respectively).

We would like to emphasize that the results reported above have

already taken the uncertainty of module partition and spatial

clustering into consideration (see Materials and Methods). First, the

uncertainty in the module partition is quite small. The Macaque

cortex did not show degeneracy in module partition when (the

toolbox of brain connectivity) BCT method was applied for many

times, although degeneracy was indeed observed in a correspond-

ing random network with the same number of nodes and

connections (Q~0:08+0:00004, here the error-bar is from 50

applications of the BCT method). The real network in C. elegans

did not have degeneracy either, but there was a small uncertainty

in the reconstructed networks (with a typical fluctuation of 1–5

neurons from run to run). Second, we used 8 different distance

measures to detect the hierarchical clustering. When comparing

the clustering partition from these 8 methods to the modular

division, the partition based on inner squared distance generated

the minimal set that matched the module partition. The rest of the

nodes formed the largest possible mismatched group that covered

all the mismatched groups from different clustering methods (see

Materials and Methods). In particular, there were 89 cortical areas in

the Macaque which match between the modules and the clusters

Figure 5. Modularity of original Macaque network and reconstructed networks. (A) Layout placement of 103 areas and the connections of
the Macaque cortical network. (B) The two modules of the real network (open and filled circles) are compared to the two spatial clusters (blue and
red). The corresponding modularity is Q~0:395. (C) As in (A), but for a reconstructed network at a~0:9. The blue and red colors of the nodes
represent the two spatial clusters. (D) The same as (B), but the modules are from the reconstructed network in (C), with Q~0:50. (E) Mismatch
between the module partitions of the reconstructed and real networks. The mismatching areas are indicated by the pentagrams. (F) Rmismatch shows
the fraction of mismatching areas between reconstructed and original networks in module partition, with respect to a. The result did not include
a~0 where the reconstructed networks did not show strong modularity. Blue bars are for the mismatching areas appearing in more than 60% of all
50 realizations at each a, while white bars are for the mismatching areas appearing at least once in the 50 realizations at the given a. The dashed line
represents the mismatching rate between the real networks and shuffled modules (see section ‘‘Matching between partitions’’ in Materials and
Methods).
doi:10.1371/journal.pcbi.1002937.g005
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from all the 8 methods; the remaining set of 14 areas is thus the

largest possible group covering all the unmatched groups across

different methods of clustering and was reported in Fig. 5B (among

these 14 unmatched areas, 5 areas appear to be the unmatched

areas in all these 8 methods, 1 area in 7 methods, 6 areas in 5

methods, and the 2 areas in 3 methods). In the real network of C.

elegans, this set of most stable nodes contains 191 neurons and the

remaining 85 neurons are considered as the the largest group of

mismatched neurons (Fig. 6B). In the same vein, the reported

mismatching between the module partitions of real and recon-

structed networks is the largest possible group when taking the

uncertainty into consideration (Figs. 5E,F, and 6E,F).

These results show that the modular structure of the original

networks is strongly related to the fact that the network nodes are

spatially clustered, and many of the connections are contained

within the clusters due to the effect of the wiring cost constraint.

However, the best match of the modular partition with the real

network involves the processing efficiency constraint (av1:0) that

enforces some long-range connections between the clusters.

Location of hubs
The results in Section I. showed that the emergence of hubs

could be the result of the combination of the wiring cost and path

efficiency constraints, since hubs connecting to many nodes are

very effective for improving path efficiency, while allowing most of

the other connections to remain local to satisfy the cost constraint.

If the hub is a global one, connecting to all the nodes, then it is

reasonable to expect that the position of the hub is not arbitrary,

but is near the geographical center (the node with minimal total

distance to all the other nodes) of the whole network in order to

maximally reduce the total wiring length of the connections from

the hub. If the hub is a regional one, connecting to most of the

nodes within the local region (e.g., within one of the spatial

clusters), then the position should be close to the geographical

center of this region. Thus, a node with many other nodes densely

distributed in the neighborhood (having a high neighborhood

density, see Materials and Methods), could be an candidate for a hub

under the two constraints.

In the following section, we present findings regarding the

location of the hubs in the reconstructed as well as the real

networks. In our analysis, network nodes with z-score of total

degrees (input and output) larger than 2 (see Material and Methods)

are considered as hubs. The locations of the hubs in all 50

realizations of the reconstructed networks at each a were

identified. We would like to point out that identifying hubs in

this way is heuristic and may introduce some ambiguity when

comparing different networks (real or reconstructed at different a).

However, hubs that were defined in this way indeed provided a

plausible way to describe the variation of the nodes with the largest

degrees in the network as a changes.

Macaque cortical network. For the Macaque cortical

network, there was only one global hub connecting to all the

other areas in all optimally reconstructed networks for 0vav0:8.

Either the primary auditory area A1 (the area index No. 41) or the

area Ri (No. 73) was selected as the single hub, with larger than

80% and smaller than 20% probabilities, respectively (Fig. 7A).

When checking the global geographical centrality (see Materials and

Methods), we found that A1 and Ri were ranked No. 1 and No. 2,

Figure 6. Modularity of original C. elegans neuronal network and reconstructed networks. (A) Layout placement of 276 neurons and the
connections of the network. (B) The four modules of the real network (open, filled circles, plus and asterisk) are compared to the three spatial clusters
(blue, green and red). The corresponding modularity is Q~0:423. (C) As in (A), but for a reconstructed network at a~0:6. The red, blue, and green
colors of the nodes represent the three spatial clusters. In (A) and (C), we used different scales for the x and y axis for clear presentation. The
connections among dense nodes cannot be seen. The inset of (B) shows the positions and clusters of neurons in identical scales. (D) The same as (B),
but the modules are from the reconstructed network in (C), with Q~0:560+0:012. (E) Mismatch between the module partition of the reconstructed
and real networks. The mismatched areas are indicated by the pentagrams. (F) Rmismatch shows the ratio of mismatched areas between reconstructed
and original networks in module partition, with respect to a. The result did not include a~0 and a~1 where the reconstructed networks did not
show strong modularity. Blue bars are for mismatched areas appearing in more than 60% of all 50 realizations, while white bars are for mismatched
areas appearing at least once in the 50 realizations for a given a. The dashed line represents the mismatching rate between the real network and the
shuffled modules.
doi:10.1371/journal.pcbi.1002937.g006
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respectively, which is consistent with our expectation. However, in

the real network these two areas are non-hub nodes, with only 2

connections for A1 and 21 for Ri. The position and connections of

A1 in the real network are shown in Fig. 7B.

When 0:8vav0:96, the number of hubs increases while their

average degree decreases, and the hubs become regional. Further

increasing of a to be very close to a~1 prevents the emergence of

hubs, because the impact of the wiring cost constraint becomes too

strong relative to the influence of the processing efficiency

constraint. For a around 0.9, four areas, V5/MT, area 46,

MSTm and MSTd appeared as hubs in many realizations of the

reconstructed networks (Fig. 7D, green stars). It is important to

note that area V5/MT and area 46 are respectively the biggest

hubs in the original network in terms of total degree and output

degree (these two areas are also identified as hubs in [20]). V5/MT

has a total of 112 input and output links, with 87 of them from the

red spatial cluster (connecting to 87.9% of nodes in this cluster)

and 25 from the blue cluster. The location of area V5/MT and its

all connections in the real network are shown in Fig. 7 C.

