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Abstract: In this work, an important model in fluid dynamics is analyzed by a new hybrid neurocom-
puting algorithm. We have considered the Falkner–Skan (FS) with the stream-wise pressure gradient
transfer of mass over a dynamic wall. To analyze the boundary flow of the FS model, we have
utilized the global search characteristic of a recently developed heuristic, the Sine Cosine Algorithm
(SCA), and the local search characteristic of Sequential Quadratic Programming (SQP). Artificial
neural network (ANN) architecture is utilized to construct a series solution of the mathematical
model. We have called our technique the ANN-SCA-SQP algorithm. The dynamic of the FS system is
observed by varying stream-wise pressure gradient mass transfer and dynamic wall. To validate the
effectiveness of ANN-SCA-SQP algorithm, our solutions are compared with state-of-the-art reference
solutions. We have repeated a hundred experiments to establish the robustness of our approach. Our
experimental outcome validates the superiority of the ANN-SCA-SQP algorithm.

Keywords: fluid dynamics; numerical methods; computational science; computational fluid dynamics;
differential equations; Falkner–Skan system; artificial neural networks; Sine-Cosine Algorithm;
sequential quadratic programming; hybrid computing; mass transfer

1. Introduction

Fluid dynamics applies to a large number of fields such as traffic engineering, weather
prediction, aerospace, and crowed dynamics [1–4]. Fluid dynamics can also apply to more
complex scenarios, such as in astrophysical problems, including plasma and solar physics.
In [5], J. J. González-Avilés et al. present a study about ideal MHD code to study the
solar atmosphere and Jet formation in solar atmosphere due to magnetic reconnection [6].
The fluid dynamic behavior depends on the information of velocity, density, temperature,
and pressure in terms of space and time. The role of a mathematician is vital to clear
the blurred image of fluid dynamics by describing the application of science-based fluid
dynamics through mathematical modeling. The Falkner–Skan boundary layer system (FSS)
is considered a basic model with many applications in fluid dynamics [7–10]. The Falkner–
Skan system was first presented in 1931 for describing viscous fluid submerged in the
flow in overabundance of the stationary wall [11,12]. Generally, the third order differential
equation was derived from partial differential equations (PDEs) by performing similarity
transformation and analyzing the equations to describe system dynamics [13–17]. Due to
the significance of the FS system, numerous analytical and numerical methods are devel-
oped for the solution of the FS system. An overview is as follows: The Falkner–Skan system
(FSS) was first introduced in 1931 for solution of boundary layer equations [11]. Initially,
fewer solutions are available in literature for FSS. The first-ever physical solution for FSS
was proposed in 1937 [18]. The irregularities were then reported in 1953 [19]. In 1966,
Hertree presented an effective solution of the FS-system [20]. In 1970, another such type
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of boundary value problem was reported [21]. Moreover, the existence theorem for the
solution of the FS system and approximate solution by implementing shooting method
was reported in 1971 [22,23]. A random-vortex based method was reported in 1989 [24]
and a coordinate transformation reduce input domain with finite difference was proposed
in 1998 [25]. In 1999, transformed Navier–Stokes procedure for studying the flow based on
FSS is used [26]. Moreover, for reliability of analytical and numerical methods, the FSS was
used as a benchmark model. A large number of deterministic methods were reported such
as the Fourier series approach [27], homotopy analysis procedure [28], Sinc-collocation
methodology [29], and Chebyshev collocation method [30]. Recently, in many problems of
fluid dynamics, magneto-hydrodynamics (MHD), nano-fluid and dynamics of Casson fluid
FSS arise [31–34] including SWCNT and MWCNT nano-fluid flow [35], simulation of bio-
convection Falkner–Skan flow [36], and asymptotic approximant for the Falkner–Skan [37].
The Falkner–Skan system is studied in different aspects. The presented work analyzed
dynamic characteristics of FSS.

In this study, the dynamic characteristics are analyzed in different conditions of
streamwise pressure gradient (α), mass wall transfer (µ), and wall movement (δ). The α is
the numerical parameter set rate of acceleration or deceleration of main stream, µ is mass
transfer over dynamic wall, and δ is wall movement condition. The study is conducted
with the following conditions:

• Flow along impermeable wall with zero mass transfer for different accelerated values
of main stream.

• Flow for different rate of mass transfer over stationary wall with fixed acceleration of
main stream.

• Flow along dynamic wall with zero mass transfer and maximum acceleration of
main stream.

In numerical solvers, the stochastic solvers are more efficient and attractive to be
implemented as an alternative choice due to the robustness, simplicity of the concept,
reliability and easy operation for nonlinear systems based on integer and fractional-order
differential equations [38–51]. Numerical stochastic approaches based on soft computing
techniques became valuable because of consistency in convergence and accuracy. For an
effective optimization process, the role of soft computing based solvers is vital, like bina-
rization methods [52], enhancing re-active power-management [53], fuzzy-controlled-servo
systems [54] and optimization procedure of logistic infrastructure based on a mathematical
model [55]. The solution of differential equations on the basis of neural network was
introduced in 1990. A finite difference method based on neural network was reported
in 1990 [56]. Frenandez in 1994 [57,58] presents pioneer work of feed-forward neural
network based solution of differential equations. The extension of neural network based
solution to PDEs was made in 1998 [59]. In such a way, two types of stochastic numerical
solvers were used as hybrid methods i.e., global search and local search, for finding the
unknown with reliable and promising solutions. Such as fuel combustion theory [60],
Navier–Stokes [61], fractional control problem [62], magneto-hydrodynamics [63], third
grade thin film flow [64], Bagley–Torvik fractional order [65], Neural-Network Solution
of Single-Delay Differential equations [66], Hamilton–Jacobi differential equations [67],
analysis of multi-phase flow through porous media [68], backward stochastic differen-
tial equations for pricing and hedging [69], coating dynamics with Oldroyd 8-constant
fluid [70], and finite differences based on the neural network [71]. A few of them were
implemented for the solution of FSS to study its characteristics. In this work, due to the
significance of FSS in various fluid dynamics fields, the FSS is discussed dynamically based
on its parameters stream-wise pressure gradient, and the mass wall transfer expresses the
dynamics of the mass transfer at the wall and the parameter of wall movement. The stochas-
tic solvers seem reliable and promising for the field of computational fluid dynamics. Their
results are accurate and consistent for practical problems based on differential equations.
Therefore, for discussing dynamic characteristics of FSS, the stochastic computational
solver is inquired based on soft computing terminology.
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The significance of the proposed procedure for the solution of FSS based on the
stochastic process is addressed as:

• Provides quality, highly reliable, and effective solutions.
• Generally, computational techniques give solutions based on predefined discrete

inputs, while the proposed methodology readily produces random inputs in the given
entire span.

• No initial guess is required. The proposed scheme is an unsupervised technique.
• Applicable for complex models where the traditional solvers get stuck in a local

optimum. The advent of computational methods increased the use of stochastic
computational methods for dealing with complicated mathematical models for which
conventional methods fail.

The rest of paper is organized as follows: In Section 2, the governing equation and
formulation of FS system is discussed. In Section 3, the designed methodology is described.
In Section 4, performance matrices are introduced. Section 5 presents a brief graphical and
numerical description of different variants of FSS. In Section 6, the presenting methodology
is evaluated based on performance matrices while Section 7 concludes the presenting work.

2. Formulation of the Falkner–Skan Boundary Layer System

An incompressible fluid is considered over a wedge, as given in Figure 1. An incom-
pressible fluid referee to a flow in a fluid dynamics in which the density (ρ) is constant
within an infinitesimal volume (V) and moves with flow velocity (U(u, v)). In other words,
the divergence of velocity is zero, ∇ ·U = 0. The free stream velocity U∞ is uniform and
constant. Moreover, the flow is two-dimensional laminar and viscous boundary layer.
The continuity equation and boundary layer equations may be written as:

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= U f
dU f

dx
+ v

∂2u
∂2y

. (2)

In Equation (2), u is the x-component and v is the y-component of velocity of the fluid flow,
and U f is the free stream velocity under pressure gradient at the edge of the boundary
layer and is a function of x, and the boundary conditions are given by:

at y = 0 : u = v = 0,

at y→ ∞ : u→ U f (x) = U∞(x/L)m,

at x = 0 : u = U∞,

(3)

where U∞ is the free mean stream velocity, L shows the length of wedge, m represents the
Falkner–Skan power law parameter, and x is measured from the tip of wedge. For any
two-dimensional incompressible flow, the net volume flow rate due to u and v through a
control volume must be zero. In other words, the inlet flow of volume must be equal to
outlet flow. Thus, a stream function, Ψ(x, y), is introduced such that

ψu + ψv = 0 (4)

or ψu = −ψv or ψv = −ψu,
volume flow rate in the x-direction→ ψu → ψ,
volume flow rate in the y-direction→ −ψu → −ψ,

u =
∂Ψ
∂y

and v = −∂Ψ
∂x

. (5)



Entropy 2021, 23, 1448 4 of 32

For the physical considerations which require the introduction of this function, the mathe-
matical significance of its use is that the equation of continuity, i.e., Equation (1), is satisfied
identically. The momentum equation becomes:

∂Ψ
∂y

+
∂2Ψ
∂x∂y

− ∂Ψ
∂x

∂2Ψ
∂y2 = U f

∂U f

∂x
+ v

∂3Ψ
∂y3 . (6)

By integrating Equation (5) and introducing a similarity variable yields:

g(η) =
√

1 + m
2

Lm

vU∞
·
(

Ψ/x(1+m)/2
)

(7)

η =

√
1 + m

2
U∞

vLm ·
(

y/x(1−m)/2
)

. (8)

Substituting Equations (7) and (8) into Equation (6) gives the Falkner–Skan boundary layer
system. The Falkner–Skan boundary system consists of the Falkner–Skan equation for
mass transfer and wall stretching, expressed in terms of a third order nonlinear ordinary
differential equation (ODE) as:

g′′′ + gg′′ + α(1− g′2) = 0, (9)

with boundary conditions

g(0) = µ, g′(0) = δ, and g′(1) = 1. (10)

Here, α is the parameter of streamwise pressure gradient, µ is a parameter of the mass wall
transfer, expresses the mass transfer at the dynamic at wall, and δ denotes the parameter
of wall movement. g(η) represents the solution of FSS with its first, second, and third
derivative g′, g′′, and g′′′, respectively. The variable g is a dimensionless stream function,
and the independent variable η is a dimensionless distance from the wall, a so-called
similarity variable. Note that, in the equations above, parameters α and m are related
through the expression α = 2 m/m + 1. The first derivative g′ defines the dimensionless
velocity component in the x-direction, the second derivative g′′ defines the dimensionless
shear stress in the boundary layer.

