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Abstract

COVID-19 in humans is caused by Severe acute respiratory syndrome coronavirus-2

(SARS-CoV-2) that belongs to the beta family of coronaviruses. SARS-CoV-2 causes

severe respiratory illness in 10–15% of infected individuals and mortality in 2–3%. Vaccines

are urgently needed to prevent infection and to contain viral spread. Although several

mRNA- and adenovirus-based vaccines are highly effective, their dependence on the “cold

chain” transportation makes global vaccination a difficult task. In this context, a stable lyoph-

ilized vaccine may present certain advantages. Accordingly, establishing additional vaccine

platforms remains vital to tackle SARS-CoV-2 and any future variants that may arise. Vac-

cinia virus (VACV) has been used to eradicate smallpox disease, and several attenuated

viral strains with enhanced safety for human applications have been developed. We have

generated two candidate SARS-CoV-2 vaccines based on two vaccinia viral strains, MVA

and v-NY, that express full-length SARS-CoV-2 spike protein. Whereas MVA is growth-

restricted in mammalian cells, the v-NY strain is replication-competent. We demonstrate

that both candidate recombinant vaccines induce high titers of neutralizing antibodies in

C57BL/6 mice vaccinated according to prime-boost regimens. Furthermore, our vaccination

regimens generated TH1-biased immune responses in mice. Most importantly, prime-boost

vaccination of a Syrian hamster infection model with MVA-S and v-NY-S protected the ham-

sters against SARS-CoV-2 infection, supporting that these two vaccines are promising can-

didates for future development. Finally, our vaccination regimens generated neutralizing

antibodies that partially cross-neutralized SARS-CoV-2 variants of concern.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a member of the Betacorona-
virus family, is causing a global pandemic and, as of July 2021, has infected more than 190 mil-

lion people worldwide and resulted in 4 million deaths (https://covid19.who.int/) [1, 2].

Compared to two other highly pathogenic coronaviruses, SARS-CoV [3] and Middle east respi-

ratory syndrome coronavirus (MERS-CoV) [4], SARS-CoV-2 has proven more difficult to con-

tain [5]. Consequently, an effective vaccine to halt the spread of SARS-CoV-2 is urgently needed.

SARS-CoV-2 is an enveloped single-stranded positive-sense RNA virus, whose Spike pro-

tein (S) on the virion surface mediates virus entry into target cells [6–8]. Spike protein has S1

and S2 components and, similar to other type 1 viral fusion proteins, the S1 subunit contains a

receptor-binding domain (RBD) that binds to its host cell receptor, angiotensin converting

enzyme 2 (ACE2) [9], whereas the S2 subunit mediates membrane fusion [10]. The S protein

of some SARS-CoV-2 strains requires cleavage by the cellular serine protease TMPRSS2 dur-

ing cell entry [8, 11]. Neutralizing antibodies from convalescent patients recognize S protein,

making it a good vaccine target [12, 13]. S protein is also a major target of T cell responses to

SARS-CoV-2 [14, 15]. Although several SARS-CoV-2 vaccines, developed using mRNA tech-

nology [16–18] and adenovirus vectors [19–21], are currently in use; however, additional vac-

cines that are cost effective and could be transported without cold chain will still be

worthwhile to develop. In addition, concerns have been raised of adverse effects following vac-

cination [22–24], implying that improvements to currently available SARS-CoV-2 vaccines are

essential and will necessitate ongoing vaccine development.

Vaccinia virus has been deployed successfully to eradicate smallpox worldwide [25, 26].

The Modified Vaccinia Ankara (MVA) strain is growth-restricted in mammalian cells and pre-

clinical and clinical trials have demonstrated it to be quite a safe vaccine vector against viral

diseases such as HIV, MERS-CoV and SARS-CoV [27–30]. However, other attenuated strains

of vaccinia virus exhibiting different degrees of immunogenicity could also serve as vaccine

vectors [31–40]. Recently, several reports revealed that the MVA strain expressing SARS-CoV-

2 S protein protected ACE2-transgenic mice and macaques from SARS-CoV-2 challenges [41–

43]. Here, we generated SARS-CoV-2 vaccines using the MVA strain, as well as a v-NY strain

previously employed as a vector for the first recombinant vaccinia virus (HIVAC-1e) used in

FDA-approved clinical trials [44–48], both of which we engineered to express SARS-CoV-2 S

protein. Unlike MVA, the v-NY strain is a replication-competent virus derived from the New

York City Board of Health viral strain of smallpox vaccine [44–47] that displays reduced viru-

lence compared to the standard smallpox vaccine (Dryvax). Due to the different features of

these two vaccinia virus strains, we tested different prime-boost combinations of both vaccines

to establish an effective regimen for immunoactivation in C57BL/6 mice. Furthermore, we

demonstrate that our vaccination regimens generated antibody and T cell responses in mice

and protected Syrian hamsters from SARS-CoV-2 infection.

Results

Generation of recombinant v-NY-S and MVA-S viruses expressing full-

length SARS-CoV-2 S protein

The recombinant vaccinia viruses MVA-S and v-NY-S were generated by inserting an ORF

encoding full-length SARS-CoV-2 S protein (Wuhan-Hu-1, NC_045512) into the tk locus of

the vaccinia virus strains MVA and v-NY, respectively (Fig 1A). Cells infected with MVA-S

and v-NY-S expressed high levels of SARS-CoV-2 S protein on cell surfaces, as revealed by

flow cytometry (Fig 1B) and immunofluorescence microscopy (Fig 1C) analyses. Both full-
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length and processed forms of S protein were detected in immunoblots (Fig 1D), confirming

that the MVA-S and v-NY-S viruses stably expressed and processed SARS-CoV-2 S protein.

v-NY-S and MVA-S prime-boost vaccination regimens generate

neutralizing antibodies in immunized C57BL/6 mice

We designed three prime-boost vaccination regimens using MVA-S and v-NY-S viruses (Fig

2A). Control mice were primed and boosted with PBS buffer alone. For the first regimen,

Fig 1. Generation and characterization of v-NY-S and MVA-S. (A). Schematic representation of the tk locus in the viral genomes of MVA-S and v-NY-S. The red

box represents the ORF encoding SARS-CoV-2 S protein and the blue box represents the lacZ ORF. The small triangles represent viral promoters that drive gene

transcription (B). Surface detection of SARS-CoV-2 S protein expressed from MVA-S and v-NY-S. BHK21 and BSC40 cells were infected with MVA-S (blue line) or

v-NY-S (red line), respectively, harvested at 12 hours post-infection (hpi), stained with anti-RBD antibody, and then analyzed by flow cytometry. (C).

Immunofluorescence staining of SARS-CoV-2 S protein in cells infected with MVA-S and v-NY-S. BHK21 and BSC40 cells were infected with MVA-S or v-NY-S at

an MOI of 5 and fixed at 12 hpi with 4% paraformaldehyde, stained with anti-RBD antibody (green), and then photographed. Cell nuclei were stained with DAPI

(blue). (D). Immunoblot of SARS-CoV-2 S protein expressed by MVA-S and v-NY-S. BHK21 cells were infected with MVA or MVA-S; BSC40 cells were infected

with v-NY or v-NY-S, respectively, and harvested at 12 hpi for immunoblot analyses with anti-S2 antibody. Vaccinia D8 protein was used as a control.

https://doi.org/10.1371/journal.pone.0257191.g001
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(MVA5/MVA1), mice were primed i.m. with 5x107 PFU/animal of MVA-S virus and boosted

with 1x107 PFU/animal of MVA-S. For the second regimen, (vNY1/MVA1), mice were

primed with 1x107 PFU/animal of v-NY-S by means of tail scarification (t.s.) and then boosted

i.m. with 1x107 PFU/animal of MVA-S. For the third regimen, (vNY5/MVA1), mice were

primed with v-NY-S at a higher titer of 5x107 PFU/mouse by t.s. and then boosted i.m. with

1x107 PFU/animal of MVA-S. For each regimen, the mice were primed at day 0 and primary

(1˚) sera were collected 4 weeks later. These mice were then rested for 3 days, boosted, and

then secondary (2˚) sera were drawn 2 weeks later. In some experiments, spleens were har-

vested 4 weeks after boosting for T cell and cytokine analyses. The t.s. site of vaccinated mice

healed well and the mice remained healthy without any loss of body weight (S1 Fig). 1˚ and 2˚

sera were collected from mice and flow cytometry revealed that they recognized SARS-CoV-2

S protein expressed from recombinant S-BAC baculovirus (Fig 2B). Quantification (Fig 2C)

confirmed that anti-spike antibodies were specifically generated after primary immunization

and that antibody titers were significantly enhanced after vaccine boosting. Mice primed with

v-NY-S presented higher levels of anti-spike antibody compared to those primed with MVA-S

