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Understanding the etiology of cerebrospinal fluid (CSF) shunt infections and reinfections
requires detailed characterization of associated microorganisms. Traditionally, identification of
bacteria present in the CSF has relied on culture methods, but recent studies have used high
throughput sequencing of 16S rRNA genes. Here we evaluated the method of shotgun DNA
sequencing for its potential to provide additional genomic information. CSF samples were
collected from 3 patients near the beginning and end of each of 2 infection episodes.
Extracted total DNA was sequenced by: (1) whole genome amplification followed by shotgun
sequencing (WGA) and (2) high-throughput sequencing of the 16S rRNA V4 region (16S).
Taxonomic assignments of sequences fromWGA and 16S were compared with one another
and with conventional microbiological cultures. While classification of bacteria was consistent
among the 3 approaches, WGA provided additional insights into sample microbiological
composition, such as showing relative abundances of microbial versus human DNA,
identifying samples of questionable quality, and detecting significant viral load in some
samples. One sample yielded sufficient non-human reads to allow assembly of a high-
quality Staphylococcus epidermidis genome, denoted CLIMB1, which we characterized in
terms of its MLST profile, gene complement (including putative antimicrobial resistance
genes), and similarity to other annotated S. epidermidis genomes. Our results demonstrate
that WGA directly applied to CSF is a valuable tool for the identification and genomic
characterization of dominant microorganisms in CSF shunt infections, which can facilitate
molecular approaches for the development of better diagnostic and treatment methods.

Keywords: cerebrospinal fluid, CSF shunt infection, microbiota, Staphylococcus epidermidis CLIMB1,
high throughput DNA sequencing
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INTRODUCTION

Hydrocephalus is a common cause of neurological disability in
children (Williams et al., 2007). Cerebrospinal fluid (CSF) shunt
placement allows children with hydrocephalus to survive and
avoid ongoing brain injury. However, CSF shunts cause new
chronic surgical problems, including the need for surgical
revisions from catheter obstruction and infections (Kestle,
2003; Simon et al., 2009; Simon et al., 2012). CSF shunt
infection treatment usually requires surgical removal of the
CSF shunt, two weeks of intravenous antibiotics tailored to
organisms recovered from conventional culture, and a second
surgery to place a new CSF shunt (Kestle et al., 2006; Simon et al.,
2010). Despite this aggressive treatment, reinfection rates range
from 20 to 25% (Kulkarni et al., 2001; Kestle et al., 2006; Tuan
et al., 2011). Reinfection rates are higher still for children with
their second CSF shunt infection (Tuan et al., 2011). An
improved understanding of the mechanisms of infection is
critical to effectively treat more than 2,000 CSF shunt
infections diagnosed each year (Simon et al., 2008).

Among the 20 to 25% of patients with treated CSF shunt
infection who develop reinfection, it is unclear whether
reinfections are caused by an organism that persists from one
infection to the next, or are independent infection events. In the
majority of reinfections (70%), the organism(s) recovered by
culture differ between the first and second infection (Tuan et al.,
2011). Detailed genomic characterization of microorganisms
from CSF can help answer questions about the microbial
determinants of infection and reinfection.

Several methods exist for characterizing microorganisms in
CSF and other clinical specimens. Microbiological culture
methods, typically bacterial cultures, are standard in the
routine clinical laboratory practice (Baron et al., 2013; Pittman
et al., 2014). While sensitive, culture methods are limited to
detecting specific human pathogens and often do not provide
strain information without additional investigation. Multilocus
sequence typing (MLST) can identify strain subtypes for certain
species, based on characteristic gene sequence markers (Belén
et al., 2009). 16S rRNA sequencing can identify a broader range
of species than either culture or MLST, including some not
detectable by culture, but is generally less sensitive and often
cannot discriminate microbes to the species level (Church et al.,
2020). Next-generation sequencing applications are increasingly
being used to address the limitations of these traditional methods
(Mitchell and Simner, 2019), potentially combined with mass
spectrometry (Hrabak et al., 2020). Whole genome sequencing
offers advantages such as detailed genomic characterization,
strain discrimination, identification of putative antibiotic
resistance genes, and characterization of metabolic capacity, all
of which are relevant in studying the dynamics of infection and
treatment response. However, in the case of CSF shunt infection,
samples have low microbial loads, and therefore a DNA
enrichment method must be applied prior to sequencing.
Whole genome amplification and shotgun sequencing (WGA)
is one such method, which was recently applied to a cohort of
hospitalized patients with infectious meningitis and encephalitis
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
(Wilson et al., 2019), identifying potential pathogens that were
previously underappreciated.

Here we describe a proof of concept study to assess the
usefulness of WGA for characterizing the microbiota of CSF
shunt infections, comparing results of WGA with those of
conventional microbiological culture and 16S rRNA high
throughput sequencing (16S).
MATERIALS AND METHODS

Study Subjects
The cohort considered in this study was previously described
(Whitlock et al., 2021). Eligible subjects were children ≤18 years
old undergoing treatment for conventional culture-confirmed
CSF shunt infection at either Seattle Children’s Hospital (SCH)
or Primary Children’s Hospital (PCH). Enrollment occurred
from 2010 to present at SCH and from 2008 to 2015 at PCH.
In this study we considered a subset of children who failed
treatment for CSF shunt infection (i.e. had CSF shunt
reinfection) and had CSF collected both near the beginning
and end of both infection episodes (n = 3).

CSF Specimen Collection
Collection and storage of CSF was done under standard sterile
conditions. The initial CSF sample for diagnosis of infection was
obtained by needle aspiration of the shunt reservoir outside the
operating room in a bedside “shunt tap”. The CSF sample near
the beginning of the infection, which was analyzed in this study,
was either left over from the initial diagnostic sample or was
obtained in the operating room under sterile conditions from the
system being removed during the first surgery to treat infection.
Samples near the end of the infection were generally obtained
under sterile bedside conditions through a sampling port within
sterile extension tubing attached to the external ventricular drain.