Figure 1. Physical model of FS boundary layer system: The case α = 0 becomes the well-known
Blasius equation [72], and the case α = 1 gives the Hiemenz flow [73].
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3. ANN Based Structure of the FS Boundary Layer System

This section consists of the proposed methodology, with a brief description, for the solu-
tion of Falkner–Skan boundary value problem based on a stochastic computational method.

The designed procedure consists of two phases; the first phase consists of development
of the feed-forward Artificial Neural networks (ANN) model in terms of approximation
theory for FSS, while the second phase presents the processes of training the weights
of ANN. The weights (unknown) are trained with the help of a Sine-Cosine Algorithm
(SCA) and Sequential Quadratic Programming (SQP). The work flow chart of presenting
methodology is given in Figure 2.

Figure 2. Work flow chart of proposed methodology. Initially, population in SCA is set for generation
of solutions, and fitness of the generated solution is evaluated by SCA. The fitted solution is provided
as an initial point to SQP, and SQP provides the best solution as weights of ANN.

There are two steps of the mathematical model; in the first step, the differential
equation Artificial neural networks is designed, while, in the second step, objective/fitness
function for the problem is constructed using unsupervised errors.

The structure of the mathematical model for the FS-system is designed by extensively
applying the worth of feed-forward ANN. Feed-forward ANN is a less complex, fast
unidirectional, and highly responsive to noisy data. The unidirectional process of a feed-
forward neural network helps SCA-SQP in convergence. Because SCA generates random
solutions, the multi-propagation may affect its performance. ANN is used to solve the
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FS-system. Its solution g(η) and its derivatives first, second, third, and nth order g′(η),
g′′(η), g′′′(η) and gn(η), respectively, are given by:

ĝ(η) =
k

∑
i=1

aiφ(wi(η) + bi)

ĝ′(η) =
k

∑
i=1

aiφ
′(wi(η) + bi)

ĝ′′(η) =
k

∑
i=1

aiφ
′′(wi(η) + bi)

.

.

.

ĝn(η) =
k

∑
i=1

aiφ
n(wi(η) + bi),

(11)

Here, in the model, k denotes number of neurons in the network, φ denotes activation
function and vector W = [a, w, b] represents the unknown (weights) with elements
a = [a1, a2, . . . , ak], w = [w1, w2, . . . , wk] and b = [b1, b2, . . . , bk]. In the neural network
procedure, log-sigmoid function is taken as activation function. Mathematically, log-
sigmoid function is given as:

φ(x) =
1

1 + e−x . (12)

As φ is taken as an activation function, its derivatives will be also taken as activation
functions. The FSS in Equation (9) is based on third order nonlinear ODE, so the log-
sigmoid based activation function for the solution of FSS i.e., g(η) and its derivatives
i.e., first g′(η), second g′′(η), and third g′′′(η) can be expressed, respectively, as:

ĝ(η) =
k

∑
i=1

ai(
1

1 + e−(wiη+bi)
), (13)

ĝ′(η) =
k

∑
i=1

aiwi(
e−(wiη+bi)

(1 + e−(wiη+bi))2
), (14)

ĝ′′ =
k

∑
i=1

aiw2
i

(
2e−2(wiη+bi)(

1 + e−(wiη+bi)
)3 −

e−(wiη+bi)(
1 + e−(wiη+bi)

)2

)
, (15)

ĝ′′′ =
k

∑
i=1

aiw3
i

(
3!e−3(wiη+bi)(

1 + e−(wiη+bi)
)4 −

2!(1 + 2)e−2(wiη+bi)(
1 + e−(wiη+bi)

)3 +
e−(wiη+bi)(

1 + e−(wiη+bi)
)2

)
. (16)

Here, Equations (13)–(16) represent arbitrary formulation designed for a neural network of
the Falkner–Skan System. The designed structure with its parameters i.e., input, hidden
layer, and output, is given in Figure 3.
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Figure 3. ANN structure with its parameters’ inputs, hidden layer, and outputs. Values of η are
inputs. These inputs are transferred to the hidden layer in the form of weights a, w, and b to sigmoid
function φ, which approximates the solution as output.

The fitness function for Falkner–Skan system in terms of two mean-square errors can
be expressed as:

min e = e1 + e2, (17)

where e1 is the cost function, can be written as:

e1 = 1
N ∑N

m=1(ĝ′′′m + ĝm ĝ′m + α(1− ĝ′m))
2, η ∈ (0, 1),

N = 1
h , ĝm = ĝ(ηm), ηm = mh,

(18)

where N expresses points in the grid depending on step size h in given span for inputs,
ĝ(η), ĝ′(η), ĝ′′(η), and ĝ′′′(η) are shown in Equations (13)–(16). In the same manner, e2 is
the error function associated with boundary conditions written as:

e2 =
1
3

(
(ĝ0 − µ)2 +

(
ĝ′0 − δ

)2
+
(

ĝ′N − 1
)2
)

. (19)

With the provision of such weights, W = [a, w, b], that objective function (e) tends to
zero, as the two mean square errors e1 and e2 tend to zero, then the proposed numerical
solution ĝ(η) tends to the reference solution g(η) of the FSS. Variants of FSS are given in
Figure 4 based on its parameters’ streamwise pressure gradient (α), the mass transfer over
the dynamic wall (µ), and the parameter of wall dynamics (δ).
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Figure 4. Description of problems of FSS on the basis of variation in parameters. α is a numerical
parameter of acceleration or deceleration of the main stream, µ is a condition of mass flow rate, and δ

is the parameter of wall movement.

Optimization Procdure

The optimization procedure for a designed structure is performed with the help of
a Sine-Cosine Algorithm (SCA) hybrid with local search-method through the Sequential
Quadratic Programming (SQP). Due to multi-dimensional capability, the global perfor-
mance of SCA is better in comparison with other solvers. The solutions of SCA were
found reliable. The method was presented by Mirjalili [74]. Few new applications are
addressed effectively based on SCA such as a unit commitment problem [75] and crystal
wave guides [76], fuzzy probabilistic c-ordered means [77], and for training of multi-layer
perceptrons [78]. Enhancing the performance of SCA is hybridized with a local search
mechanism, Sequential Quadratic Programming. The Sequential Quadratic Programming
solver lays in the category of quadratic optimization solvers implemented for solutions of
nonlinear constrained problems. In addition, it is later implemented for many optimiza-
tion problems such as constrained nonlinear control allocation [79], for the estimation of
nonlinear least-squares [80], nonlinear electric circuit models using neural networks based
on genetic algorithm and SQP [81], etc., and optimization methodology is described in
Figure 2. The pseudo-code of the proposed constructed mechanism for optimization of
the objective function, ANN-SCA-SQP algorithm, is written in Figure 1. In this work, two
mechanisms, unsupervised and supervised, are hybridized based on the ANN-SCA-SQP
algorithm (see Algorithm 1) to find the unknown or weights of the constructed system
model for the solution of variants of FSS. The convergence and accuracy of the method also
depend on the tuning of parameters; therefore, it is necessary to carefully set the parameters
with much experimentation based on optimization knowledge and better understanding.
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Algorithm 1 Pseudo Code of Optimization Algorithm ANN-SCA-SQP. In which, Tolerance
a Stopping Criteria
Start: Sine-Cosine Algorithm(SCA)
Inputs:
Unknown(weights) W = [a, w, b]
Population P = [W1, W2, . . . , Wm]

T = [(a1, w1, b1), (a2, w2, b2), . . . , (am, wm, bm)]
T , for m number of

unknown(weights) W in
P and T is stand for transpose. Output: Best weights of SCA, i.e., Wb
Begin
→ Initialization
Randomly generation of vector W Consist on real values in provided interval
Set of m weights vectors formulate the preliminary population P .