Although V5/MT is only ranked No. 27 in terms of the global

geographical centrality, it is ranked No. 3 of the regional

geographical centrality of the red cluster. It is also ranked No. 1

in terms of high neighborhood density in a range of radius

(specifically, r=rmax[(0:24,0:28), see Material and Methods). The

biggest output hub area 46 has 59 efferent links in the real

network. It is ranked No. 2 of the regional geographical centrality

of the blue cluster and No. 3 by neighborhood density in a range

of radius r=rmax[(0:24,0:28).

In the reconstructed networks with a around 0.9, V5/MT and

area 46 were respectively selected as hubs in 94% and about 40%
of the realizations (Fig. 7A). The other two areas MSTm and

MSTd were selected as hubs in the reconstructed networks,

because they are respectively ranked No. 1 and No. 2 in terms of

the geographical centrality of the red cluster and No. 2 and No. 4

by neighborhood density. But these two areas are not hubs in the

real network.

Apart from the biggest hub area V5/MT, there are five more

hubs (z-score above 2.0 either in total, input or output degree) in

the real Macaque cortical network, areas 7a, VIPl, 7b, LIPv and

area 46. All the hub areas are shown by the red bullets in Fig. 7D,

with the size of the symbol indicating the total degree. Except for

area 46 located close to the geographical center of the blue cluster,

the other five hubs are all located within the red cluster and are

among the top 18.5% in terms of the regional geographical

centrality of this cluster. The ranking of a few nodes with the

largest total degrees in terms of neighborhood density and

geographical centrality is also shown in Fig. S7. The positions of

the real hubs thus coincide or are close to those hubs in the

reconstructed networks which are located in the regional

geographical centers.

C. elegans neuronal network. For the real C. elegans

neuronal network, four neurons were identified as hubs (z-score

above 2.0), which are AVAL(left)/AVAR(right) and AVBL/R

(k~133,137,101,104), all located in the head (red bullets in Fig. 8).

These 4 hubs are among the top 27.2% in terms of the regional

geographical centrality of the head. Note that the neuron FLPL

having the highest global geographical centrality of the whole

system (red square Fig. 8) is also in the head, as most of the

neurons (166 out of 276) are in the head.

In the reconstructed network, the global geographical center

FLPL was indeed taken as the single hub connecting to all the

other neurons for a[(0,0:3). With stronger impact of the wiring

cost constraint for 0:3vav0:99, the number of hubs increases

while their average degree decreases. In total, 14 neurons were

chosen as hubs (with a probability above 30% to appear in the

reconstructed networks at certain a~0:3*0:99), with degree

ranging from 140 to 200, connecting 50:7% to 72:5% of the

neurons. 10 of them were from 5 groups with left and right

symmetry, ADFL/R, ASEL/R, ASHL/R, AWCL/R and

Figure 7. Hubs in the reconstructed and original Macaque networks. (A) Four areas A1, Ri and V5/MT and area 46 had the large probabilities
to appear as one of the hubs in the reconstructed networks at different a. Note that V5/MT is also the biggest hub and area 46 is the biggest out-
degree hub in the original network. (B) The position and connections (green lines) of the area A1 (global geographical center) in the real network. (C)
The position and connections of the biggest hub V5/MT in the real network. (D) 6 hubs in the real network (red bullets, with the size of the symbol
indicating the total degree) and 4 hubs (V5/MT, area 46, MSTm, MSTd) in the reconstructed network at a*0:9 (green stars). The positions of the
reconstructed or real hubs coincide or are close to each other.
doi:10.1371/journal.pcbi.1002937.g007
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RMHL/R, and the other 4 neurons were AIBR, RIBR, SIBDR

and SIBVL. Interestingly, these hubs in the reconstructed

networks (green triangles, Fig. 8) were close in location to the 4

real hubs (red bullets, Fig. 8). In fact, these 14 neurons are among

the top 8.33% in terms of the regional geographical centrality in

the head. Notably, we also found an overlap of reconstructed with

real hubs. When a*0:9{0:93, the real hub AVBR has a

relatively small probability (24%) to be chosen as the hub in the

reconstructed network (marked as the blue bullet in Fig. 8).

One may wonder whether it is meaningful to say that the hubs

were spatially close when most neurons are located in the tiny

head of the worm. Therefore, a more quantitative comparison is

desirable to support the visual inspection. We calculated the sum

distance for each of the 166 neurons in the head to the 4 real hubs

and sorted the neurons in the order of increasing distance (Fig.S8).

It is clear that most of the neurons taken as hubs in the

reconstructed networks are among the closest neurons to the real

hubs.

While generally there is ambiguity in defining hubs in the

networks, our observation is clear: with stronger influence from the

wiring cost constraint, the reconstructed networks shift from a

configuration with a single global hub to configurations having

several nodes with relatively large degrees, and their spatial

locations move from the global geographical center to the regional

geographical centers accordingly. In real networks, the nodes with

the largest degrees are close to the regional geographical centers,

showing that both the processing efficiency and cost constraints

are at work. This finding is strong evidence to support the

hypothesis of a trade-off, though it appears there are more nodes

with larger degrees in the real networks than the reconstructed

networks.

Degrees of nodes and correlation with neighborhood
density of nodes

The results in the above sections suggested that the mesoscopic

properties of networks, the simultaneous formation of modules

and hubs, can be partially explained by the combination of the

wiring cost and processing efficiency constraints. Now we

examine the degree of nodes in the original and reconstructed

networks.

When constructing networks under the wiring cost constraint,

the nodes tend to connect to their nearest spatial neighbors, which

is confirmed by a high value of Pneareast. Therefore, the number of

connections of a node (degree) is expected to be related to the

neighborhood density of the node in a certain spatial range. We

calculated the density of nodes for various radii r and evaluated its

correlation with the degree of nodes. The correlation between the

degrees and density in reconstructed network with strong enough

wiring cost constraint (a close to 1) is quite large in a range of r for

both the Macaque and C. elegans, as shown by the black dashed

curve in Fig. 9A,B.

Interestingly, the correlation between degrees and density is also

significantly present in the real network (colored curves in

Fig. 9A,B). For example, the correlation can reach 0.49 at

r=rmax~0:14 for Macaque and 0.29 at r=rmax~0:04 for C. elegans,

much larger than the 95% of the significance level in the

corresponding surrogate data. The results are consistent with the

observation above that hubs in the real network are ranked high in

term of the neighborhood density.

Although the correlation between degree and neighborhood

density is significant in both real and reconstructed networks, the

discrepancy is also quite large. In particular, the degree

distribution in the real network was not well reproduced in the

reconstructed network (see Fig. S9 for a comparison). In both

neural systems, the real networks have higher probabilities to have

large-degree nodes, but the reconstructed networks have higher

probabilities to generate intermediate-degree nodes, because the

connections in the reconstructed networks are much more strongly

determined by the neighborhood density. It has been shown that

both the in- and out- degree of the C. elegans neuronal network

obey a power-law distribution [47]. Our test of the significance of

the power-law fitting to the distribution (see Materials and Methods)

confirmed this statement (p~0:807, c~3:5, xmin~14 for in-

degree and p~0:675, c~3:2, xmin~13 for the out-degree, Fig.