(Fig 2C). Immunoblot analyses (Fig 2D) also revealed anti-spike antibody reactivity to recom-

binant S protein, consistent with our FACS data (Fig 2C). We tested the neutralizing activity of

2˚ sera using SARS-CoV-2 spike pseudotyped virus (Fig 2E, panel i) and SARS-CoV-2 virus

(Fig 2E, panel ii). Neutralization activity is presented as the reciprocal dilution of serum

required for 50% inhibition of virus infection (ND50). Our results show that all three regimens

successfully generated high titers of neutralizing antibodies that inhibited SARS-CoV-2 S pro-

tein-mediated virus entry in both infection systems. Finally, we tested if our prime-boost vacci-

nation regimens induced long-lasting antibody responses by comparing mouse sera collected

at 0.5 and 4.5 months after the MVA5/MVA1 and vNY1/MVA1 regimens. Sera taken 4.5

months after boosting still contained 60–80% of spike-specific antibodies, as revealed by FACS

analyses (Fig 2F), and a pseudotyped SARS-CoV-2 virus infection assay demonstrated that

they retained comparable neutralization activity to sera at 0.5 months (Fig 2G), indicating

these two vaccination regimens can elicit long-lived anti-spike antibody responses that have

been shown to correlate with protection against SARS-CoV-2.

v-NY-S and MVA-S immunization generates a TH1-biased immune

response in mice

IFN-γ-producing TH1 cells promote a B-cell class switch towards IgG2a/IgG2c, whereas IL-

4-producing TH2 cells promote a class switch towards IgG1 [49, 50]. Therefore, a ratio of

IgG2c (or IgG2a) to IgG1 >1 is a good indicator of a TH1-biased immune response, which is

important for pathogen clearance. Accordingly, we used ELISA to measure levels of the IgG2c

and IgG1 isotypes of anti-spike antibodies in C57BL/6 mouse sera collected after vaccination

regimens (Fig 3A). All three vaccination regimens induced production of the IgG2c and IgG1

isotypes (Fig 3A) and with IgG2c/IgG1 ratios > 1 (Fig 3B), suggesting they had elicited a

TH1-biased immune response. We further in vitro-stimulated splenocytes from vaccinated

mice with a SARS-CoV-2 spike peptide pool and then counted cells secreting TH1 cytokines

(IL−2, IFN-γ and TNF-α) and TH2 cytokines (IL-4 and IL-6) (Fig 3C) [51, 52]. Consistently,

we found that more cells secreted TNF-α and IFN-γ than IL-4 and IL-6 (Fig 3C), supporting

that our three vaccination regimens triggered a TH1-biased response [51, 52]. Furthermore, we

investigated if our immunization regimens generated T effector memory (Tem) cells that are

known to play a critical role in immune protection against secondary viral infections in lung

tissue [53]. Splenocytes isolated from mice 4 weeks after vaccination regimens were incubated

with a SARS-CoV-2 spike peptide pool for 2 h and then analyzed by flow cytometry (Fig 3D &
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3E), which revealed that all three regimens resulted in significantly increased numbers of

CD8+ Tem cells (Fig 3D), but not CD4+ Tem cells (Fig 3E), in spleen tissue.

v-NY-S and MVA-S immunization generated neutralizing antibodies in

immunized Syrian hamsters

C57BL/6 mice are not susceptible to SARS-CoV-2 infection, whereas Syrian hamsters serve as

an appropriate animal model of respiratory infection by SARS-CoV-2 in human [54–65]. We

subjected Syrian hamsters to the same prime-boost vaccination regimens, i.e., MVA5/MVA1,

vNY1/MVA1 and vNY5/MVA1 (Fig 4A) as applied to mice (Fig 2A), except that we used a

skin scarification inoculation approach for hamsters. A small scar formed at the immunization

site, which healed within two weeks (S2A Fig), and the immunized hamsters remained healthy

any did not exhibit weight loss (S2B Fig). Primary and secondary sera collected from these

immunized hamsters specifically recognized SARS-CoV-2 S protein expressed on cell surfaces

(Fig 4B). Quantification of all hamster sera by FACS demonstrated that boosting enhanced

anti-spike antibody titers (Fig 4C), which was confirmed by immunoblotting (Fig 4D). Impor-

tantly, all three vaccination regimens generated anti-spike antibodies with high neutralization

activity in both pseudotyped SARS-CoV-2 virus (Fig 4E, panel i) and live SARS-CoV-2 virus

infection assays (Fig 4E, panel ii). Taken together, these data show that, as observed for mice,

our vaccination regimens generated high antibody titers in hamsters that neutralized SARS-

CoV-2 infection.

v-NY-S and MVA-S immunization reduce lung pathology in SARS-CoV-

2-infected Syrian hamsters

Next, we performed challenge experiments in hamsters 2 weeks after vaccine boosting by

intranasally (i.n) inoculating 1x105 PFU/animal of SARS-CoV-2 virus into each hamster and

then measuring changes in body weight till 3 d.p.i. (Fig 5A). Control hamsters (immunized

with a PBS placebo) presented minor but detectable weight loss at 3 d.p.i., whereas those sub-

jected to our vaccination regimens presented no obvious weight loss (Fig 5B). Previous studies

showed that SARS-CoV-2 infection of Syrian hamsters results in virus replication in lung tis-

sue and that virus titers often peaked from 2–4 d.p.i. and gradually cleared by 7 d.p.i. [54, 56,

58, 66–70]. Therefore, we sacrificed hamsters at 3 d.p.i. and then measured SARS-CoV-2 virus

titers in their lungs (Fig 5C). None of the MVA5/MVA1- or vNY1/MVA1-vaccinated hamsters

presented detectable levels of SARS-CoV-2 virus in their lung tissue, whereas virus titers of up

to ~ 4x106 TCID50 were detected in the lungs of the placebo group (Fig 5C). Moreover, no

virus was detected in nine vNY5/MVA1-immunized hamsters and only one such animal

Fig 2. Prime-boost MVA5/MVA1, vNY1/MVA 1and vNY5/MVA1 vaccination regimens elicited SARS-CoV-2 S protein-specific neutralizing antibodies in

C57BL/6 mice. (A). Summary and timeline of the three prime-boost vaccination regimens and analyses. (B). Primary and secondary sera from immunized mice

recognized SARS-CoV-2 S protein on cell surfaces. Mouse sera collected 4 weeks after priming (1˚ sera) and 2 weeks after boosting (2˚ sera) were assessed for

SARS-CoV-2-specific IgG antibodies by flow cytometry using SF9 cells infected with either S-BAC (red line) or WT-BAC (black line). A single representative serum is

shown in each histogram. (C). Quantification of anti-spike antibody titers in 1˚ and 2˚ sera from mice (as shown in B) using the mean fluorescence intensity (MFI)

value from FACS. Numbers of mice for 1˚ and 2˚ sera collection are identical: PBS vs. PBS/PBS control (n = 3); MVA5 vs. MVA5/MVA1 (n = 5); vNY1 vs. vNY1/

MVA1 (n = 5), and vNY5 vs. v-NY5/MVA1 (n = 5). Data are represented as mean ± SD. ��p<0.01; ���p<0.001; ����p<0.0001. (D). Immunoblot analyses of

recombinant SARS-CoV-2 S protein using 1˚ and 2˚ sera (1:100) from immunized mice. A single representative serum is shown in each blot. (E). Neutralization assays

of 2˚ sera collected from vaccinated mice using (i) Pseudovirus and (ii) SARS-CoV-2 virus infection: PBS/PBS control (n = 3); MVA5MVA1 (n = 5); vNY1/MVA1

(n = 5); and vNY5/MVA1 (n = 5). The dotted line represents assay limits of detection. �p<0.05; ��p<0.01. (F). Quantification of anti-spike antibodies in mouse sera

collected at 0.5 and 4.5 months after vaccination regimens using SF9 cells infected with WT-BAC or S-BAC. �p<0.05; ��p<0.01; ����p<0.0001. (G). Pseudovirus

neutralization assay using mouse sera collected at 0.5 months and 4.5 months after vaccination regimens: PBS/PBS control (n = 3); MVA5/MVA1 (n = 5); and vNY1/

MVA1 (n = 5). ns–not significant. �p<0.05. The dotted line represents assay limits of detection.

https://doi.org/10.1371/journal.pone.0257191.g002
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Fig 3. MVA5/MVA1, vNY1/MVA1 and vNY5/MVA1 vaccination regimens induce TH1-biased immune responses. (A). End-point titers of SARS-CoV-2 spike-

specific IgG2C and IgG1 antibodies in mouse sera collected 2 weeks after vaccination regimens. ns-not significant; ��p<0.01; ����p<0.0001. (B). End-point titer IgG2C/