/ / Stopping-Criteria (SC)
Solver-SC → if achieving one of the following:
Fitness value → 10−16 .
Tol-Fun (Function Tolerance) → 10−20

Tol-Con (Constrained Tolerance) → 10−20 .
//Main-loop of SCA
While
any of SC parameter satisfy
do
→ Fitness calculation-step
Evaluate objective function e as in Equation (9) for the vector W.
Repeat for m weights W of the population P.
→ Check for SC
If SC achieved, then exit from loop else continues.
→ Parameters of SCA
Update the population and repeat from the fitness evaluation
End
→ Storing step
Store the best information vector Wb and respective fitness value,
time, and function evaluated for the current run of the SCA.
End SCA

Start SQP
→ Initialization of SQP
Initialize SQP method with Wb of SCA as an initial weight(point)
vector.
Set the Stopping criteria SC :
Max-Iter (Maximum iterations), i.e., 1000,
Tol-Fun as 10−24

Tol-Con as 10−24 and
Tolerance in optimization variables(weights), i.e., Tol-X as 10−16,
While
any of SC Value satisfy do
→ Next step: Calculation of Fitness
Evaluate e values using Equation (9) for the weight vector.
→ Check for SC step
If SC achieved, then exit from loop else continues.
→ Update step
Set ’fmincon’ function with technique ’Sequential Quadratic Programming’
Update weight vector for each step through SQP standard procedures.
Repeat procedure from fitness calculation step
End SCA
→ Storing step
Store the final weight vector along its fitness value, time,
generation consumed and function evaluated for the current run of the SCA-SQP method.
End SQP
Evaluation: Execute the mechanism of SCA-SQP for multiple independent
runs for generation of sufficient data for reliable and
effective evaluation of performance.

4. Performance Matrices

The fitness function is constructed using differential equations based on neural net-
works in terms of mean square-error as in Equation (17). For the minimization of fitness/
objective function, an appropriate set of weights is required. The unknown (weights)
are the optimization variable. To minimize the objective function of the problem, these
variables should be trained in real valued bounds i.e., constraints. To find an appropriate
set of weights, both of the mechanisms i.e., global search and local search, were explored
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with the help of a meta-heuristic procedure based on Sine-Cosine Algorithm and sequen-
tial Quadratic Programming. For the reliable and consistent evaluation of the proposed
mechanism, other performance indices based on global version are also adapted.
The performance-evaluators’ mean-absolute derivation (MAD), error in Nash–Sutcliffe
efficiency (ENSE), and root-mean square error (RMSE) are implemented to approach the
work of the presenting scheme. The mathematical formulation of MAD, ENSE, RMSE,
and NSE are given as:

MAD =
1
n

n

∑
i=1
|g(ηi)− ĝ(ηi)|, (20)

RMSE =

√
1
n

n

∑
i=1

(g(ηi)− ĝ(ηi))
2, (21)

NSE = 1−

 ∑n
i=1(g(ηi)− ĝ(ηi))

2

∑n
i=1

(
g(ηi)− 1

n ∑n
i=1(g(ηi))

)2

, (22)

ENSE = |1− NSE|. (23)

Here, n denotes the number of input points in a grid, ĝ(η) is the proposed, and g(η) is the
reference solution. For a reliable and effective system, the value of performance measures
based on MAD, ENSE, and RMSE should be zero, while the NSE value approaches 1.

The global extension of the performance measures discussed above are mathematically
defined as:

GMAD =
1
R

R

∑
r=1

(
1
n

n

∑
i=1

(|g(ηi)− ĝ(ηi)|)
)

, (24)

GRMSE =
1
R

R

∑
r=1

(√
1
n

n

∑
i=1

(g(ηi)− ĝ(ηi))
2

)
, (25)

GENSE =
1
R

R

∑
r=1

 ∑n
i=1(g(ηi)− ĝ(ηi))

2

∑n
i=1

(
g(ηi)− 1

n ∑n
i=1(g(ηi))

)
, (26)

GFIT =
1
R

R

∑
r=1

er, (27)

where R denotes number of runs and er is fitness value at the rth number run of the
proposed method. The standard value of all global operators is zero. The global version is
based on the average fitness value. Global operators for fitness are GFIT, for MAD, it is
GMAD, for RMSE, it is GRMSE, and, for ENSE, it is GENSE.

5. Empirical Results and Discussion

In this section, the empirical results for the ANN based designed scheme with ANN-
SCA-SQP algorithm are briefly discussed. To analyze the dynamic behavior of the Falkner–
Skan system, three problems are presented based on varying parameters of FSS i.e., stream-
wise pressure gradient α, the parameter of mass transfer µ, and wall movement parameter
δ. For comparison, reference solutions of GA-ASM are taken as standard throughout the
study. The problems of FSS are described in Figure 4.

5.1. Problem 1: Dynamics of FSS Based on the Variation of Stream-Wise Pressure Gradient α

In this problem, the two parameters’ wall mass transfer µ and wall movement δ
are kept fixed by taking µ = 0 and δ = 0, while the variation of streamwise pressure
gradient α formed four cases in this problem. The zero value of µ corresponds to zero mass
transfer and δ corresponds to flow along the stationary wall. The degree of acceleration or
deceleration of the main stream in the Falkner–Skan system is set by a positive or negative
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value of parameter α. The flows with zero value for this parameter will be considered,
i.e., the flows without longitudinal pressure gradient in the main stream. The inputs are
taken between 0 and 1, so the simplified form of the system is given as:

g′′′ + gg′′ + α(1− g′2) = 0, (28)

g(0) = 0, g′(0) = 0, and g′(1) = 1. (29)

The cases are constructed for α = 0.1, α = 1, α = 2 and α = 4 to analyse the dynamic
behavior of FSS in this problem. For each case, the fitness function is designed as per
Equation (17). For 11 input points, the fitness function can be written as:

ec1 =
1

11

11

∑
m=1

(ĝ′′′ + ĝĝ′′ + 0.1(1− ĝ′2))2 +
1
3
(ĝ0

2 + ĝ′2 + (ĝ11 − 1)2), (30)

ec2 =
1

11

11

∑
m=1

(ĝ′′′ + ĝĝ′′ + (1− ĝ′2))2 +
1
3
(ĝ0

2 + ĝ′2 + (ĝ11 − 1)2), (31)

ec3 =
1
11

11

∑
m=1

(ĝ′′′ + ĝĝ′′ + 2(1− ĝ′2))2 +
1
3
(ĝ0

2 + ĝ′2 + (ĝ11 − 1)2), (32)

ec4 =
1
11

11

∑
m=1

(ĝ′′′ + ĝĝ′′ + 4(1− ĝ′
′2
))2 +

1
3
(ĝ0

2 + ĝ′2 + (ĝ11 − 1)2), (33)

the proposed mechanism, the ANN-SCA-SQP algorithm as discussed in the second section, is
implemented for minimization of objective/fitness functions as given in Equations (30)–(33)
for four cases C1, C2, C3, and C4 of problem 1. For each case, one set of weights is obtained,
and putting those sets of weights in Equation (13) gives the solution for each case, as given
in Equations (34)–(37) for cases 1, 2, 3, and 4, respectively. The weights are also shown
graphically in Figure 5b–e for cases 1, 2, 3, and 4, respectively:

gc1(η) =
7.8783

1 + e−(0.8860η−1.7221)
+

−3.9499
1 + e−(−9.5789η−22.8166)

+ . . . +
−19.4404

1 + e−(−9.9739η−19.2287)
, (34)

gc2(η) =
5.1403

1 + e−(1.2519η−4.7383)
+

−6.7367
1 + e−(−29.9925η−19.1042)

+ . . . +
6.2034

1 + e−(−1.6663η−10.4633)
, (35)

gc3(η) =
9.8910

1 + e−(6.6099η−29.8573)
+

12.3422
1 + e−(0.0286η−10.9005)

+ . . . +
−18.6040

1 + e−(−1.1558η−2.3439)
, (36)

gc4(η) =
−2.2571

1 + e−(1.1775η+0.0490)
+

−4.1959
1 + e−(8.6005η−30.0000)

+ . . . +
3.8141

1 + e−(−3.3564η+14.9105)
. (37)

The full form of Equations (34)–(37) are shown in the Appendix A for up to 14-decimal
places. The results of approximate solution in Equations (34)–(37) are graphically shown in
Figure 5a for 11 grid points by taking inputs η ∈ [0, 1] having step size 0.1. It is observed
that the solutions overlap with the numerical solutions of GA-ASM. The numerical com-
parison of solutions is also given in Table 1. From solutions, it seems that, with the increase
in input η, the stream function g(η) also increases. In other words, we can say that η is
directly proportional to g(η):
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Figure 5. (a) Problem 1: Graph between stream function and distance from the wall; (b–e) the trained unknown (weights) for ANN
through the proposed hybrid optimization approach.

Table 1. Solution comparison of problem 1.

t GA-ASM ANN-SCA-SQP GA-ASM ANN-SCA-SQP GA-ASM ANN-SCA-SQP GA-ASM ANN-SCA-SQP

Case 1 Case 2 Case 3 Case 4

0 3.29× 10−9 6.05× 10−7 6.53× 10−9 2.54× 10−7 4.08× 10−9 −5.47× 10−7 2.66× 10−9 1.65× 10−6

0.1 0.005405388 0.005405935 0.00701195 0.007012223 0.008586938 0.008586741 0.011216733 0.011218571
0.2 0.021552704 0.021553204 0.027385678 0.027385963 0.033034377 0.033034394 0.042277563 0.042279561
0.3 0.048330482 0.048330938 0.060144874 0.060145167 0.071441575 0.071441658 0.089548039 0.089550157
0.4 0.085609334 0.085609743 0.104348531 0.104348845 0.122043285 0.12204328 0.149840904 0.149843023
0.5 0.133233738 0.1332341 0.159104966 0.159105304 0.183247294 0.183247067 0.220477782 0.220479818
0.6 0.191014645 0.191014961 0.223583479 0.223583826 0.253656044 0.253655481 0.299285991 0.299287959
0.7 0.25872314 0.258723423 0.297023781 0.297024106 0.332076339 0.332075319 0.384560326 0.384562273
0.8 0.336085496 0.336085755 0.378743274 0.378743557 0.417520623 0.417518995 0.475010319 0.475012229
0.9 0.422779921 0.422780154 0.468142379 0.468142625 0.509202753 0.509200337 0.56970587 0.569707661
1 0.518435328 0.51843553 0.564708054 0.564708269 0.606530566 0.606527172 0.66802863 0.668030264
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Moreover, the accuracy and effectiveness of the proposed technique are evaluated by
statistical study for 100 independent runs executed by the ANN-SCA-SQP algorithm. In a
statistical study based on mean (MEAN), minimum (MIN), and standard deviation (STD),
the values of mean and STD seem consistent for each case. For all the cases MIN, mean and
STD values are between 10−9 to 10−12, 10−7 to 10−8, and 10−7 to 10−8, respectively, while
it is observed that the small decrease in accuracy was found by increasing the value of α.
The detailed statistical results are given in Table 2, for graphical illustration of results in
Table 2, we have presented Figure 6. The statistical result shows the consistency, reliability,
accuracy and convergence.