S9). The real Macaque cortical network and the reconstructed

networks of both systems do not show scale-free features. For all

Figure 8. Hubs in the reconstructed and original C. elegans networks. The inset shows the two-dimensional layout of all 276 neurons of C.
elegans. The square region in the inset is zoomed out, showing the four hubs in the real network (red and blue bullets), the global geographical
center (green square) and the hubs in the reconstructed networks (green triangles) and the overlap with the real hub AVBR (blue bullets).
doi:10.1371/journal.pcbi.1002937.g008
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these networks, the largest p value is 0.02+0.02 for the out-degree

distribution of C. elegans obtained at a~0:9.

These results indicate that degrees of the individual nodes reflect

the impact of the wiring cost constraint, however there are still

some other unknown factors in addition to the wiring cost and

processing efficiency constraints that may strongly influence the

node degrees in the original network.

Link recovery
In the above sections we explored the similarity between

reconstructed and real networks in global network measures (e.g.,

physical and graphical distance), and in mesoscopic properties

(e.g., modules, hubs, degree and degree distribution). Next we

analyzed how well the reconstruct networks recovered the

connections in the real network. We calculated the recovery rate

R by comparing the overlap of the adjacency matrices of the

original and reconstructed networks entry by entry, taking both

asymmetry of 0’s and 1’s entries and the directionality of

connections into consideration (see Material and Methods). R is

maximal at 1.0 when two networks are identical in all connected

and un-connected pairs.

The overall recovery rate R of the whole network as a function

of a is shown in Fig. 10A,B for the two neural systems. For the

Macaque cortical network, when aw0, the recovery rate is nearly

60% (Fig. 10 A), which is clearly larger than the recovery rate of

random benchmark networks obtained by rewiring the original

network while retaining the input and output degrees. For the C.

elegans neuronal network, when aw0, the recovery rate is more

than 30%, which is significantly larger than 19.14% of random

benchmark networks (Fig. 10 B). The recovery rate is much

smaller than that of the Macaque networks, partially due to much

sparser connectivity in C. elegans.

Importantly, the recovery rate is not uniform in the networks. It

is higher within the spatial clusters, but lower between the clusters,

as shown as green bars in Figs. 10C, D for Macaque and C. elegans

respectively (both for a~0:9). Notably, for C. elegans, the recovery

rate of the connections within clusters could approach 40% (Fig. 10

D), almost doubling that of the random networks (blue bars). For

the connections between the clusters, the recovery rate is even

smaller than that in the random benchmark networks in both

systems, especially significant for C. elegans, because the connec-

tions between clusters become too sparse in the reconstructed

networks (see Figs. 5C, 6C). The real neural network has more

long-range connections between spatial clusters, likely due to

additional functional requirements.

Although the recovery rate within modules (red bars) is also

larger than that of the random networks, particularly within spatial

clusters, the recovery rate between modules is much higher than

for random benchmarks for both systems, in contrast to the case

between spatial clusters. The different results between clusters and

between modules originate from the mismatching of modules and

clusters.

In the combination of wiring cost and efficiency constraints,

most of the connections are local. Therefore, the recovery rate is

expected to be higher for the local connections. Our more detailed

analysis of the recovery rate for the connections of different

physical distance confirmed this expectation (Fig. 10E,F). In both

the reconstructed and real networks, the probability of two nodes

to be connected decreases with distance (insets, Fig. 10E,F).

However, in real networks, the connection probability for very

short distance is much smaller than in the reconstructed network,

but it decays more slowly with the distance; therefore there is

much higher probability of long-range connections, especially in C.

elegans, likely due to other functional requirements. Nevertheless,

the recovery rate is much higher for short-distant links, around

50% in both systems.

There are some differences between the C. elegans neuronal

network and Macaque cortical network. (1) The C. elegans neuronal

network is quite sparse (connection probability p~5:8%), while

the Macaque cortical network is rather dense (p~23:7%).

Therefore the recovery rate of the random benchmark networks

is smaller in C. elegans (19:14%) than Macaque (44:5%). Further-

more, when a~0 (efficiency constraint only), the reconstructed

networks of C. elegans possess a global hub, but for the Macaque

network they are quite similar to random networks (Fig. 2C and

Fig. 3 C). Thus for C. elegans, R~18:24% at a~0 is even smaller

than that of the random networks (19:14%). (2) About 60% of the

neurons in C. elegans gather in the tiny head, and the others scatter

in the ventral cord and tail. This highly heterogeneous spatial

distribution of neurons requires more long-distant connections in

the real network. Indeed, C. elegans has a smaller fraction of local

connections (12:9%) when compared to Macaque (56:7%) (Fig. 4K,

L, dashed lines). These properties are perhaps the main reasons

that the recovery rate in C. elegans is low, because too many short-

Figure 9. Degrees of nodes in the reconstructed and real networks. (A) and (B) Correlation between degrees and neighborhood density vs.
the normalized radius r=rmax for reconstructed (a~0:9) and real networks. (A) for Macaque and (B) for C. elegans. The results differ for the output
(blue line), input (red line) and total degree (green line) in the real network, but are almost the same in the reconstructed network (black dashed line).
The horizontal black line represents 95% of significance level. The error-bar is from 50 realizations of the reconstructed networks.
doi:10.1371/journal.pcbi.1002937.g009
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distant links are put into the small head in reconstructed networks

when compared to the real networks (Fig. 6 and Fig. 10E,F).

Discussion

Summary
The formation of complex neural networks is subject to many

structural and functional constraints. In particular, it has been

speculated that the network organization is the result of an

economical trade-off between the physical cost and the functional

value of the topology [52]. Among various graph theoretical

measures, the average shortest pathlength representing the

processing efficiency can be taken as an essential representative

of functional constraints. In this study, we showed in a systematic

and quantitative manner that the competition between these two

straightforward constraints, the overall wiring cost and signal

propagation efficiency, plays an important role in the network

organization of Macaque cortical connectivity and C. elegans

neuronal connections. By reconstructing network connections

using optimization under multiple constraints, while fixing the

component layout as in the real network and comparing the

properties the reconstructed to the real networks at different

topological scales, we revealed that the connectivity in both neural

networks is closely related to the spatial arrangement of the nodes.

The main findings are as follows. i) The combination of the wiring

cost and processing efficiency constraints can lead to the

simultaneous formation of local connections and hubs. ii) When

the spatial layout of the nodes is not uniform, but clustered as

seen in the real networks, this combination will lead to the

formation of modules and hubs. The modules have strong overlap

with the spatial clusters and the hubs are located at global or

regional geographical centers. iii) In certain regimes of competition

between the two constraints, the reconstructed networks have a

modular organization quite similar to that in real networks, and

the positions of the hubs coincide or are close to the actual hubs.

iv) The analysis also revealed that the degrees of nodes in the

real networks are correlated with their neighborhood density,

and the reconstructed networks can recover a significant portion

of the individual links of the real networks, especially for short-

distant connections. These observations support the idea of a

trade-off between cost and functional values. The two constraints,

however, cannot fully explain all the properties in the real

networks. There are discrepancies in several important aspects: (1)

There are significantly more long-range connections in both

real systems when compared to the model. (2) The correlation

between the individual degree and the neighborhood density

Figure 10. The rate of connection recovery in the reconstructed networks. The upper panel is for the Macaque cortical network and lower
panel for the C. elegans neuronal network. (A, B) The recovery rate R as function of a. (C, D) Recovery rates among the nodes within the two spatial
clusters and between the clusters (green bars for the reconstructed networks), as well as within and between modules (red bars for the reconstructed
networks). The blue bars are the recovery rate of random networks with the same input and output degrees as the real networks. (E, F) The recovery
rate as function of the spatial distance of the connections in real networks. The insets show the probability of connections as function of the spatial
distance between two nodes, in real networks (dark bars) and reconstructed networks (white bars). The results in (C,D,E,F) are for a~0:9 for both
Macaque and C. elegans. The error-bars are from 50 realizations of the reconstructed networks.
doi:10.1371/journal.pcbi.1002937.g010
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in the real networks is much lower than in the optimization

model. (3) The degree distribution in the real network is different

from that in the reconstructed network. (4) The model cannot

generate asymmetry in the input and output degrees as in the real

networks. All these differences suggest that there are additional

important factors influencing the formation of real neural

networks. In the following sections we discuss these points in

more detail.