IgG1 ratio calculated based on data from (A) (n = 5 for each group). (C). ELISpot analyses of mouse splenocytes collected 4 weeks after vaccination regimens for their

expression of IL-2, IFN-γ, TNF-α, IL4 and IL6 cytokines (n = 5 for each group). Data represented as mean ± SEM. SFC–spot-forming cells. �p<0.05; ��p<0.01;
���p<0.001. (D & E). SARS-CoV-2 spike-specific CD8+ (in D) and CD4+ (in E) T effector memory cells (CD44+CD62L-) in splenocytes, as detected by flow cytometry

(n = 5 for each group). Data represented as mean ± SD. ns–not significant; ���p<0.001; ����p<0.0001.

https://doi.org/10.1371/journal.pone.0257191.g003
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Fig 4. MVA5/MVA1, vNY1/MVA1 and vNY5/MVA1 prime-boost vaccination regimens generated SARS-CoV-2 spike-specific neutralizing antibodies in Syrian

hamsters. (A). Timeline for hamster immunization and sera collection. (B). Primary and secondary sera from immunized hamsters recognized SARS-CoV-2 S

protein on cell surfaces. Hamster sera collected 4 weeks after priming (1˚ sera) and 2 weeks after boosting (2˚ sera) were assessed for SARS-CoV-2-specific IgG

antibodies by flow cytometry using SF9 cells infected with either S-BAC (red line) or WT-BAC (black line). A single representative serum is shown in each histogram.

(C). Quantification of anti-spike antibody titers in 1˚ and 2˚ sera from hamsters in B, using the mean fluorescence intensity (MFI) value from FACS. Numbers of
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presented residual amounts of virus (< 0.1% of the mean virus titer of the placebo group) (Fig

5C).

We further explored the impact of our MVA5/MVA1 regimen at 7 d.p.i. (Fig 5D). The

weight loss of the placebo group was even more pronounced at 7 d.p.i. than at 3 d.p.i. (~10–

15%), whereas that of MVA5/MVA1- immunized hamsters remained unchanged (Fig 5E).

When we harvested lungs from immunized or placebo hamsters at 7 d.p.i. and measured

SARS-CoV-2 virus titers and viral RNA levels, we found that no virus was detected in any of

the hamsters (S3 Fig), but ~06 copies of viral RNA were detected in the lungs of the placebo

group, whereas only ~102 copies were detected in MVA5/MVA1-immunized hamsters (Fig

5F).

To further validate our findings, we removed the lungs of experimental hamsters at 3 and 7

d.p.i. and processed them for histological examination (Fig 6). The lungs of placebo-infected

hamsters at 3 d.p.i. presented diffuse congestion, shrinking of alveoli, hemorrhaging, and

mononuclear cell infiltration (Fig 6A, open arrowheads). Moreover, bronchiolar epithelia

vacuolization, necrosis and inflammatory exudates were also observed, and there was pro-

nounced vasculitis and/or endothelialitis (Fig 6A, black arrows) involving both medium and

small blood vessels disrupted by a mixture of immune infiltrates. Immunostaining with an

antibody against SARS-CoV-2 nucleocapsid (NP) protein revealed some areas of peribronch-

iolar immunoreactivity (Fig 6A), mainly in the pneumocytes and less commonly in bronchio-

lar epithelial cells. Interestingly, despite the severe endothelial destruction observed by H&E

staining, the SARS-CoV-2 NP antibody we deployed did not detect any positive viral-protein

signal in the blood vessels of these placebo-infected hamsters. In contrast to the striking

bronchointerstitial pneumonia observed in placebo-infected hamsters, there was only minimal

to mild lung inflammation at 3 d.p.i. in the hamster groups subjected to the three vaccination

regimens and SARS-CoV-2 NP protein signal was barely detectable (Fig 6B–6D).

We also examined the lung tissues of hamsters of the placebo and MVA5/MVA1 groups at 7

d.p.i. (Fig 6E & 6F). Profound type II pneumocyte hyperplasia (Fig 6E, open arrows) was

observed for the placebo-infection group, accompanied by mild to moderate neutrophilic infil-

trate and numerous megakaryocytes centered on an obliterated bronchiole. Immunohistochem-

istry revealed weak but positive anti-NP antibody signal in pneumocytes at the periphery of

bronchiole-centered lesions of placebo-infected hamsters (Fig 6E). In contrast, the lungs of the

MVA5/MVA1-infected group presented a less inflammatory phenotype at 7 d.p.i. and barely

detectable anti-NP signal. Thus, taken together, our prime-boost vaccination regimens prevent

SARS-CoV-2 viral spread in lung tissues and reduce inflammation and lung pathology.

Single immunization with v-NY-S partially protects Syrian hamsters from

SARS-CoV-2 infection

We wished to establish if single-dose immunization with recombinant v-NY-S virus could pro-

vide protection against SARS-CoV-2 in Syrian hamsters. Hamsters were immunized with PBS

(placebo), 1x107 or 5x107 PFU/animal of v-NY-S by skin scarification and then sera were col-

lected 2 weeks later (Fig 7A). The sera were subjected to a SARS-CoV-2 pseudovirus neutrali-

zation assay, which showed that priming with v-NY-S alone generated neutralizing antibodies

hamsters for 1˚ and 2˚ sera collection are identical: PBS vs. PBS/PBS control (n = 15); MVA5 vs. MVA5/MVA1 (n = 10); vNY1 vs. vNY1/MVA1 (n = 10), and vNY5 vs.

v-NY5/MVA1 (n = 10). Data are represented as mean ± SD. ����p<0.0001. (D). Immunoblots of 1˚ and 2˚ sera (1:20) from immunized hamsters using recombinant

SARS-CoV-2 S protein. A single representative serum is shown in each blot. (E). Neutralization assays of 2˚ sera collected from vaccinated hamsters using (i)

pseudovirus and (ii) SARS-CoV-2 virus infection: PBS control (n = 12); MVA5/MVA1 (n = 10); vNY1/MVA1 (n = 10); and vNY5/MVA1 (n = 10). The dotted line

represents assay limits of detection. ���p<0.001; ����p<0.0001.

https://doi.org/10.1371/journal.pone.0257191.g004
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Fig 5. Hamsters subjected to the MVA5/MVA1, vNY1/MVA1 or v-NY5/MVA1 vaccination regimens were protected against intranasally-

administered SARS-CoV-2 infection. (A). Timeline of the immunization and challenge experiments. Hamsters immunized with one of three

prime-boost vaccination regimens (MVA5/MVA1, vNY1/MVA1 or vNY5/MVA1), or placebo (PBS) as a control, were challenged i.n. with 1x105

PFU SARS-CoV-2 virus, before harvesting lungs at 3d.p.i.. (B). Weight change of hamsters within 3 days of SARS-CoV-2 challenge. Data

represented as mean ± SEM. �p<0.05. (C). TCID50 value of SARS-CoV-2 in lung tissue of hamsters at 3 d.p.i. after SARS-CoV-2 challenge: PBS/
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against SARS-CoV-2 virus in a dosage-dependent manner (Fig 7B). Then we performed chal-

lenge experiments and monitored SARS-CoV-2 virus titers in lungs at 3 d.p.i. (Fig 7C). Virus

titers were ~106 PFU/animal in the placebo-infected group, but virus titers were>100-fold

lower in hamsters subjected to single immunization with v-NY-S at either dosage (1x107 or

5x107 PFU/animal), showing that single immunization had already provided partial protection

against SARS-CoV-2 infection. Upon removing lungs for histological examination, we

observed that the placebo-infected group presented a severe pathological phenotype including

diffuse congestion, shrinking of alveoli, hemorrhaging, and mononuclear cell infiltration (Fig

7D, open arrowheads). Moreover, immunostaining for SARS-CoV-2 NP protein also revealed

widespread peribronchiolar immunoreactivity (Fig 7D, arrowheads) in the lungs of the pla-

cebo group. In contrast, the lung pathology of the vNY1-infected (Fig 7E) and vNY5-infected

(Fig 7F) groups was much milder than observed for the placebo-infected group, displaying

lower immune cell infiltration, rare epithelial degeneration and an absence of vasculitis/

endothelialitis. Viral NP immune signal in lung tissues was also significantly lower in the

vNY1 and vNY5 groups relative to the placebo group (rightmost panels in Fig 7E & 7F).