Table 2. Statistical evaluation of problem 1 in terms of mean, minimum, and standard deviation.

t α = 0.1 α = 1 α = 2 α = 4

MIN MEAN STD MIN MEAN STD MIN MEAN STD MIN MEAN STD

0 3.35× 10−12 1.450× 10−8 3.280× 10−8 5.04× 10−12 6.540× 10−8 1.150× 10−7 8.71× 10−12 1.280× 10−8 1.850× 10−8 3.39× 10−10 1.110× 10−8 9.70× 10−9

0.1 7.14× 10−11 4.460× 10−8 6.090× 10−8 3.74× 10−12 1.820× 10−7 2.280× 10−7 3.11× 10−12 5.230× 10−8 5.860× 10−8 1.36× 10−9 1.070× 10−7 7.390× 10−8

0.2 5.22× 10−12 2.590× 10−8 3.490× 10−8 1.34× 10−107 8.490× 10−8 1.190× 10−7 4.09× 10−12 2.350× 10−8 3.140× 10−8 1.67× 10−10 7.770× 10−8 1.190× 10−7

0.3 1.81× 10−12 2.270× 10−8 2.860× 10−8 3.20× 10−12 7.970× 10−8 1.330× 10−7 1.18× 10−11 2.550× 10−8 3.620× 10−8 2.86× 10−9 6.410× 10−8 5.980× 10−8

0.4 1.07× 10−11 1.510× 10−8 1.840× 10−8 4.30× 10−11 7.390× 10−8 9.850× 10−8 2.43× 10−10 2.670× 10−8 3.240× 10−8 2.08× 10−9 5.930× 10−8 6.140× 10−8

0.5 3.17× 10−11 1.830× 10−8 2.290× 10−8 1.07× 10−11 7.070× 10−8 9.870× 10−8 1.18× 10−11 2.180× 10−8 2.860× 10−8 4.40× 10−9 5.040× 10−8 6.180× 10−8

0.6 1.07× 10−10 2.950× 10−8 3.430× 10−8 7.04× 10−11 8.640× 10−8 1.340× 10−7 6.54× 10−12 2.480× 10−8 4.000× 10−8 1.67× 10−10 6.420× 10−8 6.070× 10−8

0.7 1.02× 10−11 1.600× 10−8 1.690× 10−8 2.23× 10−12 5.980× 10−8 9.070× 10−8 8.88× 10−10 2.280× 10−8 2.650× 10−8 1.410× 10−8 5.350× 10−8 4.470× 10−8

0.8 1.67× 10−11 2.590× 10−8 3.540× 10−8 3.23× 10−12 8.670× 10−8 1.080× 10−7 2.83× 10−13 1.910× 10−8 2.900× 10−8 5.18× 10−10 3.980× 10−8 4.730× 10−8

0.9 3.30× 10−10 6.770× 10−8 7.620× 10−8 6.72× 10−11 1.790× 10−7 2.460× 10−7 1.75× 10−10 5.980× 10−8 7.730× 10−8 2.730× 10−8 1.150× 10−7 9.260× 10−8

1 1.40× 10−11 3.210× 10−8 5.380× 10−8 2.08× 10−11 1.120× 10−7 1.560× 10−7 1.04× 10−12 2.890× 10−8 4.380× 10−8 2.23× 10−10 3.36× 10−8 4.97× 10−8
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Figure 6. Graphs of statistical data in Table 2. (a) For α = 0.1; (b) For α = 1; (c) For α = 2; (d) For α = 4.

5.2. Problem 2: Dynamics of FSS Based on the Variation of Wall Mass Transfer Parameter µ

In problem 2, the dynamic behavior of FSS, in Equation (9), is evaluated by fixing α = 1
and δ = 0, while allowing variation in parameter of wall-mass transfer µ. The values of α
and δ correspond to accelerated main stream flow along the impermeable wall. The mass-
transfer parameter µ in the boundary condition sets the measure for the mass flow rate
through the wall boundary in either direction. Positive values determine flows with suction,
and negative with blowing through the wall boundary. The FSS is formulated for this
case as:

g′′′ + gg′ + 1− g′2 = 0, (38)
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g(0) = µ, g′(0) = 0, and g′(1) = 1. (39)

The formulation of all cases of the model in Equations (38) and (39) are based on µ = 0.1,
µ = 0.4, µ = 0.7 and µ = 1 and fitness functions for N = 11 are designed as:

ec1 =
1
11

11

∑
m=1

(
ĝ′′′m + ĝm ĝ′m +

(
1− ĝ2

m

))2
+

1
3

(
(ĝ0 − 0.1)2 + ĝ′20 +

(
ĝ′211 − 1

)2
)

, (40)

ec2 =
1
11

11

∑
m=1

(
ĝ′′′m + ĝm ĝ′m +

(
1− ĝ2

m

))2
+

1
3

(
(ĝ0 − 0.4)2 + ĝ′20 +

(
ĝ′211 − 1

)2
)

, (41)

ec3 =
1
11

11

∑
m=1

(
ĝ′′′m + ĝm ĝ′m +

(
1− ĝ2

m

))2
+

1
3

(
(ĝ0 − 0.7)2 + ĝ′20 +

(
ĝ′211 − 1

)2
)

, (42)

ec4 =
1
11

11

∑
m=1

(
ĝ′′′m + ĝm ĝ′m +

(
1− ĝ2

m

))2
+

1
3

(
(ĝ0 − 1)2 + ĝ′20 +

(
ĝ′211 − 1

)2
)

. (43)

The proposed mechanism ANN-SCA-SQP algorithm, as discussed in the second section, is
implemented for minimization of the fitness function as given in Equations (40)–(43) for
four cases C1, C2, C3, and C4 of problem 2. For each case, one set of weights is obtained by
putting those sets of weights in Equation (13), giving the solution for each case, as given in
Equations (44)–(47) for case 1, case 2, case 3, and case 4, respectively. The weights are also
shown graphically in Figure 7b–e for cases 1, 2, 3, and 4, respectively:

gc1(η) =
0.3931

1 + e−(−15.4530η−28.1365)
+

14.1327
1 + e−(−1.1618η−2.3460)

+ . . . +
−0.3180

1 + e−(6.4054η+12.2749)
, (44)

gc2(η) =
−8.4731

1 + e−(−11.9477η−18.1566)
+

−6.3359
1 + e−(−0.1630η−4.3857)

+ . . . +
0.5727

1 + e−(1.7024η+0.0114)
, (45)

gc3(η) =
−1.0779

1 + e−(−1.2854η+0.1960)
+

6.1959
1 + e−(−0.14353η−10.1054)

+ . . . +
−1.6986

1 + e−(−3.8934η−2.8733)
, (46)

gc4(η) =
−1.2471

1 + e−(1.5356η+3.5766)
+

−0.6766
1 + e−(0.6557η+17.6555)

+ . . . +
27.6538

1 + e−(0.3084η−2.2951)
. (47)

The full form of Equations (44)–(47) are written in the Appendix A for up to 14-decimal
places. The results of approximate solution in Equations (44)–(47) are graphically shown in
Figure 7a for 11 grid points by taking inputs ηε[0, 1] with step size 0.1. It is observed that
the solutions overlap with the numerical solutions of GA-ASM. The numerical comparison
of solutions is also given in Table 3.
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Table 3. Solution comparison of problem 2.

t GA-ASM ANN-SCA-SQP GA-ASM ANN-SCA-SQP GA-ASM ANN-SCA-SQP GA-ASM ANN-SCA-SQP

Case 1 Case 2 Case 3 Case 4

0.922, 0.945, 0.871 0 0.100000003 0.10000286 0.400000001 0.40000002 0.700000002 0.70000006 1.000000002 1.00000916

0.1 0.107258688 0.10726099 0.408030229 0.40803026 0.708845878 0.7088459 1.009701424 1.00971087

0.922, 0.945, 0.871 0.2 0.12827934 0.12828114 0.431049908 0.43104994 0.733940924 0.73394093 1.036933177 1.03694284

0.3 0.161955186 0.16195656 0.467521105 0.46752114 0.773256408 0.77325642 1.079117187 1.07912697

0.922, 0.945, 0.871 0.4 0.207227704 0.2072287 0.516009591 0.51600963 0.824950845 0.82495083 1.133977968 1.13398776