Real neural networks are not optimized solely to
minimize wiring length or to maximize processing
efficiency

It is clear that real networks are not solely optimized by

topological efficiency, due to a large number of local connections.

Neither are they optimized only for minimal wiring cost, even

though this cost constraint is playing a significant role. Previous

studies investigated whether the component placement layouts in

the real neural networks satisfy the concept of wiring length

minimization, by comparing the wiring cost of real networks to

perturbed component placement while keeping the network

connectivity fixed. The accumulated evidence showed that the

wiring cost constraint indeed plays an important role

[55,58,59,61,63,65,69]. However, for the Macaque cortical

network and C. elegans neuronal network, previous work using

CPO while fixing the network connectivity showed that the wiring

length is not minimized [63]. Here we reconstructed the network

connectivity while keeping the component placement layout as in

the real network. Under only the wiring cost constraint at a~1,

the reconstructed network differed significantly from the real

networks: all the connections were short-distant and there were no

hubs and no long-range connections as in the real networks.

The following comparison between real networks and recon-

structed networks at a~1 showed more clearly that the wiring cost

constraint is at work, but the real neural networks are not solely

optimized by minimal wiring length. (1) The wiring cost Lp in the

reconstructed networks is clearly lower than that of the real

networks (53.5% for Macaque but only 1.25% for C. elegans),

although the link recovery rate is still significant (60.8% for

Macaque and 27% for C. elegans), since the wiring cost constraint

does impose many short-range connections in the real networks. In

the CPO solutions [63], by fixing the network connections as in

the real networks, the wiring lengths were 68% and 52% of the

real values of the networks in the Macaque and C. elegans,

respectively. This finding shows that allowing hubs as in the real

network is costly in wiring, especially for C. elegans. (2) The

processing efficiency is much lower than in the real networks. As

seen in Fig. 4B,C, Lg (the reverse of the processing efficiency) in

the real networks is much smaller than the reconstructed networks

at a~1. When a is slightly smaller than 1.0, the regional hubs in

the reconstructed networks reduce the path length significantly

and Lg is close to the values in real networks; interestingly these

values are not much larger than the optimal Lg at a~0. This

finding is consistent with the previous observation that biological

neural networks appear to be optimized for processing efficiency

[63]. (3) The recovery rate is quite high within the clusters. In

particular, the recovery rate of the connections within the

Macaque visual system (covering 65:5% areas of the red cluster

of Fig. 5) is 63:3%, and it is 47:7% for the rest of the connections of

the network, which is consistent with previous observations that

the wiring among the Macaque visual cortex is relatively more

wiring cost optimal than other cortical subsets [64]. (4) In C. elegans,

solely minimizing the wiring cost at a~1 cannot produce strong

modular structure in reconstructed networks (Q~0:154+0:009,

Fig. S6B) (as explained in the next section). However, similar

modular organization as in the real network can be obtained

under the balancing of two constraints (Fig. 3).

Overlap between network modules and spatial clusters
reflects the impact of the wiring cost constraint

We showed that the wiring cost constraint can predominantly

determine the modular organization in real neural networks, and

the partition of the modules is not very sensitive to the effect of the

processing efficiency constraint at different a. More precisely, the

spatial clustering governs the connectivity modules in the

reconstructed networks where most of the connections are

extended to the spatial neighbors under the wiring cost constraint.

Modules in the reconstructed network overlap largely with the

spatial clusters. In the Macaque cortical network, the mismatched

areas (mainly of the somatosensory system) are near the boundary

of two spatial clusters (see Fig. 5E). This arrangement reduces the

wiring cost when these areas make more connections to the other

cluster to form a module, likely due to some further functional

requirements.

Notably, the modular organization in the C. elegans neuronal

network is most likely determined by the combination of the wiring

cost and path efficiency constraints. With only the wiring cost

constraint at a~1, the reconstructed network of C. elegans did not

show strong modularity as seen in the real network (Fig. S6B,

Q~0:154+0:009 at a~1:0). The main reason is as follows.

About 60% of the neurons gather in the tiny head, while other

neurons scatter in the ventral cord and the tail with much longer

physical distance between them. At a~1, almost all the links in the

reconstructed networks were put in the head to form a highly

connected core. The rest of the nodes in the body and tail form an

approximately one-dimensional array with a minimal number of

necessary links in order to avoid disconnection from the main core,

but do not form dense modules. However, when the path

efficiency constraint becomes effective for a slightly smaller than

1.0, some long-range connections are forced between the hubs in

the head and the other parts of the network. These long-range

connections from the hubs now can also take the role of avoiding

disconnection of the nodes into subsets. Now the remainder of the

connections is allowed to be more short-ranged in the tail and in

the ventral cord, which form modules that coincide with the spatial

clusters. With suitable combinatorial influence of the two

constraints at a&0:95, the fraction of mismatched neurons is

reduced to about 23% (Fig. 6F).

In both systems, the best overlap between the modules in the

reconstructed networks and real networks appears for a region

0:8vav1, suggesting that the combination of the two constraints

plays an important role in the formation of real neural networks

which possess both modules and hubs.

The processing efficiency constraint creates hubs by
competition with the wiring cost constraint

The emergence of hubs can be attributed to the combination of

the wiring cost and path efficiency constraints, because a single

constraint on its own, either efficiency (a~0) or wiring cost (a~1),

does not support hubs in networks as dense as the Macaque

cortical network. For sparse networks, such as the one of C. elegans,

the efficiency constraint on its own can generate a global hub, but

the hub position is arbitrary. The wiring cost constraint is effective

even for small a values. In both systems, there is a broad range of

the competing parameter (a~0*0:8 for Macaque and a~0*0:3
for C. elegans) where the reconstructed networks are composed of

local connections and just one dominant hub. For larger a, the
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wiring cost constraint becomes stronger and several regional hubs

emerge, similar to the organization in real networks. However, the

wiring cost constraint on its own (a~1:0) cannot enforce hubs in

the reconstructed networks.

The nodes chosen as the hubs in the reconstructed networks

occupy the highest ranks of the regional geographical centrality

and neighborhood density in order to be wiring economic.

Interestingly, real hubs are found close to these nodes with high

centrality. Quite strikingly, in the Macaque cortical network, the

location of the biggest hub at area V5/MT and the output hub of

area 46 in the real network of the Macaque cortical network can

be reproduced in the reconstructed networks by the combination

of the wiring cost and path efficiency constraint at a*0:9. The

strong impact from the wiring cost constraint in real networks is

further reflected by the economic wiring of these hubs nodes: (1)

the areas V5/MT and area 46 stay near the geographical centers

of the red and blue clusters, ranked No. 3 and No. 2 of the

regional geographical centrality of the red and blue clusters,

respectively; these areas have most of their connections within

their respective cluster. (2) V5/MT and area 46 are ranked No. 1

and No. 3 in terms of high density of nodes in the neighborhood

within a certain range of radius. In C. elegans, the locations of hubs

in the reconstructed network were also found to be very close to

or overlapping with the position of real hubs, and there is also a

regime (a~0:9*1) which best matches modules and hubs to

those of the real network. In this regime, Lg is close to the real

networks, but Lp is much smaller, especially in the C. elegans

neural network.