Sera from vaccinated mice partially cross-neutralize SARS-CoV-2 variants

of concern

Recently, circulation of new SARS-CoV-2 variants of concern (VOC) has become prevalent,

entailing a risk of increasing resistance to the neutralizing antibodies generated by SARS-CoV-

2 vaccines. Accordingly, we used pseudotyped SARS-CoV-2 virus neutralization assays to test

sera from our prime-boost vaccinated mice for their ability to cross-neutralize SARS-CoV-2

variants (Fig 8). Although statistical analyses did not reveal a significant neutralization differ-

ence among the three immunization regimens to each variant, the mean neutralization titers

of the α and γ variants were similar to that of the wild type whereas the mean titers of β,

B.1.617 and δ variants appeared much lower than the wild type (Fig 8A). For sera generated

according to each regimen (Fig 8B–8D), we divided the value of ND50 for wild type by that of

each variant to obtain the fold decrease in neutralization for each variant relative to wild type

(Fig 8B–8D). We noticed that vNY5/MVA1 regimen maintained the least decrease of neutrali-

zation towards all variants (Fig 8D) followed by vNY1/MVA1(Fig 8C) and MVA5/MVA1 (Fig

8B). Overall, antibodies from mice vaccinated with the heterologous prime-boost regimens,

vNY1/MVA1 and vNY5/MVA1, appeared to display better cross-neutralization against differ-

ent variants than those with the homologous prime-boost regimen (MVA5/MVA1).

A heterologous prime-boost immunization regimen with v-NY-S generates

higher titers of neutralizing antibodies than a homologous prime-boost

regimen

Our current regimens comprise both homologous (MVA5/MVA1) and heterologous (vNY1/

MVA1 and vNY5/MVA1) prime-boost combinations, with these latter generating strong and

long-lasting neutralizing antibody responses (Fig 2F). We wanted to explore other prime-

PBS control (n = 12); MVA5/MVA1 (n = 5); vNY1/MVA1 (n = 10); and vNY5/MVA1 (n = 10). Data represented as mean ± SD. ����p<0.0001. (D).

Timeline of the immunization and challenge experiments. Hamsters immunized with one prime-boost vaccination regimen (MVA5/MVA1), or

placebo (PBS/PBS) as a control, were challenged i.n. with 1x105 PFU SARS-CoV-2 virus, before harvesting lungs at 7d.p.i.. (E) Weight change of

hamsters within 7 days of SARS-CoV-2 challenge: PBS/PBS control (n = 3); and MVA5/MVA1 (n = 5). Data represented as mean ± SEM. �p<0.05.

(F). SARS-CoV-2 genomic RNA in lungs of MVA5/MVA1-immunized hamsters at 7 d.p.i. after SARS-CoV-2 challenge: PBS/PBS control (n = 3);

and MVA5/MVA1 (n = 5). Unless stated otherwise, data are represented as mean ± SD. The dotted line represents assay limits of detection.
����p<0.0001.

https://doi.org/10.1371/journal.pone.0257191.g005
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Fig 6. Lung pathology and immunohistochemistry of hamsters after SARS-CoV-2 challenge. (A). H&E and

immunohistochemical staining of lungs of the placebo (PBS/PBS) infection hamster group at 3 d.p.i.. H&E staining

showed severe bronchointerstitial pneumonia with the alveolar walls thickened by edema, capillary congestion and
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boost combinations involving v-NY-S as an alternative strategy to improve immune responses.

As shown in Fig 9A, unlike MVA5/MVA1 (Fig 2C), prime-boosting with a homologous

vNY1/vNY1 strategy did not increase anti-spike antibody titers after boosting (Fig 9A). We

rationalize that homologous prime-boosting with a replicating virus such as v-NY-S is not a

good immunization strategy. Interestingly, heterologous priming with v-NY-S at 1x107 PFU,

followed by a boost with 5 μg recombinant spike protein (rS) plus adjuvant, enhanced anti-

spike antibody titers (Fig 9A) and neutralizing activity (Fig 9B). In addition, we compared the

route of priming between skin scarification (vNY1/MVA1) and intranasal inoculation

(vNY0.1/MVA1) for v-NY-S and found that the latter route generated higher anti-spike anti-

body levels (Fig 9A) and neutralizing activity (Fig 9B) with only 1/10 of virus inoculum. These

data are very encouraging and will aid in future vaccination strategies. Discussions are ongoing

as to whether heterologous prime-boosting of COVID vaccines elicits more potent immune

responses than a homologous prime-boost strategy [71–73]. We argue that mix-and-match

vaccination strategies are an important consideration for designing the next generation of

SARS-CoV-2 vaccines.

Discussion

In this study, we have demonstrated in preclinical models the safety and immunogenicity of

recombinant vaccinia viruses expressing SARS-CoV-2 virus spike protein. All three of the

prime-boost vaccination regimens with v-NY-S and MVA-S recombinant viruses elicited

strong and long-lasting neutralizing antibody responses against SARS-CoV-2, and also gener-

ated a TH1-biased T cell response that can promote pathogen clearance. Importantly, we have

demonstrated that our vaccination regimens protected Syrian hamsters (representing an

appropriate animal model of SARS-CoV-2-induced respiratory disease in human) from weight

loss, elicited rapid clearance of SARS-CoV-2 virus, and reduced immune infiltrates in lung tis-

sue. Previous studies have revealed that virus shedding is often associated with a high viral titer

in lung tissues [42, 54, 68]. Bricker et al. (2021) showed that virus titers in vaccinated hamsters

were cleared by day 3, and no virus shedding was detected in nasal swabs even as early as day 2

[68]. Furthermore, Liu et al. (2021) found that vaccinated transgenic mice did not shed virus

as early as day 2 when virus was cleared from the lungs [42]. Since virus was cleared from the

lung tissue of our prime-boost vaccinated animals, it is likely that virus shedding in these ani-

mals is limited.

When we compared data from male versus female hamsters in terms of weight loss and

virus replication in lungs, we did not observe noticeable sex-associated differences in these

hamsters after challenge with SARS-CoV-2 virus. Interestingly, Dhakal et al. (2021) reported

that hamsters of both sexes exhibited similar weight loss, virus titers in lungs and cytokine

response in the first 5–7 days after SAS-CoV-2 challenge [74]. However, they also showed that,

starting from day 7 up to 4 weeks, female hamsters developed greater antibody responses and

variable immune cell infiltration (open arrowheads). The vascular endothelia were frequently disrupted by immune

infiltrates (vasculitis/endotheliolitis, black arrows). Immunohistochemistry of SARS-CoV-2 NP protein revealed

prominent peribronchiolar staining (arrow heads). (B, C & D). H&E and immunohistochemical staining of lungs

from the vNY1/MVA1 (B), vNY5/MVA1 (C) and MVA5/MVA1 (D) hamster groups at 3 d.p.i.. Compared to the

placebo (PBS/PBS) infection hamster group, lung architecture was better preserved, there was much less immune cell

infiltration, and SARS-CoV-2 NP staining signal was barely detectable. (E). H&E and immunohistochemical staining

of lungs of the placebo (PBS/PBS) infection hamster group at 7 d.p.i.. H&E staining revealed prominent type II

pneumocytic hyperplasia (open arrows) with variable immune cell infiltration. Immunohistochemistry of SARS-CoV-

2 NP protein detected dispersed positive signals at the edges of regenerative foci. (F). MVA5MVA1-immunized

hamsters displayed minimal lung pathology and scant SARS-CoV NP immunolabeling at 7 d.p.i.. The enlarged views

of H&E and immunohistochemistry-stained regions are marked by red boxes. The scale bar represents 50 μm.

https://doi.org/10.1371/journal.pone.0257191.g006
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Fig 7. Single-dose vNY1 or vNY5 vaccination partially protected hamsters from intranasally-administered SARS-CoV-2 infection. (A).

Timeline showing the immunization and challenge experiment. Hamsters immunized with a single dose of vNY1, vNY5 or placebo (PBS) were

challenged i.n. with 1x105 PFU SARS-CoV-2 virus and then lungs were harvested at 3 d.p.i.. (B). Pseudovirus neutralization assays of the 1˚ sera

collected 2 weeks after vaccine priming in hamsters. PBS control (n = 4); vNY1 (n = 5); and vNY5 (n = 5). Data represented as mean ± SD. The
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recovered from weight loss faster than male hamsters [74]. Because all our experiments were

terminated within 1 week after SARS-CoV-2 challenge it could explain a lack of sex-associated

difference in our experiments.

Hamster is a good animal model of SARS-CoV-2 with several advantages. It is suitable to

study virus replication and transmission by contact and aerosols [54, 75]. Most of hamsters

infected with SARS-CoV-2 do not die, which is consistent with human infections, and the

pathological features of the lungs in the infected animals resemble those observed in COVID-

19 patients [56, 76, 77]. Hamster is relatively low cost when compared with other animal mod-

els, such as ferrets [78] and non-human primates [79], and has been shown to mount an effec-

tive antibody response that clears virus within one week, making it a suitable model to study

vaccine efficacy and antiviral drugs [54, 56, 80]. On the other hand, several limitations of the

hamster model exist. SARS-CoV-2 infection in humans affects multiple organ systems includ-

ing the heart, kidneys, liver, spleen and large intestine [81, 82] whereas in hamsters live virus

mainly replicates in respiratory tracts with little evidence of infectious virus in other organs,

despite the detection of viral RNA in non-respiratory tissues [55, 83]. Furthermore, a lack of

hamster-specific biological reagents makes it difficult to characterize immune responses and

the mechanisms of pathogenesis in hamsters.