0.5 0.263100533 0.26310118 0.575196183 0.57519622 0.88737351 0.88737345 1.199530471 1.19954018

0.922, 0.945, 0.871 0.6 0.32865057 0.32865088 0.643883848 0.64388387 0.959062703 0.95906263 1.274062714 1.27407226

0.7 0.403036431 0.40303644 0.721001173 0.72100119 1.038739877 1.03873981 1.356114951 1.35612425

0.922, 0.945, 0.871 0.8 0.485504502 0.48550426 0.805602746 0.80560276 1.125300632 1.12530058 1.444456808 1.44446581

0.9 0.575392805 0.57539238 0.896866986 0.89686699 1.217803468 1.21780345 1.53806357 1.53807222

0.922, 0.945, 0.871 1 0.672132912 0.67213233 0.994091896 0.99409188 1.315457047 1.31545705 1.636092513 1.63610078
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Figure 7. (a) Problem 2: Graph between stream function and distance from the wall; (b–e) the trained unknown (weights) for ANN
through proposed hybrid optimization approach.
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Moreover, the reliability and effectiveness of the proposed method are evaluated by
statistical study for 100 independent runs executed by the ANN-SCA-SQP algorithm. In a
statistical study based on minimum (MIN), mean, and standard deviation (STD), the values
of mean and STD seem consistent for each case. For all the cases MIN, mean and STD
values are between 10−9 to 10−12, 10−7 to 10−8, and 10−7 to10−8, respectively, while a
small decrease found in accuracy is observed by increasing the value of µ. The detailed
statistical results are given in Table 4, for graphical illustration of results in Table 2, we
have presented Figure 8. The statistical result shows the consistency, reliability, accuracy
and convergence.

Table 4. Statistical evaluation of problem 2 in terms of minimum, mean, and standard deviation.

t Case 1 Case 2 Case 3 Case 4

MIN MEAN STD MIN MEAN STD MIN MEAN STD MIN MEAN STD

0 1.24× 10−11 2.99× 10−8 6.60× 10−8 1.99× 10−12 1.57× 10−7 2.59× 10−7 6.55× 10−13 1.17× 10−7 1.88× 10−7 3.01× 10−11 7.98× 10−8 1.67× 10−7

0.1 2.36× 10−10 1.02× 10−7 1.37× 10−7 1.74× 10−10 3.43× 10−7 3.83× 10−7 8.34× 10−11 3.37× 10−7 4.27× 10−7 2.67× 10−12 3.18× 10−7 4.55× 10−7

0.2 3.40× 10−11 7.20× 10−8 1.43× 10−7 7.00× 10−13 1.53× 10−7 2.61× 10−7 1.14× 10−11 1.04× 10−7 1.79× 10−7 2.31× 10−12 1.44× 10−7 2.49× 10−7

0.3 1.29× 10−11 6.25× 10−8 9.65× 10−8 3.62× 10−11 9.67× 10−8 1.13× 10−7 2.47× 10−11 1.21× 10−7 1.82× 10−7 5.35× 10−12 1.58× 10−7 2.37× 10−7

0.4 2.07× 10−11 4.45× 10−8 6.94× 10−8 2.53× 10−10 1.52× 10−7 2.02× 10−7 2.81× 10−11 1.20× 10−7 1.44× 10−7 6.32× 10−13 1.23× 10−7 2.50× 10−7

0.5 4.92× 10−11 5.01× 10−8 7.39× 10−8 4.85× 10−11 1.26× 10−7 2.35× 10−7 5.76× 10−11 9.82× 10−8 1.54× 10−7 2.07× 10−12 1.47× 10−7 2.15× 10−7

0.6 1.17× 10−10 6.17× 10−8 8.34× 10−8 7.45× 10−12 1.00× 10−7 1.35× 10−7 5.42× 10−12 1.09× 10−7 1.46× 10−7 6.89× 10−13 1.13× 10−7 1.86× 10−7

0.7 1.74× 10−11 3.69× 10−8 5.93× 10−8 3.03× 10−11 9.03× 10−8 1.24× 10−7 7.69× 10−11 8.60× 10−8 1.10× 10−7 1.32× 10−11 1.14× 10−7 2.64× 10−7

0.8 5.05× 10−11 5.04× 10−8 6.18× 10−8 1.74× 10−11 1.19× 10−7 2.21× 10−7 2.00× 10−12 1.25× 10−7 1.96× 10−7 2.69× 10−11 1.74× 10−7 3.58× 10−7

0.9 9.22× 10−10 1.08× 10−7 1.27× 10−7 3.46× 10−10 2.02× 10−7 2.45× 10−7 8.04× 10−10 2.36× 10−7 2.71× 10−7 1.65× 10−12 2.51× 10−7 4.53× 10−7

1 3.15× 10−14 6.44× 10−8 8.26× 10−8 1.19× 10−12 1.33× 10−7 2.12× 10−7 1.13× 10−11 1.77× 10−7 2.43× 10−7 1.65× 10−13 2.25× 10−7 4.73× 10−7
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Figure 8. Graphs of statistical data in Table 4. (a) For case 1; (b) For case 2; (c) For case 3; (d) For case 4.

5.3. Problem 3: Dynamics of FSS Based on the Variation of Wall Stretching Factor δ

In problem 3, the dynamic behavior of FSS in Equation (9) is analyzed by fixing α = 1
and µ = 0 while allowing variation in wall movement δ parameter. The flow is along the
dynamic wall with zero mass transfer and maximum accelerated main stream. The FSS is
updated for this problem as:

g′′′ + gg′ + 1− g′2 = 0, (48)

g(0) = 0, g′(0) = δ, and g′(1) = 1. (49)
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The formulation of cases of the system, Equations (48) and (49), is based on δ = 0.4, δ = 0.7
and δ = 1 and fitness functions for N = 11 are designed as:

ec1 =
1
11

11

∑
m=1

(
ĝ′′′m + ĝm ĝ′m +

(
1− ĝ2

m

))2
+

1
3

(
ĝ2

0 +
(

ĝ′0 − 0.4
)2

+
(

ĝ′211 − 1
)2
)

, (50)

ec2 =
1
11

11

∑
m=1

(
ĝ′′′m + ĝm ĝ′m +

(
1− ĝ2

m

))2
+

1
3

(
ĝ2

0 +
(

ĝ′0 − 0.7
)2

+
(

ĝ′211 − 1
)2
)

, (51)

ec3 =
1
11

11

∑
m=1

(
ĝ′′′m + ĝm ĝ′m +

(
1− ĝ2

m

))2
+

1
3

(
ĝ2

0 +
(

ĝ′0 − 1
)2

+
(

ĝ′211 − 1
)2
)

. (52)

The similar procedure is followed for this problem, as for problems 1 and 2, to minimize
the fitness functions in Equations (50)–(52). The set of weights is obtained for each case
and put in Equation (13). The solutions are shown in Equations (53)–(55). The weights are
also shown graphically in Figure 9b–d for cases 1, 2, and 3, respectively.

gc1(η) =
10.6223

1 + e−(−0.0780η−11.0594)
+

3.7981
1 + e−(0.8614η−0.4384)

+ . . . +
19.5012

1 + e−(0.4413η−2.0520)
, (53)

gc2(η) =
−6.9289

1 + e−(0.0545η+12.2082)
+

−6.2333
1 + e−(−0.5813η−0.4090)

+ . . . +
−2.6900

1 + e−(−12.6647η−20.6995)
, (54)

gc3(η) =
29.8111

1 + e−(−0.0107η−30)
+

−2.7662
1 + e−(−0.5871η−1.1425)

+ . . . +
−10.1321

1 + e−(−0.2161η−23.3399)
. (55)

The full form of Equations (53)–(55) is shown in the Appendix A with up to 14 decimal
places. The results of approximate solution in Equations (53)–(55) are graphically shown in
Figure 9a for 11 grid points by taking inputs ηε[0, 1] with step size 0.1. It is observed that
the solutions overlap with the numerical solutions of GA-ASM. The numerical comparison
of solutions is also given in Table 5.

Table 5. Solution comparison of problem 3.

t GA-ASM ANN-SCA-SQP GA-ASM ANN-SCA-SQP GA-ASM ANN-SCA-SQP

0.886, 0.937, 0.855 Case 1 Case 2 Case 3

0 1.82× 10−9 8.36× 10−7 −3.26× 10−10 −8.28× 10−7 0.00000000201791 −0.00000000634108

0.886, 0.937, 0.855 0.1 0.04453269581415 0.04453360804663 0.07238126197681 0.07238058398271 0.10000000050947 0.09999997846340

0.2 0.09759136204994 0.09759233310773 0.14920280312497 0.14920225200297 0.20000000004858 0.19999995379779

0.886, 0.937, 0.855 0.3 0.15840171232390 0.15840276011892 0.23000887771757 0.23000841060721 0.30000000060035 0.29999992810436

0.4 0.22624072485599 0.22624184509193 0.31438156183320 0.31438112523451 0.39999999987835 0.39999990191691

0.886, 0.937, 0.855 0.5 0.30044143682626 0.30044259729796 0.40194144929501 0.40194100409706 0.49999999785942 0.49999987338517

0.6 0.38039632386608 0.38039747408055 0.49234775039453 0.49234728211637 0.59999999685985 0.59999984254489

0.886, 0.937, 0.855 0.7 0.46555936972989 0.46556045397667 0.58529783585290 0.58529734522883 0.69999999814024 0.69999981035180

0.8 0.55544695545873 0.55544793048215 0.68052628070707 0.68052576767795 0.79999999993310 0.79999977481840

0.886, 0.937, 0.855 0.9 0.64963770195136 0.64963855179176 0.77780347991899 0.77780293432006 0.89999999991166 0.89999972856515

1 0.74777138206612 0.74777211254454 0.87693391214263 0.87693331575639 0.99999999945938 0.99999966257045
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Figure 9. (a) Problem 3: Graph between stream function and distance from the wall; (b–d) the trained unknown (weights) for ANN
through the proposed hybrid optimization approach.