It appears in both systems that there are more nodes with larger

degrees in the real networks than the reconstructed networks.

However, importantly, the nodes with the largest degrees are close

to the regional geographical centers similar to the model. Although

one cannot expect that only two constraints can recover all the

features of the real networks, the observation of the overlapping

and close spatial locations of the reconstructed and real hubs (i.e.,

economic wiring of the hubs) provided clear evidence that

probably both cost and efficiency constraints are at work in the

real neural systems, supporting the idea of a trade-off between cost

and functional values of the networks.

Robustness against node failure might be an additional
constraint

In a broad range of the balance parameter (a~0*0:8 for

Macaque and a~0*0:3 for C. elegans), the reconstructed networks

have a single dominant hub linking to most of the nodes. Such a

configuration is due to a strong impact of the path efficiency

constraint, however, it is not functionally robust. Failure of the

single dominant hub node greatly degrades the efficiency in

information processing, because without the central hub, the

network has mainly local connections. We performed a systematic

analysis of the impact of removing the node with the largest degree

in the reconstructed networks and measured the increase of Lg

[94]. The results are shown in Fig. S10. It is seen that in the

regime with a single, global hub, Lg in the reconstructed networks

increases significantly when the hub is removed. The degrading

effect is much more serious in C. elegans, because the reconstructed

networks without the hub contain an almost one dimensional

array for the neurons in the body that separates head and tail. In

the next regime with several regional hubs, (a~0:8*0:96) for

Macaque and a~(0:9*99) for C. elegans), the reconstructed

networks are much more robust against the removal of the node

with the largest degree (Fig. S10), very close to that in the real

network. Thus, while hubs enhance the processing efficiency

significantly, they are also the points of vulnerability to

>pathological damage [. The high energy consumption of the

brain puts it under high vulnerability for energy undersupply, and

the metabolically most expensive node is particularly vulnerable in

pathological circumstances. There is evidence that metabolic costs

of a node are proportional to its degree [; thus some brain

disorders may be closely related to hubs’ abnormalities. For

example, this effect has been speculated to be a network

mechanism for Alzheimer’s disease [97,98]. In particular, laser

ablation experiments have demonstrated that AVA neurons are

required for normal spontaneous and evoked backward locomo-

tion [100,102]. Therefore, avoiding the configuration of a single

dominant hub could indeed be functionally significant. In

conclusion, the robustness requirement might be an additional

important factor that generates the evolutionary pressure for the

real networks to have more hubs, so that both in Macaque cortical

network and neuronal networks, the competition between the two

constraints is settled down to a regime with \alpha <?mathtype %

MathType!MTEF!2!0!+% feaagaart1ev2aqatCvAUfeBSjuy-

ZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLx-

BI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqi-

Vu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-c9% vqaq-

pepm0xbba9pwe9Q8fs0-qaqpepae9pg0FirpepeKkFr0xfrr9adba-

qaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa!378D!\al-

pha $ smaller, but very close to 1.0.

Differences between reconstructed and real networks
imply additional constraints

We have shown that there is a regime (a*0:9) of the

competition between the two constraints of wiring cost and

processing efficiency where the reconstructed networks can

reproduce some major properties of the real networks, including

the simultaneous formation of hubs and modules, locating hubs or

other large-degree notes close to the regional centers of the spatial

clusters and similar resilience to node failure. However, there are

still significant differences. The reconstructed networks have much

smaller wiring length Lp (about 54% of the real wiring length for

Macaque and nearly 5% for C. elegans). This difference stems from

the fact that the real networks have more long-range connections:

there are more large-degree nodes or hubs (Figs. 4E,F, Fig. S3), the

fraction of spatially local connections Pnearest is much smaller and

the probability of long-range connections is much larger (insets in

Figs. 10E,F). Moreover, the number of connections is not strongly

determined by the neighborhood density (Fig. 9).

Another significant difference is the asymmetry in the in- and

out-degrees in real networks. Although directed links are used in

our model influencing the calculation of processing efficiency,

the objective function did not contain possible constraints that

can reflect the functional role of the asymmetry in the input and

output links; the reconstructed networks are thus highly

symmetric. In fact, the asymmetry in the biological neural

networks may be closely related to functional requirements of

specific signal processing flow. For instance, in C. elegans, there

are more connections from the sensory neurons to motor

neurons than vice versa. Also from the connection matrix of the

Macaque cortical network, there are more connections from

some visual areas to the motor system, and fewer along the

opposite direction. Therefore, in future work, one may include

additional constraints to enforce information flow between

different types of nodes, such as input nodes (the sensory

neurons or primary sensory areas) and output nodes (the motor

neurons or motor areas).

In our view, the differences imply that most likely real neural

networks are influenced by additional functional requirements and

constraints. The trade-off between the wiring cost and the
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processing efficiency with these new constraints could give a better

account of the asymmetry and other properties of the real neural

networks.

Conclusion and outlook
We studied the formation of complex network connectivity

derived from multiple constraints, in particular the competition

between wiring cost and path efficiency requirements. By

reconstructing networks while preserving the spatial layout of the

components, we obtained an understanding of the relationship

between the spatial layout and network connectivity derived from

the multiple constraints. This understanding guided us to

investigate the relationship between the spatial layout and network

connectivity of the real Macaque cortical network and C. elegans

neuronal network. The results are consistent with previous

observations that wiring cost and efficiency constraints are playing

an important role in shaping the network organization and

provide evidence to support the idea of a trade-off between them.

While significant, the wiring cost and path efficiency constraints

cannot completely explain all the features in the connectivity

patterns of the real Macaque cortical network and C. elegans

neuronal network. Other factors, such as robustness of networks

against node failure, more long-range connections and asymmetric

input and output information flow appear to be important.

Moreover, with our combinatory optimization model, we have

mainly discussed the question of which constraints are at work to

influence the neural network properties, but have not yet

addressed possible mechanisms underlying the biological imple-

mentation of these constraints. Exploring additional functional

constraints and incorporating them into growth or generative

models [42,103] may be worthwhile directions in the future

research.

The present study on the impact of multiple constraints on

the architecture of neural systems might also provide an

anatomical foundation for the cost-efficiency balance in human

functional networks [79]. A more detailed understanding of the

relationship between the cost-efficiency balance in anatomical and

functional neural networks will require the analysis and modeling

of the dynamical interdependence in the reconstructed networks

under different competition conditions relative to that in real

networks.

Materials and Methods

Materials
Primate cortico-cortical network. We analyzed the con-

nectivity of Macaque cortical network and its relationship with the

three-dimensional spatial layout of the components and compared

it to the reconstructed networks in order to understand the impact

of multiple constraints. The Macaque network is largely based on

a dataset with 94 cortical areas and 2,390 directed projections

[63]. This data set is more suitable for our purpose compared to

other connectivity data sets (e.g., cortical network of cat), since

both the spatial positions of the components and the network

connectivity are available. The connectivity data and three-

dimensional spatial position (the average surface coordinate) of

each cortical area were provided by M. Kaiser (http://www.

biological-networks.org/) and amended with the help of the

CoCoMac database (http://cocomac.org).