A successful vaccine against SARS-CoV-2 should stimulate both humoral and cellular

immune responses to inhibit virus replication and prevent disease in the host [84]. In both

mouse and hamster model our prime-boost immunization with MVA-S and v-NY-S generated

high titers of neutralizing antibodies. Evidence from preclinical studies in nonhuman primates

and hamsters indicted that vaccine-induced SARS-CoV-2 neutralizing antibodies correlate

with protection against lung infection and clinical disease [19, 55, 85]. While it is difficult to

study T-cell immune response in hamsters, our immunization regiments induced TH1-biased

immune response and effector memory CD8+T cells in mice, consistent with other studies

using MVA-based SARS-CoV-2 vaccines [41–43, 86]. Interestingly, Tan, et al (2021) reported

that early induction of interferon-γ secreting SARS-CoV-2 specific T cells correlates with mild

disease and rapid virus clearance, implying an important role of T cell immunity in host pro-

tection [87]. How to improve a SARS-CoV-2 vaccine to induce a coordinated B and T

responses will be of great importance in the future.

SARS-CoV-2 vaccines developed by Moderna, Pfizer/BioNTech, Novavax and Janssen

Pharmaceutical companies expressed a designed SARS-CoV-2 spike protein, S-2P, which con-

tain two proline substitutions at K986 and V987 to stabilize the prefusion conformation of

spike protein [19, 85, 88, 89]. It is thought the S-2P design could improve protein stability and

elicit high titers of neutralizing antibodies [19, 85, 88, 89]. We did not modify the spike protein

in our recombinant virus constructs primarily because of two reasons: (i) Vaccinia viral pro-

moters are known to be much stronger than cellular promoters [90, 91] so the spike protein

abundance and stability may not be a concern. (ii). We think that the natural spike protein

conformation may provide a large repertoire of antigenic epitopes to generate neutralizing

antibodies against SARS-CoV-2 virus. Our neutralizing antibodies induced strong neutralizing

dotted line represents assay limits of detection. �p<0.05. (C). TCID50 values for lungs from hamsters of the placebo (PBS), vNY1 and vNY5

groups at 3 d.p.i. after SARS-CoV-2 challenge (n = 5 for each group). Data represented as mean ± SD. The dotted line represents assay limits of

detection. ns- not significant. (D). H&E and immunohistochemical staining of lungs of the placebo (PBS) infection hamster group at 3 d.p.i..

H&E staining revealed an identical pathology to that shown in Fig 6A, revealing severe bronchointerstitial pneumonia with the alveolar walls

thickened by edema, capillary congestion and variable immune cell infiltration (open arrowheads). Immunohistochemistry of SARS-CoV-2 NP

protein revealed prominent peribronchiolar staining (arrowheads), with the vascular endothelia frequently being disrupted by immune infiltrates.

(E and F). H&E and immunohistochemical staining of hamster lungs primed with vNY1 (in E) or vNY5 (in F) at 3 d.p.i.. The lung architecture

was largely preserved, displaying reduced immune cell infiltration relative to the placebo infection group and SARS-CoV-2 NP protein was barely

detectable by immunohistochemistry. The scale bar represents 50 μm.

https://doi.org/10.1371/journal.pone.0257191.g007
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titers, supporting that rationale. Besides, Tscherne et al (2021) constructed a vaccinia MVA-

SARS-2-S vaccine that expresses a native SARS-CoV-2 spike protein and their results also

showed high neutralizing antibodies were induced [86]. Moreover, the AstraZeneca vaccine,

which lacks pre-fusion 2P stabilization, provided sufficient protection during clinical trials [92,

93]. It is intriguing that a new version of spike modification known as HexaPro, that contains

Fig 8. Sera from vaccinated mice partially cross-neutralized SARS-CoV-2 variants of concern. (A). Neutralization assays of secondary sera collected from

vaccinated mice (regimens MVA5/MVA1, vNY1/MVA1 and vNY5/MVA1) following SARS-CoV-2 pseudotyped virus with spike protein from WT and variants α
(B.1.17), β (B.1.351), γ (P.1), B1.617 and δ (B.1.617.2). The dotted line represents assay limit of detection. # represents n = 3. ns-not significant. (B-D). Fold decrease

for immunized sera from MVA5/MVA1 (B), vNY1/MVA1(C) and vNY5/MVA1(D) vaccination regimens in neutralization assays of individual variants relative to

WT pseudovirus. Fold change was calculated by dividing the ND50 titer of each immunized serum against WT pseudovirus with the ND50 titer of the same serum

against variant pseudovirus. # represents n = 3. The dotted line represents assay limit of detection. Data are represented as mean ± SEM.

https://doi.org/10.1371/journal.pone.0257191.g008
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six proline substitutions to further stabilize the pre-fusion S protein, was reported [94].

Whether HexaPro represents a promising antigen for vaccine design will be interesting to

know in the future.

While we were testing our vaccination regimens, several research groups published studies

showing that MVA-based vaccines provided protection against SARS-CoV-2 infection in

hACE2 transgenic mice [41, 86, 95] and macaques [43]. The results of our recombinant

MVA-S-based vaccines are consistent with those findings. Our study further explores the util-

ity of the replication-competent v-NY strain, revealing that it could prove just as promising as

the MVA strain in tackling SARS-CoV-2. The MVA strain that is growth-restricted in mam-

malian cells has been widely used in vaccine clinical studies due to its safety features. In con-

trast, v-NY was originally isolated and developed as a replicating vaccinia vector [96]. A

plaque-purified New York City Board of Health strain of vaccinia virus was established from a

commercial preparation of smallpox vaccine (Dryvax) via three successive rounds of plaque-

purification in BSC-40 cells. A master seed stock of this virus was prepared in human diploid

MRC-5 cells, which was then used as the parental virus (v-NY) to construct a recombinant

virus expressing the envelope glycoproteins of HIV-1 (HIVAC-1e) later used for FDA-

approved clinical trials [44]. Since then, master seed stocks of v-NY have been extensively

characterized in terms of sterility, mycoplasma, adventitious viruses, plaque morphology, neu-

tralization by vaccinia-specific monoclonal and polyclonal antisera, neurovirulence and

Fig 9. Heterologous prime-boost and intranasal inoculation with v-NY-S enhances production of SARS-CoV-2 spike-specific neutralizing

antibodies. (A). Quantification of anti-spike antibody titers in primary (1˚, transparent bars) and secondary (2˚, filled bars) sera from mice by

staining cell surface spike protein on insect cells using FACS, as shown by the mean fluorescence intensity (MFI). Sera were collected from

identical mice after prime (1˚) and boost (2˚). Numbers of mice in each prime-boost groups are shown on top of the figure. Data are represented

as mean ± SD. ����p<0.0001; ns-not significant. (B). SARS-CoV-2 pseudotyped virus neutralization assays for 2˚ sera collected from mice after

different prime-boost regimens. The dotted line represents assay limit of detection. rS: recombinant spike protein. �p<0.05; ��p<0.01.

https://doi.org/10.1371/journal.pone.0257191.g009
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genome restriction analysis [44]. Unlike NYVAC [97], which is a highly attenuated virus con-

structed from the Copenhagen strain of vaccinia virus by specific genetic deletions, v-NY is a

replication-competent virus and has not gone through any “attenuation protocol”, such as the

repeated passages for MVA. The in vitro and in vivo characteristics of v-NY are similar to its

parent virus, the New York City Board of Health strain of smallpox vaccine [44–47]. It is well

known that insertion of a foreign gene into the tk locus of vaccinia viral genome such as v-NY

will result in further attenuation of vaccinia virus virulence in mice [31]. In terms of safety pro-

file, the recombinant v-NY virus (HIVAC-1e) has been tested in Phase I and II studies [46,

47]. Moreover, v-NY has been used as a control virus in many animal studies and, in all cases,

the elicited responses appear very similar to how smallpox vaccines behave in humans [44, 45,

98, 99].

There are several reasons why we elected to conduct v-NY-S inoculation via skin scarifica-

tion. First, Langerin+ dermal dendritic cells have been shown to effectively present antigen

upon skin scarification with vaccinia virus [100]. Secondly, more antibodies are generated

upon scarification than via intramuscular inoculation [101]. Thirdly, given experience with

the global smallpox vaccination program, skin scarification by means of a bifurcated needle to

prick the skin 15 times within a few seconds is a convenient and efficient way to inoculate a

large human population during a pandemic. It is possible that for people displaying acute skin

breaks such as acne or suffering chronic skin conditions such as eczema or atopic dermatitis,

the side-effects may be more serious and should be taken into consideration. In addition, the

inoculation site on the arm should be properly cared for so that the virus does not spread.