Moreover, the reliability and effectiveness of the proposed method are evaluated by
statistical study for 100 independent runs executed by the ANN-SCA-SQP algorithm. In a
statistical study based on minimum (MIN), mean, and standard deviation (STD), the values
of mean and STD seem consistent for each case. For all the cases MIN, mean and STD
values are between 10−10 to 10−13, 10−8 to 10−9, and 10−7 to10−8, respectively, while a
small decrease found in accuracy is observed by increasing the value of µ. The detailed
statistical results are given in Table 6, for graphical illustration of results in Table 6, we have
presented Figure 10. The statistical result shows the consistency, reliability, accuracy
and convergence.
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Figure 10. Graphs of statistical data in Table 6. (a) For case 1; (b) For case 2; (c) For case 3.

Table 6. Statistical evaluation of problem 3 in terms of minimum, mean, and standard deviation.

t Case 1 Case 2 Case 3

MIN MEAN STD MIN MEAN STD MIN MEAN STD

0 1.82× 10−11 1.09× 10−8 1.20× 10−8 7.18× 10−11 5.41× 10−8 8.06× 10−8 7.18× 10−11 7.34× 10−9 9.28× 10−9

0.1 3.65× 10−10 3.15× 10−8 3.21× 10−8 1.93× 10−11 8.45× 10−8 1.01× 10−7 1.93× 10−11 2.26× 10−8 2.17× 10−8

0.2 1.51× 10−11 8.78× 10−9 9.38× 10−9 2.37× 10−12 5.82× 10−8 1.11× 10−7 2.37× 10−12 7.99× 10−9 1.29× 10−8

0.3 7.06× 10−12 1.10× 10−8 1.54× 10−8 1.44× 10−12 2.69× 10−8 5.82× 10−8 1.44× 10−12 8.01× 10−9 1.00× 10−8

0.4 1.55× 10−11 1.33× 10−8 1.47× 10−8 2.46× 10−10 3.81× 10−8 5.19× 10−8 2.46× 10−10 8.97× 10−9 1.01× 10−8

0.5 1.26× 10−11 1.02× 10−8 9.96× 10−9 6.19× 10−14 4.39× 10−8 6.97× 10−8 6.19× 10−14 7.01× 10−9 9.94× 10−9

0.6 5.43× 10−12 8.22× 10−9 1.14× 10−8 1.55× 10−12 2.81× 10−8 4.23× 10−8 8 1.55× 10−12 7.39× 10−9 9.72× 10−9

0.7 6.89× 10−13 1.07× 10−8 1.44× 10−8 1.77× 10−11 2.76× 10−8 4.53× 10−8 1.77× 10−11 6.01× 10−9 7.67× 10−9

0.8 1.69× 10−10 1.08× 10−8 1.22× 10−8 2.00× 10−10 5.45× 10−8 7.62× 10−8 2.00× 10−10 1.00× 10−8 1.05× 10−8

0.9 3.96× 10−12 2.42× 10−8 3.33× 10−8 1.24× 10−13 5.06× 10−8 7.90× 10−8 1.24× 10−13 1.30× 10−8 1.65× 10−8

1 7.47× 10−11 1.47× 10−8 1.64× 10−8 1.36× 10−10 6.32× 10−8 8.62× 10−8 1.36× 10−10 1.25× 10−8 1.09× 10−8

6. Evaluation through Performance Matrices

In this section, for the solution of all three problems, the scheme is executed 100 times
and then analyzed comparatively on the basis of performance measures MAD, ENSE,
and RMSE along with global extension. The provision of comparative analysis is in terms
of convergence accuracy and global performance evaluators. Firstly, the accuracy and
convergence are discussed and secondly global performance operators.

6.1. Accuracy and Convergence

For the evaluation of convergence and accuracy, 100 different runs are performed
independently to find an appropriate set of unknowns or weights for all three problems
of FSS. The sorted data of multiple runs of MAD, RMSE, ENSE and fitness are plotted
in Figures 11–14 for all problems of FSS, respectively. The graph semi-log-scale on the
y-axis is used to clarify the small variation. The fitness of problems are also drawn with
convergence plots given in Figure 13. The values of MAD, RMSE, ENSE, and the fitness
of problem 1 are 10−6 to 10−8, 10−8 to 10−15, 10−6 to 10−8 and 10−6 to 10−10, values for
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problem 2 are 10−6 to 10−8, 10−8 to 10−15, 10−6 to 10−8 and 10−6 to 10−10, and values for
problem 3 are 10−6 to 10−8, 10−8 to 10−15, 10−6 to 10−8 and 10−6 to 10−12 respectively. It
seems that the values of global operators are comparatively better.
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Figure 11. (a–d) show data of performance matrices for problem 2, based on the variation of µ. The data set is arranged in
descending order and plot with a line having a log along the y-axis.
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Figure 12. (a–d) show data of performance matrices for problem 3, based on the variation of δ. The data set is arranged in
descending order and plot with a line having a log along the y-axis.
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(a)Analysis through histogram of case 1,
Problem 1

(b)Analysis through boxplot of case 1,
Problem 2
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Problem 1

(d)Analysis through boxplot of case 2,
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(e)Analysis through histogram of case 3,
Problem 1

(f)Analysis through boxplot of case 3,
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Figure 13. (a–i) show graphical analysis of fitness of all problems and their cases.

6.2. Analysis Based on Global Performance Indices

To evaluate the performance of proposed methodology through global indices, data
are collected for 100 independent runs for the solution of all problems of FSS. The values
of global operators with their means and standard deviation are given in Table 7. It is
observed that values of these global operators are about 10−9 to 10−10, 10−9 to 10−10, 10−10

to 10−11, and 10−11 to 10−13 for GMAD, GRMSE, GENSE, and GFIT, respectively. Normally,
the values of GFIT, GMAD, GENSE, and GRMSE express the consistency and reliability of
the proposed scheme.
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Table 7. Statistical data of global operators in terms of minimum, mean, and standard deviation.

Problems Cases
GMAD GRMSE GENSE GFIT

MIN MEAN STD MIN MEAN STD MIN MEAN STD MIN MEAN STD

1

1 4.36× 10−10 1.86× 10−8 2.45× 10−8 4.77× 10−10 1.98× 10−8 2.62× 10−8 5.33× 10−17 3.46× 10−11 7.14× 10−11 1.12× 10−12 2.84× 10−10 2.34× 10−10

2 1.98× 10−9 5.68× 10−8 9.59× 10−8 2.43× 10−9 5.83× 10−8 9.73× 10−8 2.49× 10−15 3.82× 10−10 1.05× 10−9 4.31× 10−12 3.56× 10−10 2.63× 10−10

3 1.20× 10−9 4.48× 10−8 5.96× 10−8 1.47× 10−9 4.73× 10−8 6.06× 10−8 1.60× 10−14 1.45× 10−10 3.15× 10−10 3.98× 10−12 2.90× 10−10 2.69× 10−10

4 4.62× 10−9 4.54× 10−8 3.50× 10−8 5.01× 10−9 4.63× 10−8 3.49× 10−8 4.74× 10−13 6.98× 10−11 8.78× 10−11 9.98 10-11 6.15 10-10 3.57 10-10

2

1 1.41× 10−9 6.52× 10−8 1.34× 10−7 1.45× 10−9 6.85× 10−8 1.38× 10−7 6.13× 10−14 6.35× 10−10 2.35× 10−9 1.09× 10−11 2.01× 10−10 1.46× 10−10

2 2.40× 10−10 3.55× 10−8 6.97× 10−8 2.61× 10−10 3.66× 10−8 7.12× 10−8 2.50× 10−16 1.66× 10−10 6.13× 10−10 4.49× 10−12 2.69× 10−10 2.50× 10−10

3 3.55× 10−10 5.16× 10−8 1.15× 10−7 4.36× 10−10 5.42× 10−8 1.21× 10−7 7.09× 10−16 4.05× 10−10 1.47× 10−9 1.14× 10−11 2.78× 10−10 2.33× 10−10

4 2.82× 10−10 4.28× 10−8 5.52× 10−8 3.49× 10−10 4.40× 10−8 5.49× 10−8 1.78× 10−15 1.16× 10−10 2.53× 10−10 2.18× 10−12 1.58× 10−10 1.36× 10−10

3
1 6.61× 10−10 4.24× 10−8 7.08× 10−8 7.37× 10−10 4.55× 10−8 7.81× 10−8 8.34× 10−15 9.58× 10−11 3.02× 10−10 1.63× 10−11 1.43× 10−10 9.40× 10−11

2 4.47× 10−10 3.61× 10−8 5.70× 10−8 5.33× 10−10 3.69× 10−8 5.71× 10−8 3.94× 10−16 6.24× 10−11 1.78× 10−10 2.61× 10−12 1.01× 10−10 8.05× 10−11

3 1.41× 10−9 7.11× 10−8 7.12× 10−8 1.73× 10−9 7.73× 10−8 7.78× 10−8 2.18× 10−14 9.98× 10−11 2.29× 10−10 7.29× 10−13 5.18× 10−11 4.33× 10−11
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Figure 14. (a–d) show data of performance matrices for problem 1, based on the variation of α. The data set is arranged in
descending order and plot with a line having a log along the y-axis.