This dataset is extensive, but is still partly incomplete. Especially

the divisions of motor regions are quite coarse with incomplete

connections among several areas (e.g., the motor areas 4 and 6

cover a large territory, 6.5% of neocortex). Generally, it is a

challenge to define anatomical parcellations that provide a high

spatial resolution as well as a high density of the associated

connectivity data. In this study we first improved the data set with

a more detailed parcellation of the motor areas based on

CoCoMac [92], which consists of three primary databases:

literature, mapping, and connectivity. For the motor areas, there

were 39 unique brain maps, 84 unique literature sets, and 454

unique records interrelating brain maps to each other. However,

there are many types of inconsistency, including the lack of

connectional information of some brain maps in the database, the

supra-structure relations not being the symmetric transpose of sub-

structure relations, typographical errors, brain regions with

different acronyms, but with the same full name, etc. We checked

the inconsistent and conflicting data. For instance, those maps

lacking of connectional information in the connectivity database or

with different acronyms but representing the same regions would

not be included in the updated Macaque network. Those

connections from the source sites A to the target sites B, if not

consistent with the connections of region B receiving from region

A, were removed. And connections between a motor area and

different sub-structure areas of an existing area in the former

database were merged. This expanded collation of data extended

the former 6 motor areas to 15 areas (4, 4C, 6, 6D,6DC, 6DR,

6DS, 6m, 6Va, 6Val, 6Vam, 6Vb, SMA, SMAr, SMA-proper)

with an additional 128 projections. Spatial positions of these areas

were taken as the average surface coordinate, as in a previous

approach [63]. This improved dataset of the Macaque cortical

network has 103 areas and 2518 connections in total. The labels

of the areas are listed in Table S1 of SI, and the adjacency matrix

is shown in Fig. S1, where the new areas and links are highlighted

by blue color. Although we applied a detailed dataset for the

Macaque cortical network, the connectivity data may still be

incomplete. We noticed that the motor region owns relatively

low connection density (21.3%), comparing to the connection

density of the whole Macaque cortex (23.7%). However, strong

fluctuations of node degree and regional connection density have

also been observed in most known connectivity data sets

[35,104,105].

To examine the reliability of the spatial clustering (see ‘‘Spatial

clustering’’ in Materials and Methods) of the components in this new

dataset with 103 areas, we analyzed the clustering in another

dataset -‘‘PHT data’’ [93] with 176 areas from a finer parcellation

of the subcortex and parts of the cortex in high magnification. The

spatial positions of these areas were taken as the average surface

coordinate estimated from surface parceling using the CARET

software (http://sumsdb.wustl.edu/sums/index.jsp). However,

connectivity information for this finer parcellation of areas is not

available, and we only used the spatial positions of these areas for

the spatial clustering analysis.

Spatial distance between the areas was calculated as Euclidean

distance between the spatial positions of the areas, and the wiring

length Lp is the sum of the distances between connected areas.

C. elegans neuronal network. We also analyzed the

connectivity of the C. elegans neuronal network and its relationship

with the two-dimensional spatial layout and compared to the

reconstructed networks. The dataset of the spatial positions of 276

neurons was provided by M. Kaiser (http://www.biological-

network.org). The connectivity in this dataset is not complete.

Thus, we compared the databases by Varshney et al. [47] and

by Oshio et al. [91] on online neuronal wiring of C. elegans

(http://www.wormatlas.org/neuronalwiring.html), and added

those links that were common in these two new databases but

did not exist in the dataset of Kaiser. Thus the original database of

Kaiser with 2105 connections was extended to 2902 connections.

The links considered here are all chemical synapses. The
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formation of gap junctions may require direct contact of cell

membrane at certain stage of development, and they are not

considered in this study of wiring cost and processing efficiency.

The updated network has 276 neurons and 2902 links. The names

of the neurons are listed in Table S2 of SI. Here the wiring length

Lp is measured as the Euclidean length between all connected

pairs of neurons.

Methods
Objective function and connectivity optimization. We

reconstructed network connections for a given total number

of connections while fixing the spatial position of the nodes.

The reconstructed networks were to minimize an objective

function combining the wiring cost and processing efficiency

constraints,

L~(1{a)LgzaLp,

where a is a parameter to represent the relative weight of the

normalized physical wiring length Lp~lp=lmax
p and the normalized

graph length Lg~lg=lmax
g . Here lp is the total wiring length of the

links and lg is the sum of the shortest pathlength between all pairs

of nodes in the network. lmax
p is obtained at a~0 when minimizing

lg without considering any spatial constraint and lmax
g is obtained

at a~1 when minimizing lp without considering the efficiency

constraint.

We applied a simulated annealing optimization algorithm [106]

to search for network configurations that minimize the objective

function L. In each step, we set the programme to avoid those

choices which made the network disconnected. In the beginning,

the simulated annealing approaches were employed to obtain the

benchmark networks at a~0 and a~1 to obtain the physical

distance lmax
g and graph distance lmax

p , respectively. Using them for

normalization, we made the value of the objective function L stay

within (0, 1].

The simulated annealing optimization algorithm was imple-

mented as follows. We started with a random network and a high

temperature T0, and then decreased temperature as Tnz1~Tn=n.

At each temperature, we rewired the network for 1000 steps. At

each step, we chose four random nodes to exchange the

connections, and accepted the changes with the probability

exp({DL=T). The program was terminated when DLƒ10{5.

For each a, the simulated annealing programme was performed to

obtain 50 realizations of the optimized networks from different

initial random networks.

We first applied the method to a 1D model with the nodes

arranged uniformly on a 1 one-dimensional ring, then to the

primate cortico-cortical network of Macaque and the neuronal

network of C. elegans.

1D model. The nodes were arranged with equal distance on a

one-dimensional circle. The links were directed. The wiring length

of a connection is the Euclidean distance between two nodes lp(i,j)
and lp~

P
lp(i,j).

The optimal solution for a~0 (processing efficiency constraint

only) is a network with apparently random connections and a

single, global hub; and the optimal solution for a~1 (wiring cost

constraint only) is a regular, local graph, while in-between the

optimal solutions are networks with local connections and hubs

(Fig. 1).

Modularity analysis. A modular community is defined as a

subnetwork with a higher density of connections relative to the

entire network, based on the work by Newman [28]. The modular

structure is obtained through optimizing the partitioning of the

network into several modules to maximize a quantitative measure

of modularity, Q, defined as [107]

Q~
1

K

X

i,j

½Aij{
kout(i)kin(j)

K
�dcicj

where, Aij = 1 when there is a directed projection from node i to

node j, and 0, otherwise. K is the total number of links in this

network, d is the Kronecker delta (dij~1 if i~j, and 0 otherwise),

and ci is the index of the community where node i is assigned. We

used the modularity-dir.m [108] in (the toolbox of brain

connectivity) BCT package for the module partition. Since there

could be uncertainty and degeneracy in the algorithm [109,110],

we applied the methods for 50 independent runs for each network

considered (real or reconstructed networks). To check the

significance of the modularity, we also measured modularity in

the corresponding random networks with the same number of

nodes and links as in the network examined. In the event, we

found that the modular division had no degeneracy in both real

networks of Macaque and C. elegans and in reconstructed networks

of Macaque (a=0), but it had small degeneracy for the

reconstructed networks of C. elegans (typically 1–5 neurons of

mismatch from run to run).