Overall, the availability of both recombinant MVA and v-NY viruses expressing SARS-CoV-2

S protein allows studies to determine whether genetic properties of the viral vector may modu-

late immune responses leading to differential vaccine efficacies. To this end, it may be worth

thinking that a better "placebo vaccine" control than PBS alone would be supernatants of cells

that do not express the spike construct but that are prepared the same way as the vaccine.

These preparations would contain a secretome including extracellular vesicles and other xeno-

geneic materials that might contribute to responses like cytokines, albeit presumably non-spe-

cific. It will be useful to include such controls in the future experiments.

Most SARS-CoV-2 vaccines currently on the market require a two-dose prime-boost vacci-

nation program to generate sufficient protective immunity [12, 18, 20, 23, 102–107]. Several

Adenovirus-based vaccines (such as ChAdOx) were demonstrated as quite effective following

two dosages [19, 20, 55, 108–110], though single immunization is sufficient for the Ad26.

COV2.S vaccine [19]. Because the fast rise of SARS-CoV-2 variants whether these vaccines can

adequately control the COVID pandemic remains unclear. As the stability of currently avail-

able COVID vaccines depends on different temperatures of the “cold chain” for storage and

transportation, reliance on these vaccines alone for global vaccination may be difficult. In this

context, the stability of the lyophilized smallpox vaccine, from which the v-NY vector was

derived, may present certain advantages. Thus, these findings from deployment of our recom-

binant v-NY-S and MVA-S vaccine candidates in a prime-boost vaccination regimen may rep-

resent a very useful approach to tackling SARS-CoV-2 infections globally.

Materials and methods

Animals and ethics statement

Eight-week-old female C57BL/6 mice (Charles River strain) were purchased from BioLASCO

Taiwan Co. Ltd. Eight-week-old male and female Syrian hamsters (Mesocricetus auratus) were

purchased from the National Laboratory Animal Center, Taiwan. All animal protocols were

approved by the Institutional Animal Care and Utilization Committee of Academia Sinica and
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were conducted in strict accordance with the guidelines on animal use and care of the Taiwan

National Research Council’s Guide. Immunization and blood collection from animals were

performed under isoflurane anesthesia. Animals were sacrificed with carbon dioxide at the

end-point of the experiment and all precautions were taken to minimize the suffering to the

animals throughout the study.

Cells, viruses, and reagents

BSC40 cells were cultured in DMEM supplemented with 10% fetal bovine serum (FBS)

(Gibco) and 1% penicillin-streptomycin (PS) (Gibco). BHK21 cells were cultured in RPMI

medium supplemented with 10% FBS and 1% PS. HuTK-143 cells were cultured in MEM

medium supplemented with 10% FBS and 1% PS. The v-NY strain of vaccinia virus was grown

on BSC40 or HuTK-143 cells as described previously [96, 98, 111–114]. The MVA strain of

vaccinia virus (VR-1508, ATCC) was grown on BHK21 cells. SARS-CoV-2 TCDC#4 (hCoV-

19/Taiwan/4/2020) is a local isolate and it was propagated on Vero-E6 cells. All antibodies and

reagents are listed in Table 1 below.

Construction of recombinant vaccinia viruses

To generate recombinant vaccinia viruses expressing SARS-CoV-2 S protein (Isolate Wuhan-

Hu-1, NC_045512), a human codon-optimized open reading frame (ORF) encoding full-

length SARS-CoV-2 S protein was inserted into a pSC11 plasmid and under regulatory control

Table 1. Reagent list.

Reagent name Company Catalogue no.

SARS-CoV-2 (2019-nCoV) Spike RBD antibody Sino Biological 40592-T62

SARS-CoV/SARS-CoV-2 (COVID-19) spike antibody [1A9] GeneTex GTX632604

SARS-CoV/SARS-CoV-2 (COVID-19) Nucleocapsid antibody, Rabbit Mab Sino Biological 40143-R001

Anti-Rabbit IgG (whole molecule), F(ab’)2 fragment—FITC antibody Sigma F1262

Goat anti-Mouse IgG (H+L) Secondary antibody, HRP ThermoFisher Scientific 31430

Goat anti-Mouse IgG (H+L) Secondary antibody, HRP Invitrogen PA1-28823

Cy5 Affinipure Goat anti-Mouse IgG (H+L) Jackson Immuno Research 115-175-146

Goat anti-Syrian Hamster IgG Secondary antibody, FITC eBioscience 11-4211-85

Goat anti-Mouse IgG2c Secondary antibody, HRP Invitrogen PA1-29288

Goat anti-Mouse IgG1 Secondary antibody, HRP Invitrogen PA1-74421

PE/Cyanine7 anti-Mouse CD3 Antibody BioLegend 100220

FITC-anti-Mouse CD4 Antibody BioLegend 100510

Pacific Blue- anti-Mouse CD8 Antibody BioLegend 100725

PE anti-Mouse/Human CD44 Antibody BioLegend 103008

APC anti-Mouse CD62L Antibody BioLegend 104412

DAPI, Fluropure, grade Invitrogen D21490

VECTASHIELD, Antifade Mounting Medium Vector Laboratories H-1000

PepTivator SARS-CoV-2 Prot_S Miltenyi Biotec 130-126-700

Mouse IFN-γ ELISpot PLUS Kit (ALP), strips MABTech 3321-4AST-2

Mouse IL-2 ELISpot PLUS Kit (ALP) MABTech 3441-4APW-2

Mouse IL-4 ELISpot PLUS Kit (ALP) MABTech 3311-4APW-2

Mouse IL-4 ELISpot PLUS Kit (ALP) MABTech 3361-4APW-2

Mouse TNF-α ELISpot PLUS Kit (ALP) MABTech 3511-4APW-2

Dako EnVision+ System–HRP-labeled polymer Dako K4001

Alhydrogel (2%) InvivoGen Vac-alu-250

https://doi.org/10.1371/journal.pone.0257191.t001
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by an early and late p7.5k promoter to obtain pSC11-S plasmid [115]. The pSC11-S plasmid

was transfected into HuTK-143 cells infected with the wild type v-NY virus strain. Lysates

were then harvested for multiple rounds of plaque purification of the recombinant virus,

named v-NY-S, on HuTK-143 in the presence of 25 μg/ml 5-Bromo-2´-Deoxyuridine (BrdU),

as described previously [113]. The recombinant MVA strain expressing SARS-CoV-2 S pro-

tein, MVA-S, was generated as described for v-NY-S except that BHK21 cells were used and

plaque purification was performed in the presence of X-gal (150 μg/ml). Both MVA-S and v-

NY-S were subsequently amplified in roller bottles, and the virus stocks were partially purified

using a 36% sucrose gradient and titrated prior to use, as described previously [116].

Immunofluorescence staining of cell surface S protein

BHK21 and BSC40 cells were infected respectively with MVA-S or v-NY-S at a multiplicity of

infection (MOI) of 5 PFU/cell for 1 h, washed with PBS, and then incubated in growth media

for a further 12 h. The cells were then washed with PBS and fixed with 4% paraformaldehyde,

before being immunostained with SARS-CoV-2 anti-RBD antibody (40592-T62) at a dilution

of 1:500 for 1 h at room temperature. Then, the cells were washed with PBS and stained for the

secondary antibody FITC-conjugated goat anti-Rabbit IgG Ab (F1262, 1:500 dilution) for 1 h

at room temperature, followed by staining with DAPI (5 μg/ml, D21490, Molecular Probes)

for 5 min and mounting with Vectashield mounting solution (H-1000, Vector Laboratories).

Images were taken using a Zeiss LSM 710 confocal microscope with a 63x objective lens, as

described previously [117].