6.3. Complexity Analysis

For the performance of any technique, parameter setting is a key step. The ill parame-
ters that can diverge affect the performance of a technique. In such a way, the performance
of ANN-SCA-SQP algorithm is analyzed by variation of its parameter population and
number of neurons. For the best performance number of neurons and population, 30 is
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taken. The results for all parameters are evaluated in terms of absolute error calculated
using a reference solution of GA-ASM. The data for variation in population are reported
in Table 8. The tuning of parameters is tested on all three problems for different cases.
From the table, it seems that the absolute errors in solution of FSS for 20 population size
are between 10−6 to 10−8; for a population size of 30, the errors lies between 10−8 to 10−10

and, for a population size of 40, the errors in solution are from 10−4 to 10−6, which verifies
that the ANN-SCA-SQP algorithm has the best performance for a population size of 30.

Table 8. Analysis of ANN-SCA-SQP by variation of population size.

Absolute Errors for Input Values η

Problem/Case Population η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4 η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1.0

1
20 7.89× 10−7 3.78× 10−7 1.50× 10−7 3.22× 10−7 4.62× 10−8 7.30× 10−7 1.31× 10−6 1.46× 10−6 1.20× 10−6 8.37× 10−7 8.04× 10−7

30 1.47× 10−7 9.31× 10−8 2.00× 10−8 8.83× 10−9 4.14× 10−8 4.45× 10−8 3.50× 10−10 4.19× 10−8 3.58× 10−8 2.98× 10−8 5.08× 10−8

40 3.43× 10−5 4.18× 10−5 4.39× 10−5 4.21× 10−5 3.72× 10−5 2.89× 10−5 1.56× 10−5 4.61× 10−6 3.34× 10−5 7.16× 10−5 0.000119

2
20 6.16× 10−5 1.09× 10−5 5.36× 10−6 2.44× 10−5 0.00011 0.000254 0.000447 0.000678 0.000931 0.001198 0.001482
30 2.35× 10−8 3.07× 10−8 2.92× 10−8 3.01× 10−8 3.89× 10−8 3.75× 10−8 2.50× 10−8 1.65× 10−8 1.51× 10−8 5.67× 10−9 1.19× 10−8

40 8.93× 10−7 4.25× 10−7 1.51× 10−7 4.82× 10−7 5.15× 10−7 4.75× 10−7 6.27× 10−7 1.07× 10−6 1.69× 10−6 2.30× 10−6 2.74× 10−6

3
20 7.89× 10−7 3.78× 10−7 1.50× 10−7 3.22× 10−7 4.62× 10−8 7.30× 10−7 1.31× 10−6 1.46× 10−6 1.20× 10−6 8.37× 10−7 8.04× 10−7

30 2.83× 10−8 3.89× 10−8 4.10× 10−8 1.47× 10−8 1.14× 10−8 3.96 10-09 3.74× 10−8 8.12× 10−8 9.40× 10−8 7.62× 10−8 6.50× 10−8

40 3.43× 10−5 4.18× 10−5 4.39× 10−5 4.21× 10−5 3.72× 10−5 2.89× 10−5 1.56× 10−5 4.61× 10−6 3.34× 10−5 7.16× 10−5 0.000119

The errors for variation in the number of neurons are reported in Table 9. The tuning
of neurons is tested on all three problems for different cases. From the table, it seems that
the absolute errors in the solution of FSS for 15 neurons are between 10−4 to 10−6, for a
population size of 30, the errors lie between 10−8 to 10−10 and, for 45 neurons, the errors in
solution are from 10−4 to 10−6, which verifies that the ANN-SCA-SQP algorithm has the
best performance on 30 neurons.

Table 9. Analysis of ANN-SCA-SQP by variation in number of neurons.

Absolute Errors for Input Values η

Problem/Case No. of Neurons η = 0 η = 1 η = 0.2 η = 0.3 η = 0.4 η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9 η = 1.0

1
15 8.80× 10−6 9.21× 10−6 1.01× 10−5 9.97× 10−6 8.67× 10−6 7.13× 10−6 6.80× 10−6 8.63× 10−6 1.23× 10−5 1.64× 10−5 1.92× 10−5

30 1.47 10-07 9.31× 10−8 2.00× 10−8 8.83× 10−9 4.14× 10−8 4.45× 10−8 3.50× 10−10 4.19× 10−8 3.58× 10−8 2.98× 10−8 5.08× 10−8

45 0.000937 0.044811 0.079813 0.10418 0.118043 0.121557 0.11491 0.098331 0.072095 0.036523 0.008015

2
15 0.000133 0.000144 0.000149 0.000152 0.000155 0.000158 0.000158 0.000152 0.000138 0.000117 9.10× 10−5

30 2.35× 10−8 3.07× 10−8 2.92× 10−8 3.01× 10−8 3.89× 10−8 3.75× 10−8 2.50× 10−8 1.65× 10−8 1.51× 10−8 5.67× 10−9 1.19× 10−8

45 2.01× 10−5 1.84× 10−5 1.76× 10−5 1.84× 10−5 1.90× 10−5 1.82× 10−5 1.61× 10−5 1.40× 10−5 1.33× 10−5 1.38× 10−5 1.41× 10−5

3
15 1.28× 10−5 2.82× 10−5 3.54× 10−5 3.05× 10−5 1.03× 10−5 2.59× 10−5 7.61× 10−5 0.000137 0.000203 0.000274 0.00035
30 2.83× 10−8 3.89× 10−8 4.10× 10−8 1.47× 10−8 1.14× 10−8 3.96× 10−9 3.74× 10−8 8.12× 10−8 9.40× 10−8 7.62× 10−8 6.50× 10−8

45 1.26× 10−5 1.26× 10−5 1.25× 10−5 1.19× 10−5 1.09× 10−5 9.77× 10−6 8.88× 10−6 8.45× 10−6 8.30× 10−6 7.99× 10−6 7.13× 10−6

The number of input points depend on the step size if input points vary between
0 and 1, if the step size is taken as 0.02, the interval will be split into 50 equal parts with
51 points and, if the step size is changed to 0.05, the points will change to 20, etc. The input
points do not effect the performance of the proposed approach. All three problems are
solved by execution of the proposed approach with 51, 41, 21, and 11 input points, and their
results are drawn in Figure 15. It can clearly be observed that there is no effect on the
solution except for a concentration of points.
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Figure 15. The graphs shows solution on input points 51, 41, 21, and 11, respectively. There is no
effect of increasing or decreasing input points on solutions. (a) Problem 1: Solution for 51, 41, 21 and
11 input points; (b) Problem 2: Solution for 51, 41, 21 and 11 input points; (c) Problem 3: Solution for
51, 41, 21 and 11 input points.

7. Conclusions

We considered the celebrated nonlinear dynamic differential equation, known as the
Falkner–Skan system, that arises in fluid dynamics for boundary-layer flow with the stream-
wise pressure gradient transfer of mass over a dynamic wall. It has many applications like
Falkner–Skan flow of chemically reactive cross nanofluid with heat generation/absorption
and Falkner–Skan flow of Maxwell nanomaterials with heat and mass transfer over a
static/moving wedge. To analyze dynamic characteristics of the boundary flow of the FS
model, neurocomputing is utilized. An effective and robust neuro-stochastic computational
solver is designed by the combination of unsupervised and supervised mechanisms by ex-
ploiting the worth of artificial neural networks with the help of Sine-Cosine Algorithm and
Sequential Quadratic Programming. The numerical results found by the ANN-SCA-SQP
algorithm are compared graphically as shown in Figures 5, 7 and 9, and numerically given
in Tables 1, 3 and 5, with the results of GA-ASM . The convergence and accuracy are veri-
fied by the consistent overlapping of solutions obtained by the proposed scheme with the
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reference solutions. For the evaluation of robustness of the designed methodology, different
variants of the Falkner–Skan system based on the variation of wall stretching parameter
δ, streamwise pressure gradient parameter α, and mass transfer at wall parameter µ are
executed 100 times. The statistical evaluation based on 100 runs shows a small variation in
values along with mean and standard variation. Different statistical performance measures
were used i.e., MAD (Mean absolute deviation), RMSE (root mean square error), and ENSE
(error in Nash–Sutcliffe efficiency) to analyze the performance of the proposed scheme.
The global version of MAD, ENSE, and RMSE were also implemented along with their
mean and standard deviation for reliability and effectiveness. Convergence plots were
used for validation i.e., boxplot and histogram with normal distribution.