Spatial clustering. As seen from two-dimensional projection

of the spatial layout and the connectivity of the Macaque cortical

network in Fig. 5A, the nodes can be roughly divided into two

dense groups which are spatially distant from each other. To

perform a quantitative analysis of the spatial clustering, we

computed the pair-wise Euclidean distance of the nodes to obtain

the distance matrix and applied the hierarchical clustering

algorithm in MATLAB (linkage.m and cluster.m) to the distance

matrix. With a suitable threshold, we could obtain the same

number of clusters as network modules in order to compare them

appropriately.

There are various ways to compute distance in agglomerating

the hierarchical cluster tree, including centroid distance, inner squared

distance, the shortest distance, the furthest distance, average distance,

weighted average distance, and weighted center of mass distance between

clusters. In addition to hierarchical clustering, we also applied the

K-means method to minimize the within-cluster sums of point-

to-cluster-centroid distances. While the results are deterministic

for a given distance measure, they differ slightly for different

distance measures. To take this uncertainty into consideration, in

this work, we applied the different methods to the real networks

of Macaque and C. elegans, and compared the clusters from

different methods to the modules of the real network obtained by

the BCT method (see sections ‘‘Modularity analysis’’ and

‘‘Matching between partitions’’ in Method). We found that in

both systems, the clusters by inner squared distance has the

minimal matching rate with the modules, and the group of

mismatched nodes is the largest possible to cover all the

mismatching sets in the other methods (centroid distance

produced the same result as inner squared distance in Macaque).

This means that the set of matching areas resulting from the

inner squared distance is most stable when different possible

clusterings are considered. Thus we used the clusters from the

inner squared distance for further comparison with the modules

in reconstructed networks.

The method was applied to the Macaque cortical network to

obtain two clusters (Fig. 5) and to the C. elegans neuronal network

to obtain four clusters (Fig. 6).
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For the Macaque cortical network, the comparison of the

clustering of two datasets (103 areas and 176 areas) was shown in

Fig. S4 and S5 for the dendrograms (A,B) and for the boundaries

between the division into two clusters (C). There are only five

mismatched areas between the two datasets (areas 4, 6C, 3b, 2/1

and AI according to the dataset of 176 areas) (Fig. S5).

Matching between partitions. We compared the partition

of spatial clusters with the partition of modules or the partitions of

modules in real and reconstructed networks. Suppose the partition

A gives m groups Ai and partition B generates n groups Bj with

mƒn. For each partition Bj , we found the corresponding group in

partition A to which the group Bj should belong (the one covers

the maximal number of nodes in Bj ). This maximally covered

number in Bj is added to the matched set and the rest of the nodes

are counted in the mismatched set. Note that it is possible that two

or more groups in B can belong to the same group in A. In this

way, we identified all the nodes matching the two partitions.

Taking the matching between the clusters and modules of the real

C. elegans network as an example, there are 3 spatial clusters and 4

modules, and two modules belong to the same cluster at the head.

We also developed a way to judge the significance of matching

between partitions by comparing the results to ‘‘shuffled modules’’.

We kept the size of all subgroups Bj of partition B, but randomly

shuffled two elements in different subgroups. Such shuffled data have

the same n groups as in the real partition B, but the labels of nodes

are randomized. We obtained an ensemble of such shuffled modules

and calculated the average mismatching rate with the real partition

A. In fact, this average value is independent of the group number n
and the size of the groups when the ensemble is large enough. The

results are shown as the dashed lines in Fig. 5 F and 6 F.

Identifying hubs in networks. There is no unique definition

of hubs in networks. In general, the hub nodes should have a

degree of about the same order of the network size, much larger

than the mean degree of the whole network. Such a picture is

usually reasonable when the degree distribution is not very

narrow. Taking C. elegans for instance, the mean value of in-degree

is 10.51, and the standard deviation in the reconstructed networks

varies at different a, such as 18.2 (a~0:3), 13.2 (a~0:9), 10.2

(a~0:95) and 10.6 (a~1:0). The standard deviation is not small in

our work, therefore we heuristically identified hubs in the real and

reconstructed networks by the z-score of the degree k of the node,

which is defined as z~(k{SkT)=sk, where SkT is the average

degree of the network and sk is the standard deviation of the

degree distribution. In a previous analysis of hubs in cortical

network [20], a node was regarded as a hub when z§1:0. To

focus on nodes with the degree significantly larger than the

average degree, in our analysis, a node was regarded as a hub

when z§2:0. For example, in the reconstructed of C. elegans at

a~0:9, the hubs identified in this way have an average degree of

42, which is reasonably large when compared to the mean degree

10.5 and the standard deviation 10.2 in the network.

Despite the ambiguity in defining hubs in networks, this method

provides a pragmatic way to characterize the properties about the

changes of the number of nodes with relatively large degrees, the

average degree of them and their spatial positions with respect to

the parameter a, which were quite clear and common across the

different networks analyzed.

Locality measure Pnearest of connections. We measured to

what extent the links in the network were connected to spatial

nearest neighbors. For each node i, we considered the total number

of connections k(i)~kin(i)zkout(i). The total wiring length lp(i)

from this node can be computed as the sum of the wiring length of

the k links. lp(i) for the node i will be minimal, lmin
p (i), if all the kin

input links and kout output links are connected to kin and kout

nearest neighbors of the node i, respectively. One can use the ratio

Pnearest(i)~lmin
p (i)=lp(i) to quantify the locality of the connections of

the nodes in the network. All the connections of a node are local if

Pnearest(i)~1. One can obtain a locality measure of the connections

of the whole network as the average of Pnearest(i), i.e.,

Pnearest~(1=N)
XN

i

Pnearest(i):

Pnearest&1:0 indicates that most of the connections in the

network are to the spatial nearest neighbors. For random

connections, Pnearest is small. The connections with a distant hub

reduce the locality measure of the network.

Geographical centrality of the nodes. Under the multiple

constraints of wiring cost and processing efficiency, the centrality

of a node in the spatial layout of the network, called geographical

centrality here, may be closely related to its connectivity. To

quantify the geographical centrality, we computed the total

Euclidean distance Di~
P

j=i dij from a node i to all the other

nodes in the network, and ranked the nodes according to this

distance Di . The node with the smallest total distance has the

highest geographical centrality.

We can also measure the geographical centrality with respect to

a subset of nodes, for example, within one of the spatial clusters of

nodes.

Neighborhood density of nodes in space. Unlike the 1D

model, the spatial distribution of the nodes in the original

Macaque cortical network is not uniform due to varying sizes and

shapes of the cortical areas. The neurons in C. elegans are also

distributed highly non-uniformly in space. To quantify the spatial

heterogeneity, we evaluated the density of nodes in the neighbor-

hood of a given node, called the neighborhood density ri(r), i.e.,

ri(r)~Ni(r)=Vi(r),

where Ni(r) represents the number of nodes lying within the

sphere (for Macaque) or circle (for C. elegant) of radius r, centered at

the given node i, and Vi(r) is the volume of the sphere (area of the

circle).

The radius r is referenced to the maximal distance rmax between

two nodes in the network.