Prime-boost immunization regimens in mice

Eight-week-old female C57BL/6 mice were housed in the Animal Facility of Academia Sinica

(Taipei, Taiwan) for at least 3 days prior to vaccination experiments. We primarily used three

regimens of two-dosage prime/boost immunization (depicted in Fig 2A): (1) MVA5/MVA1—

intramuscular (i.m.) inoculation of MVA-S in the right hind limb at 5x107 PFU/animal,

followed by an i.m. boost 4 weeks later of 1x107 PFU/animal of MVA-S virus; (2) vNY1/

MVA1—tail scarification (t.s) of v-NY-S at 1x107 PFU/animal, followed by an i.m. boost 4

weeks later of 1x107 PFU/animal of MVA-S virus into the right hind limb; and (3) vNY5/

MVA1- t.s. of v-NY-S at 5x107 PFU/animal, followed by an i.m. boost 4 weeks later of 1x107

PFU/animal of MVA-S virus into right hind limb. Additional prime/boost combinations were

designed in order to obtain mouse sera for pseudotyped SARS-CoV-2 virus neutralization

assays described in the section below: (4) vNY1/vNY1—tail scarification (t.s) of v-NY-S at

1x107 PFU/animal, followed by an i.m. boost 4 weeks later of 1x107 PFU/animal of v-NY-S

virus into the right hind limb; (5) vNY1/rS—tail scarification (t.s) of v-NY-S at 1x107 PFU/ani-

mal, followed by an i.m. boost 4 weeks later of 5 μg recombinant spike protein (aa 14–1209) in

1% alhydrogel (Invivogen) into the right hind limb; and (6) vNY0.1(i.n.)/MVA1- intranasal

infection (i.n.) of v-NY-S at 1x106 PFU/animal, followed by an i.m. boost 4 weeks later of

1x107 PFU/animal of MVA-S virus into the right hind limb. As immunization controls, PBS

buffer was used as a placebo vaccine for both priming and boosting shots. Blood was collected

from immunized mouse cheeks 4 weeks after priming and 2 weeks after boosting, as described

previously [118, 119]. Sera were prepared from blood and saved at -80˚C until use.

Prime-boost immunization regimens in Syrian hamsters

Eight-week-old male and female Syrian hamsters were housed in the Animal Facility of Acade-

mia Sinica (Taipei, Taiwan) for at least 3 days prior to vaccination experiments. We used three

regimens of two-dosage prime/boost immunization (depicted in Fig 2A): (1) MVA5/MVA1-
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intramuscular (i.m.) inoculation of MVA-S in the right hind limb at 5x107 PFU/animal, fol-

lowed by an i.m. boost 4 weeks later of 1x107 PFU/animal of MVA-S virus; (2) vNY1/MVA1-

tail scarification (t.s) of v-NY-S at 1x107 PFU/animal, followed by an i.m. boost 4 weeks later

of 1x107 PFU/animal of MVA-S virus into the right hind limb; and (3) vNY5/MVA1- t.s. of v-

NY-S at 5x107 PFU/animal, followed by an i.m. boost 4 weeks later of 1x107 PFU/animal of

MVA-S virus into right hind limb. As immunization controls, PBS buffer was used as a placebo

vaccine for both priming and boosting shots. Blood was collected from immunized hamster

gingival veins 4 weeks after priming and 2 weeks after boosting, as described previously [118,

119]. Sera was prepared from blood and saved at -80˚C until use.

Immunoblotting

To measure SARS-CoV-2 S protein expression in cells infected with recombinant viruses,

BSC40 and BHK21 cells (5x105) were infected with v-NY-S and MVA-S, respectively, at an

MOI of 5 PFU/cell and incubated for 12 h prior to cell harvesting. Cells were lysed with sample

buffer and proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electropho-

resis (SDS-PAGE). Proteins were then transferred to nitrocellulose membranes (BioRad)

using a wet transfer apparatus (Bio-Rad). The membranes were blocked in 5% non-fat milk

solution at room temperature (r.t.) for 1 h and incubated overnight with SARS-CoV-2 spike S2

mouse mAb (GTX632604, 1:1000 dilution) at 4˚C. The blots were then washed three times

with PBST (PBS containing 0.1% Tween-20), incubated at r.t. with HRP goat anti-mouse IgG

Ab (31430, 1:20,000) for 1 h and developed using a Western Lightening Enhanced Chemilumi-

nescence kit (PerkinElmer) according to the manufacturer’s protocol.

To test reactivity of immunized mouse and hamster sera to SARS-CoV-2 spike protein, the

extracellular domain of spike protein from residue 14 to 1209, consisting of S1 and S2 but

without the transmembrane domain, was expressed in HEK 293 cells and subsequently puri-

fied. The purified spike protein contained human complex type glycans, and exists as a trimer

in solution with an apparent molecular weight between 170 to 235 kDa on SDS-PAGE (mono-

mer), and ~600 kDa (trimer) on Superose 6 size-exclusion chromatography. Purified spike

protein (20 ng/well) was separated by SDS-PAGE, transferred to nitrocellulose membranes

and blocked in 5% non-fat milk solution at r.t. as described above. The membrane was sepa-

rated into multiple strips and each strip was incubated overnight with individual sera collected

from immunized mice (1:100 dilution) or hamsters (1:50) at 4˚C. These blots were then

washed three times with PBST, incubated at r.t. with HRP goat anti-mouse (31430, 1:20,000)

or HRP goat anti-hamster (PA1-28823, 1:5,000) antibodies for 1 h at r.t. and then developed

using a Western Lightning Enhanced Chemiluminescence kit (PerkinElmer) according to the

manufacturer’s protocol.

Flow cytometry analysis of cell-surface SARS-CoV-2 S protein expression

To detect spike protein expression on the surface of cells infected with MVA-S or v-NY-S,

BSC40 and BHK21 cells (5x105) were infected with v-NY-S and MVA-S, respectively, at an

MOI of 5 PFU/cell and incubated for 12 h, before being detached via treatment with 2 mM

EDTA in PBS. Cells were incubated with SARS-CoV-2 anti-RBD antibody (40592-T62, 1:500)

at 4˚C for 1 h. The cells were then washed with FACS buffer (PBS containing 2% FBS), stained

with FITC-conjugated goat anti-Rabbit IgG Ab (F1262, 1:500) for 1 h at 4˚C, washed with

FACS buffer and analyzed by flow cytometry (BD LSR-II, BD Biosciences).

To detect anti-spike antibody in the sera of immunized mice and hamsters, SF9 insect cells

were infected with either wild type baculovirus (WT-BAC) or a recombinant baculovirus

(S-BAC) that expressed a chimeric SARS-CoV-2 S-gp64 protein in which the transmembrane
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and C-terminal regions of S protein were replaced by the transmembrane and C-terminal

regions of baculovirus GP64 so that the S-gp64 fusion protein would be expressed on insect

cell surfaces. These cells were cultured for 48 h before incubating with mouse (1:100 dilution)

or hamster (1:20 dilution) serum in FACS buffer for 1 hour on ice. After two washes with

FACS buffer, the cells were incubated with Cy5-Goat anti-mouse IgG Ab (115-175-146, 1:500)

or FITC-Goat anti-hamster IgG Ab (11-4211-85, 1:100) for 30 min on ice, washed twice, resus-

pended in FACS buffer containing propidium iodide, and then analyzed by flow cytometry

(BD LSR-II).

SARS-CoV-2 pseudotyped virus neutralization assay

Lentiviral vectors pseudotyped with spike protein of wild type SARS-CoV-2 and SARS-CoV-2

variants of concern (VOC) (Table 2) were generated and titered by the National RNA Tech-

nology Platform and Gene Manipulation Core, Academia Sinica, Taipei, Taiwan. Neutraliza-

tion assays on pseudotyped virus were performed by the same core facility as described

previously [120], but with minor modifications. In brief, 1,000 units of the pseudotyped lenti-

virus with SARS-CoV-2 S protein were incubated at 37˚C for 1 h with serially-diluted sera

obtained from vaccinated animals. The mixture was then added to HEK-293T cells expressing

human ACE2 receptor (104 cells/well of a 96-well plate) and incubated for 24 h at 37˚C. This

cell culture was then replaced with 100 μl of fresh DMEM plus 10% FBS, and the cells were

incubated for another 48 h before undergoing luciferase assay. The reciprocal dilution of

serum required for 50% inhibition of virus infection (ND50) was assessed by measuring lucifer-

ase intensity.

SARS-CoV-2 neutralization assay

Serially diluted antibodies from immunized mice or hamsters were incubated at 37˚C for 1 h

with 100 TCID50 SARS-CoV-2 TCDC#4 (hCoV-19/Taiwan/4/2020). The mixtures were then

added to pre-seeded Vero E6 cells for a 4-day incubation. Cells were fixed with 10% formalde-

hyde and stained with 0.5% crystal violet for 20 min. The plates were washed with tap water

and scored for infection. The 50% protective titer was calculated according to the Reed &

Muench Method [121].

Immunoglobulin ELISA for SARS-CoV-2 S-specific antibodies

Immunoglobulin ELISA was performed as described previously [17] with some modifications.

Recombinant SARS-CoV-2 S protein (10 ng/well) was coated onto a 96-well plate (Costar

assay plate, Corning, 3369) for 24 h at 4˚C. The plates were then washed with PBST and

blocked with 1% BSA in PBS solution for 1 h, followed by washes with PBST. Coated plates

Table 2. SARS-CoV-2 variants of concern.