As there is a possibility that in the future other hybrid techniques may out perform the
ANN-SCA-SQP algorithm, for further better accuracy and convergence, one may design a
neural network-based artificial intelligence solver trained by a marine predator algorithm,
particle swarm optimization, or other such evolutionary algorithms, etc., for the solution of
variants of the Falkner–Skan system. The ANN-SCA-SQP algorithm can be implemented
for other physical, complex, and biological problems.
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Appendix A

Approximated solution of problem 1 for all cases:

gc1(η) =
7.87836342162768

1 + e−(0.886012386992085η−1.72218406243382)
+

−3.94998347150690
1 + e−(−9.57893780202074η−22.8166219837040)

+
0.00682256641931040

1 + e−(5.09999272865296η−8.27285659877981)
+

−12.1752100238480
1 + e−(−13.2437845409868η−25.5427775843190)

+
17.3889383163753

1 + e−(−1.09118478653714η−3.77090407319657)
+

−0.0350811277376602
1 + e−(0.0732626841290201η+13.4437840186043)

+
4.73957108812539

1 + e−(6.99993786026066η−19.3910131716001)
+

−0.200582444909643
1 + e−(6.99993786026066η+24.9266845869495)

+
−2.21758180223300

1 + e−(0.909233858204770η+0.442323650910280)
+

−19.4404271466426
1 + e−9.97392865949384η−19.2287655090247)

, (A1)

gc2(η) =
5.14035320423249

1 + e−(1.25191046826097η−4.73830687416967
+

−6.73678252541636
1 + e−(−29.9925754469261η−19.1042795441711)

+
−5.97597929880291

1 + e−(1.25739897207087η+2.08216581269597)
+

3.08370403155240
1 + e−0.449936184456119η−7.63512121228088)

+
19.2240727364342

1 + e−(−0.853668038542871η−3.16457109971809)
+

25.3596943911278
1 + e0.202277070705441η−1.41618253668304)

+
−1.43402682686793

1 + e−(9.31120486775986η+13.3096048760497)
+

10.4884971736156
1 + e−0.181130123759785η−17.6546052866385)

+
2.11473522165581

1 + e−(0.986803092873646η−0.164471026440938)
+

6.20343683446747
1 + e−1.66637382492571η−10.4633659927988)

, (A2)

gc3(η) =
9.89100631955405

1 + e−(6.60991428725725η−29.8573995984460
+

12.3422899288533
1 + e−(0.0286765754238881η−10.9005621648372)

+
8.85432754858503

1 + e−(1.52523445812372η−5.79065021027889)
+

−3.35038587409801
1 + e−(−0.0544681171849533η−8.92924892097382)

+
−2.05439995377823

1 + e−(−3.43807114396258η+29.525004742456)
+

19.1852783176006
1 + e−(−1.59819194279389η−2.28580265311327)

+
3.90987926073757

1 + e−(1.44068174566448η−24.1265843865795)
+

12.8568792663011
1 + e−(0.252891071716880η−0.115633528840610)

+
−4.17169381490917

1 + e−(13.0988996250089η23.8723213491371)
+

−18.6040871901027
1 + e−(−1.15587734783564η−2.34394343145133)

, (A3)

gc4(η) =
−2.25715619880877

1 + e−(1.17752273972245η+0.0490323818612627
+

−4.19597307635984
1 + e−(8.60059818955635η−30.0000005031497)

+
5.81645052069167

1 + e−(−2.59893906954114η−2.26873022584258)
+

11.7088601742965
1 + e−(1.51146214483898η−12.2708440738918)

+
12.8467185768014

1 + e−(0.663995785861310η+0.651649438268842)
+

20.9552891374767
1 + e−(5.80033109081801η+13.2754609635146)

+
−1.32893471172670

1 + e−(20.9229180711128η+16.7231244899465)
+

−17.4312667850442
1 + e−(7.32178292444245η−31.4438293886643)

+
−27.0939021314063

1 + e−(−1.77687446776186η+7.49257295303940)
+

3.81418567176834
1 + e−(−3.35646298701331η+14.9105595398540)

. (A4)
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Approximated solution of problem 2 for all cases:

gc1(η) =
0.393186143204226

1 + e−(−15.4530561261540η−28.1365682325099
+

14.1327028965341
1 + e−(−1.16184774595146η−2.34607039789879)

+
−12.7575876390472

1 + e−(−0.687465779767490η+3.28197571046131)
+

4.72954133684452
1 + e−(0.154613959258218η−0.168446269018335)

+
20.7645374197723

1 + e−(1.28504713572369η−7.68128721241741)
+

−6.15181498117780
1 + e−(0.640952026512222η−14.3337587212102)

+
10.5776262645944

1 + e−(−0.708089052040594η+16.0885094681750)
+

0.491466795443296
1 + e−(4.16053391330251η+16.2120269404568)

+
−3.43638618340971

1 + e−(−0.943137790572956η+0.0553759925406189)
+

−0.318046406859706
1 + e−(6.40549504261589η+12.2749020327602)

, (A5)

gc2(η) =
−8.47317900841952

1 + e−(−11.9477047132981η−18.1566701360692
+

−6.33591990117719
1 + e−(−0.163084568883509η−4.38578114087729)

+
−0.165779753418781

1 + e−(−10.3014537212347η−10.0041641527273)
+

−1.17904389253406
1 + e−(−1.38009051089181η+1.00333757703818)

+
8.12169845689494

1 + e−(0.825916353174769η−2.70915672868049)
+

−7.37198229475499
1 + e−(−0.0234213131749906η−13.1476194351527)

+
15.6703681013559

1 + e−(−1.41495646938313η−3.09517694217300)
+

16.3889676382044
1 + e−(−1.40304426659244η−9.35565379932698)

+
0.572714326624283

1 + e−(1.70245176657341η+0.0114206190949522)
+

−0.594934948505521
1 + e−(0.459627953388707η−1.23115206064770)

, (A6)

gc3(η) =
−1.07796758028332

1 + e−(−1.28543240703059η+0.196053702026635
+

6.19592319883508
1 + e−(−0.143531470530927η−10.1054719351599)

+
1.29028342234795

1 + e−(−23.0695603927930η−16.0019589180604)
+

24.5020718437534
1 + e−(0.350869473680966η−2.26511555868703)

+
−11.0881470649015

1 + e−(0.599588222339071η−14.3258787098489)
+

29.0956646461048
1 + e−(6.67545138780301η−22.4456035348698)

+
8.90692480915053

1 + e−(1.51624995720002η−29.9999999880872)
+

12.8164183892417
1 + e−(−1.65771204510768η−2.87334837671866)

+
1.36781506017920

1 + e−(5.20394229806136η−24.0355802049677)
+

−1.69861515711933
1 + e−(−3.89342842336576η−2.87334837671866)

, (A7)

gc4(η) =
−1.24713293446349

1 + e−(1.53567702451395η+3.57669397470700
+

−0.676680032898537
1 + e−(0.655768801828501η+17.6555488346129)

+
−0.390350827947282

1 + e−(1.25841119561704η+1.11266099970389)
+

−1.43469475597621
1 + e−(1.73771405866776η+21.5734062745439)

+
18.3691722439688

1 + e−(−1.66248982379959η−3.134135979482099)
+

0.0368793877160828
1 + e−(−10.3410764878639η−22.5901794608600)

+
−0.248119373172110

1 + e−(−29.5353912988548η−26.0173040624925)
+

1.17767407311012
1 + e−(0.0539736585005905η−11.6757725506848)

+
2.25917320036582

1 + e−(1.19164383326462η+0.342010952068173)
+

27.6538708494121
1 + e−(0.308494157838889η−2.29512336973742)

. (A8)
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Approximated solution of problem 3 for all cases:

gc1(η) =
10.6223016876198

1 + e−(−0.0780597051405579η−11.0594121935616
+

3.79819466293440
1 + e−(0.861458499363787η−0.438470609384736)

+
0.698741371189724

1 + e−(0.786140690777637η−8.78130980650411)
+

11.8499512787238
1 + e−(−1.50650777498768η−4.61144049518847)

+
−4.44419822650151

1 + e−(0.753724071718736η−0.958293015056910)
+

−9.88990534420985
1 + e−(5.83224502578263η−29.2024447592141)

+
0.645221674628451

1 + e−(−22.3474380209428η−16.1474403196985)
+

−3.11073670076990
1 + e−(1.41635700479857η+2.14634670637277)

+
0.268695863418086

1 + e−(0.175996951996260η+0.897543573084633)
+

19.5012559927405
1 + e−(0.441361620015144η−2.05207094310822)

, (A9)

gc2(η) =
−6.92890308647009

1 + e−(0.0545381880656413η+12.2082857209819
+

−6.23331078235345
1 + e−(−0.581378690579424η−0.409023904740514)

+
−29.9324856748492

1 + e−(1.78727279077926η−11.7743466273260)
+

12.0136230358825
1 + e−(0.708676961683629η+4.19290104077455)

+
1.77880725037356

1 + e−(−1.22968746248694η−1.83425889073550)
+

−0.337375691939904
1 + e−(−5.40657258361172η+19.2451728127842)

+
−2.85909630821726

1 + e−(−5.02180707954942η+29.9999981363404)
+

9.02834428332113
1 + e−(−1.34386446057716η−3.84329948847535)

+
8.68032428040273

1 + e−(0.651475142466642η−3.18673553894291)
+

−2.69002422724243
1 + e−(−12.6647171172223η−20.6995737039304)

, (A10)

gc3(η) =
29.8111938205376

1 + e−(−0.0107097290254530η−30)
+

−2.76626499276282
1 + e−(−0.587109702702231η−1.14253953960096)

+
−1.33492673261703

1 + e−(10.7490644221616,η+15.7972328680717)
+

10.0599018805831
1 + e−(0.345153770567496η−1.00031317237958)

+
0.216801087201179

1 + e−(−0.00218639525210423,η−1.82671560273401)
+

1.92259401563730
1 + e−(1.25701386073571η−7.35568198676311)

+
−0.715596259271990

1 + e−(29.9999999949570,η+30.0000000545581)
+

−5.92952657567245
1 + e−(0.415410262529314η−9.58930991734557)

+
−2.47384175974838

1 + e−(−1.13582523528867,η−5.02035265373169)
+

−10.1321182673046
1 + e−(−0.216186234504706η−23.3399939748596)

. (A11)
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