Comparing the connectivity of reconstructed and real

networks and computing the recovery rate. The most direct

way to compare the connectivity of the reconstructed network with

the original network is to compare the adjacency matrices using

measures such as the Hamming distance. One can measure the

number of overlapping entries Kr of the two adjacency matrices

and obtain the recovery rate as R~Kr=(N(N{1)) (without

considering the diagonal entries). However, this result could be

biased when the number of 1’s (K1) and the number of 0’s (K0) are

strongly asymmetrical in the network. This is the case for both the

Macaque cortical network (K1~2,518 and K0~7,988) and C.

elegans neuronal network (K1~2,902 and K0~72,998). We

followed the method proposed in [27] to compute the recovery

rate as R~
ffiffiffiffiffiffiffiffiffiffiffi
R0R1

p
where R0 and R1 are the recovery rate for 1’s

and 0’s, respectively. In particular, R0~Kr1=K1 and R1~Kr0=K0,

where Kr1 and Kr0 are the number of overlapping entries with

value 1 and 0, respectively.

The same method can be applied to obtain the recovery rate for

subnetworks by considering the corresponding sub-matrices, for

example, the connections within and between the spatial clusters
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or the modules (Fig. 10C,D). It can also be extended to the

connections between nodes separated by a distance with certain

range ((Fig. 10E,F).

Testing whether degrees follow power-law

distribution. We used the Kolmogorov-Smirnov statistic and

maximum-likelihood fitting methods (MLEs) [111], to test whether

the degree distribution in real or reconstructed networks can be

fitted by a power-law function. First, the following power-law model

p(x)~
c{1

xmin

(
x

xmin

){c

is fitted to the data to estimate the parameters xmin and c. Then an

ensemble of surrogate data (with the same number of data points

as in the degree distribution) is generated from the

above power-law function with the estimated xmin and c. The

distance Ds(i) between the ith surrogate data set and the model

function can be obtained and compared to the distance Dd

between the degree distribution and the model. A p value is

obtained as the fraction of surrogate data sets in the ensemble with

Ds(i)wDd . Thus if p is large (close to 1), then the difference

between the degree distribution and the power-law model can

mainly be attributed to the statistical fluctuation. But if p is small

(pƒ0:1), then the power-law can be ruled out for this degree

distribution.

Significance test of correlation. We studied several types of

correlations between two data sets of small sizes, e.g., correlation

between degrees and density in the reconstructed and real

networks. To evaluate the significance of the correlation between

two finite-size data sets, we used the method of surrogate data. We

randomly reshuffled the order of one of the data sets and

computed the correlation values for 100 realizations of the random

reshuffling. From the distribution of the correlation of such

surrogate data one can obtain the standard deviation s. If the

correlation between the two original data sets is outside 2s of this

distribution, it has about 95% of significance that the real

correlation is not a coincidence due to finite size of the data sets.

Supporting Information

Figure S1 The adjacency matrix of the Macaque cortical
networks with finer division of the motor areas. The links

in the original data set of Kaiser are shown as gray, and the links

from or to new, finer motor areas are shown by blue.

(EPS)

Figure S2 Adjacent matrices of the networks with
various connection probabilities in 1D model at a~0. A

single hub appears for sparse networks (A, p~2:5%) and (B,

p~5%), but not in dense network (C, p~12:5%).

(EPS)

Figure S3 Input and output degrees in reconstructed
and real networks. (A) Reconstructed network of the Macaque

cortical network, with a~0:9. (B) Real network of the Macaque

cortical network. The correlation between the input and output

degrees is 0.589 which is larger than 95% significance level at

0.237 in the corresponding randomly reshuffled data (see Materials

and Methods). (C) Reconstructed network of the C. elegans neuronal

network, with a~0:9. (D) Real network of the C. elegans neuronal

network. The correlation between the input and output degrees is

0.717, larger than 95% significance level at 0.158 in the

corresponding shuffled data.

(EPS)

Figure S4 Comparison of the spatial clustering in two
different databases of Macaque cortical network. (A) and

(B) display the clustering dendrogram for datasets with N~103
and N~176 areas, respectively. In both datasets, the nodes can be

divided into two pronounced clusters.

(EPS)

Figure S5 The spatial layout of the areas of Macaque
cortex. It shows that the spatial layout of the areas(indicated by

lines for 103 areas), with reference to parcellation of 176 areas

(color). The boundaries between the two clusters are shown by

bold lines (blue for for dataset of 103 areas and red line for 176

areas). These two boundaries are close to each other, indicating

that spatial clustering is a robust property in the spatial layout of

the cortical areas.

(TIF)

Figure S6 Modularity Q of reconstructed networks as a
function of a, compared to Q of the real network. (A)

Macaque cortical network. (B) C. elegans neuronal network. The

corresponding random networks with the same number of nodes

and connections have Q~0:08+0:004 (Macaque) and

0:17+0:037 (C. elegans). The error-bars are from 50 realizations

of the reconstructed networks.

(EPS)

Figure S7 The ranking of a few nodes with the largest
total degrees in real Macaque cortical networks in terms
of neighborhood density and geographical centrality. (A)

7 nodes (cortical ares) with the largest total degree. (B) 20% of

network nodes having top neighborhood density in a range of

radius r=rmax~0:24{0:28. (C) and (D) 40% of nodes from the red

and blue clusters having top geographical centrality from the

respective cluster (gray bars). The length of the bar indicates the

corresponding values. The dark bars in (C) and (D) highlight the

cortical areas listed in (A). The nodes with the largest total degrees

are among the top list of neighborhood density as well as

geographical centrality, which is a strong signature of wiring cost

constraint.

(EPS)

Figure S8 Closeness between reconstructed and real
hubs in C. elegans. The bars show the total distance of each of

the 166 neurons in the head to the 4 real hubs (AVAL/R and

AVBL/R, red and blue bullets), sorted from small to large values.

Green triangles indicated the hubs in the reconstructed networks

for a*0:9{0:93.

(EPS)

Figure S9 Degree distribution in the original and
reconstructed networks. (A) shows the outdegree distribution

for Macaque cortical network. (B) shows the outdegree distribution

for C. elegans neuronal network. The degree distribution in

reconstructed networks does not differ significantly for different

a values, since the degrees are mainly determined by the

neighborhood density of the node. In the insets, the dashed line

with different color represents the fitting power-law distribution

from the corresponding degree distribution with the same color

(including distributions not obeying power-law). Inset of A:

p~0:001 (real network), p~0:002 (a~0:1), p~0:0025 (a~0:9).

Inset of B: p~0:675,c~3:2 (real network), p~0:01 (a~0:1),

p~0:02 (a~0:9).

(EPS)

Figure S10 Degrading effect on processing efficiency
when removing the node with the largest degree in
reconstructed networks. Shown is the ratio between Lg after
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and before the removal of the node. (A) Macaque cortical network.

(B) C. elegans neuronal network. The error-bars are from 50

realizations of the reconstructed networks.

(EPS)

Table S1 The list of the labels of 103 cortical areas in
Macaque is provided on-line.

(XLS)

Table S2 The list of the names of 276 neurons in C.
elegans is provided on-line.

(XLS)
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42. Vértes P, Alexander-Bloch A, Gogtay N, Giedd J, Rapoport J, et al. (2012)
Simple models of human brain functional networks. Proceedings of the

National Academy of Sciences 109: 5868–5873.

43. Iturria-Medina Y, Canales-Rodriguez E, Melie-Garcia L, Valdes-Hernandez
P, Martinez-Montes E, et al. (2007) Characterizing brain anatomical

connections using diffusion weighted mri and graph theory. Neuroimage 36:
645–660.

44. Iturria-Medina Y, Sotero R, Canales-Rodrı́guez E, Alemán-Gómez Y, Melie-
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