Scientific name WHO label� Mutation(s) in Spike protein (mutations in the RBD are in red) Note

Wild Type (Wuhan-Hu-1 isolate) NA NC_045512.2

B.1.1.7 Alpha 69–70 del, Y144 del, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H VOC

B.1.351(501Y.V2) Beta L18F, D80A, D215G, 242–244 del, R246I, K417N, E484K, N501Y, D614G, A701V VOC

P.1 Gamma L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I VOC

B.1.617 G142D, E154K, L452R, E484Q, D614G, P681R, Q1071H, H1101D -

B.1.617.2 Delta T19R, G142D, 156–157 del, R158G, L452R, T478K, D614G, P681R, D950N VOC

� https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. RBD- receptor binding domain; VOC- variant of concern.

https://doi.org/10.1371/journal.pone.0257191.t002
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were incubated for 1 h at r.t. with sera that had been serially diluted in PBS containing 1%

BSA, then washed with PBST, and incubated with HRP-conjugated IgG2C (PA1-29288,

1:15000) or HRP-conjugated IgG1 (PA1-74421, 1:6000) secondary antibodies at r.t. for 1 h.

Plates were washed with 5x PBST and incubated with commercial TMB substrate for color

development (Clinical Science Products Inc.). To stop the reaction, 2N H2SO4 was added and

the plates were read at an optical density of 450 nm using an ELISA reader. End-point titers

were calculated as the serum dilutions that emitted an optical density (O.D) greater than four

times the background level (secondary antibody only), as described previously [17].

ELISpot assay of mouse splenocytes

ELISpot assays to monitor cytokine levels in splenocytes stimulated with a SARS-CoV-2 spike

peptide pool were performed essentially as described previously [109, 122]. In brief, spleens

were collected from immunized mice four weeks after vaccine boosting. We mixed 4x105 sple-

nocytes with a peptide pool of SARS-CoV-2 S protein sequences (Miltenyi Biotech, 130-126-

700) at 1 μg/ml concentration in 100 μl medium (RPMI + 10% FBS + 1% PS), and then incu-

bated them for 24 h at 37˚C in ELISpot plates (MABTECH) precoated with IFN-γ (3321-

4AST-2), IL-2 (3441-4APW-2), IL-4 (3311-4APW-2), IL-6 (3361-4APW-2) or TNF-α (3511-

4APW-2). Cells were then washed with 5x PBS and the ELISpots were developed according to

the manufacturer’s protocol and quantified using an AID vSpot machine.

Analyses of T effector memory (Tem) cells

Flow cytometric analyses of Tem cells were performed as described previously [16] with minor

modifications. Splenocytes were isolated from immunized mice at 4 weeks after vaccine boost-

ing. After depleting red blood cells with Ammonium-Chloride-Potassium (ACK) lysis buffer,

splenocytes were stimulated with 1 μg/ml of a SARS-CoV-2 spike-specific peptide pool (Milte-

nyi Biotech, 130-126-700) in medium (RPMI + 10% FBS + 1% PS) for 2 h at 37˚C. The cells

were subsequently washed twice with FACS buffer, and then incubated with an antibody cock-

tail including anti-CD3-PE/Cyanine7, anti-CD4-FITC, anti-CD8-Pacific blue, anti-CD44-PE

and anti-CD62L-APC for 15 min on ice. The cells then underwent fluorescence-activated cell

sorting (FACS) analyses, whereby CD4+ or CD8+ subpopulations were first gated from total

splenocytes, and then further gated for CD44+CD62L- as Tem cells. Dead cells were stained

with eFluor 506 viability dye (eBioscience). Cells were acquired using a BD LSR II (BD Biosci-

ences) flow cytometer and data analyses were performed with FlowJo 8.7 software.

Syrian hamster challenge experiments

Syrian hamsters were immunized according to one of the three prime-boost vaccination regi-

mens described above, anesthetized, with Zoletil-50 (50mg/kg) and then intranasally (i.n) chal-

lenged with 1x105 PFU of SARS-CoV-2 TCDC#4 (hCoV-19/Taiwan/4/2020, GISAID

accession ID: EPI_ISL_411927) (lot: IBMS20200819, 8x105 PFU/ml) in a volume of 125 μl. All

animals were weighed daily after SARS-CoV-2 challenge. At 3 and 7 days post infection (d.p.

i.), lungs were harvested for SARS-CoV-2 virus titer determination, viral RNA quantification

and histopathological examination. Differences in body weight between experimental groups

of animals were analyzed statistically using a two-tailed unpaired Student’s t test.

Quantification of viral titers in lung tissues by cell culture infection assay

The middle, inferior, and post-caval lobes of hamsters at 3 and 7 days post challenge with

SARS-CoV-2 were homogenized in 4ml of DMEM with 2% FBS and 1% PS using a
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homogenizer. Tissue homogenate was centrifuged at 15,000 rpm for 5 min and the superna-

tant was collected for live virus titration. Briefly, 10-fold serial dilutions of each sample were

added in quadruplicate onto a Vero E6 cell monolayer and incubated for 4 days. Cells were

then fixed with 10% formaldehyde and stained with 0.5% crystal violet for 20 min. The plates

were washed with tap water and scored for infection. The fifty-percent tissue culture infectious

dose (TCID50)/ml was calculated according to the Reed & Muench Method [121].

Real-time RT-PCR for SARS-CoV-2 RNA quantification

To measure the RNA levels of SARS-CoV-2, specific primers targeting nucleotides 26,141 to

26,253 of the SARS-CoV-2 envelope (E) gene were used for real-time RT-PCR, as described

previously [123], forward primer E-Sarbeco-F1 (5’-ACAGGTACGTTAATAGTTAATAGCGT-
3’), reverse primer E-Sarbeco-R2 (5’-ATATTGCAGCAGTACGCACACA-3’), probe E-Sar-

beco-P1 (5’-FAM-ACACTAGCCATCCTTACTGCGCTTCG-BBQ-3’). A total of 30 μl RNA

solution was collected from each sample using an RNeasy Mini Kit (QIAGEN, Germany)

according to the manufacturer’s instructions. RNA sample (5 μl) was added into a total 25-μl

mixture of the Superscript III one-step RT-PCR system with Platinum Taq Polymerase

(Thermo Fisher Scientific, USA). The final reaction mix contained 400 nM of the forward and

reverse primers, 200 nM probe, 1.6 mM deoxy-ribonucleoside triphosphate (dNTP), 4 mM

magnesium sulfate, 50 nM ROX reference dye, and 1 μl of the enzyme mixture. Cycling condi-

tions were performed using a one-step PCR protocol: 55˚C for 10 min for first-strand cDNA

synthesis, followed by 3 min at 94˚C and 45 amplification cycles at 94˚C for 15 sec and 58˚C

for 30 sec. Data was assessed using an Applied Biosystems 7500 Real-Time PCR System

(Thermo Fisher Scientific). A synthetic 113-basepair oligonucleotide fragment was used as a

qPCR standard to estimate copy numbers of the viral genome. The oligonucleotides were syn-

thesized by Genomics BioSci & Tech Co. Ltd. (Taipei, Taiwan).

Histopathology

The left lung of each hamster at 3 and 7 days post challenge with SARS-CoV-2 was removed

and fixed in 4% paraformaldehyde for 1 week. The lung samples were then embedded, sec-

tioned, and stained with Hematoxylin and Eosin (H&E), followed by microscopic examina-

tion. Immunohistochemical staining was performed with a monoclonal rabbit anti-

SARS-CoV/SARS-CoV-2 nucleocapsid (NP) antibody (1:1000, 40143-R001, Sino Biological),

followed by incubation with Dako EnVision+ System HRP. Brownish signals were subse-

quently developed upon addition of 3,3’ diaminobenzidine (DAB) and counterstained with

hematoxylin. Images were photographed using a Zeiss Axioimager-Z1 microscope with 4x

and 20x objective lenses.

Statistical analyses

Statistical analyses were conducted using Student’s t test in Prism (version 9) software (Graph-

Pad). For multiple comparisons, the p values were adjusted by the “fdr” method using the “p.

adjust” function in R v4.0.4. Adjusted p values <0.05 were considered statistically significant.
�p<0.05; ��p<0.01; ���p<0.001; ����p<0.0001.

Supporting information

S1 Fig. Weight change in C57BL/6 mice after immunization with one of three regimens.

(TIF)
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S2 Fig. (A). Images of skin scarification in Syrian hamsters at days 5,10 and 15 after primary

immunization. (B) Weight change in Syrian hamsters after immunization with one of the

three regimens.

(TIF)

S3 Fig. TCID50 value of SARS-CoV-2 in lung tissues of hamsters at 7 d.p.i after SARS-

CoV-2 challenge: PBS/PBS control (n = 3); MVA5/MVA1 (n = 5), the dotted line repre-

sents assay limits of detection.

(TIF)

S1 Raw images.

(PDF)
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