CSF samples were stored at 4°C upon collection, aliquoted
into vials of ~100 µl, and stored at -70°C. PCH samples were
shipped overnight to Seattle on dry ice for analysis.

Conventional Culture Identification
of Bacteria
All samples were tested by routine CSF aerobic culture in
hospital-certified laboratories at both SCH and PCH. The
methodology followed guidelines of the Clinical and
Laboratory Standards Institute guidelines (https://clsi.org).

DNA Extraction, 16S rRNA Gene
Amplification and Sequencing
A diagram of the experimental procedures, beginning with DNA
extraction and ending with taxonomic assignment of sequences,
is shown in Supplementary Figure 1.

DNA was extracted and purified from CSF samples using the
AGOWA mag Mini DNA isolation kit (AGOWA, LGC
Genomics, Berlin, Germany) and CSF microbiota amplicon
library construction was carried out using a one-step PCR
August 2021 | Volume 11 | Article 699506
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amplification targeting the V4 region of the bacterial 16S rRNA
gene as described (Whitlock et al., 2021).

Sequencing of the pooled libraries was carried out for 600
cycles on an Illumina MiSeq desktop sequencer using the Miseq
Reagent Kit v3.

Whole Genome Amplification and
Shotgun Sequencing
Whole genome amplification of DNA purified from CSF samples
and two mock community samples was carried out using the
REPLI-g Mini Kit (Qiagen, CN: 150023) in accordance with the
manufacturer’s recommendations. For each sample, including
mock communities and no-template controls, a random-
fragment library was constructed using the Nextera DNA Sample
PreparationKit (Illumina)withdual indexing and sequencedon the
HiSeq 2500 platform to produce 96-bp paired-end reads.

Taxonomic Assignment of 16S
Sequences With DADA2
Sequencing data were analyzed using the denoising program
DADA2 (Callahan et al., 2016) (version1.6.0) as described
(Nelson et al., 2019), and aligned to the SILVA 16S reference
database (v. 132) (Pruesse et al., 2007) to produce a 16S amplicon
taxa table for downstream computational analysis.

Taxonomic Assignment of Shotgun
Sequences With Kraken
Shotgun sequence data were analyzed using the program Kraken
(Wood and Salzberg, 2014) against a custom database that
included full genomic sequence of human, bacteria, virus, and
archaea obtained from GenBank.

De Novo Assembly and Annotation
Non-human DNA reads were assembled and annotated with the
Comprehensive Genome Analysis service on the PATRIC website
(Wattam et al., 2017). This analysis included assembly using SPAdes
(Bankevich et al., 2012), a standard pipeline for annotating sequences
with open reading frames and hypothetical function, and prediction
of antibiotic resistance genes using the comprehensive antibiotic
resistance database (CARD) (McArthur et al., 2013).

Multilocus sequence typing (MLST) analysis was performed on
the PubMLST.org website (Jolley et al., 2018) for S. epidermidis
(Thomas et al., 2007) and on Institute PasteurMLSTwebsite (http://
bigsdb.pasteur.fr) for K. pneumoniae (Diancourt et al., 2005).

The PATRIC Similar Genome Finder was searched with the
assembled S. epidermidis CLIMB1 genome, and the closest 100
matching genomes were identified. A rooted phylogenetic tree
was built using the Codon Tree method, with Staphylococcus
caprae C87 as an outgroup.
RESULTS

Sequencing-Defined Taxonomic
Composition of CSF DNA
CSF samples were expected to contain substantial amounts of
human DNA, along with DNA from other types of organisms,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
both pathogenic and opportunistic. We estimated the relative
DNA abundance of organisms from the major domains of life in
CSF samples by the distribution of reads in WGA (Figure 1).
Human DNA constituted the overwhelming majority of reads in
10 out of 12 samples (range: 76.5 to 99.9%, mean: 95.4%, median:
98.7%). Two replicates of one sample (P3 I2 B) yielded 60.8% and
87.2% human reads, respectively, and another (P2 I1 E) yielded
fewer than 0.5% human reads in both replicates. The low
abundance of human DNA in these latter 2 samples, together
with the detection of typical bacterial false positives (e.g. Delftia
spp., Bradyrhizobium spp.), indicated potential quality issues
with the latter 2 samples. These samples were therefore excluded
from further analysis. The proportion of sequencing reads
contributed by bacteria in the remaining 10 samples ranged
from 0.1 to 22.8% (mean: 3.1%, median: 0.6%). In 2 samples
collected near the beginning of an infection episode, the
proportion of bacterial reads was particularly high: Sample P1
I1 B – 15.7% and 22.8%, and P2 I2 B – 6.4% and 7.1%. Viral
sequences were observed in 2 samples at low frequency (< 0.2%).
No archaeal sequences were detected in any of the CSF samples.

Taxonomic assignment of WGA DNA reads identified 16
bacterial species that comprised 5% or more of bacterial reads in
at least 1 CSF sample (Figure 2). Species with less than 5% of reads
were assumed to be mostly artifactual and were excluded from the
analysis. Although the Kraken software has excellent specificity
(Lindgreen et al., 2016), it is difficult to distinguish true positives
from contaminants. Consistency between replicates was limited
even among species above the 5% threshold. Only the following
species were found in both replicates of the same CSF sample:
S. epidermidis in2 samples (P1 I1BandP2I1B), andK.pneumoniae
(P2 I2 B) and S. pyogenes (P3 I1 B) in one sample each. S. aureus
sequences were present in all samples, including the no template
negative controls.

The absolute number of bacterial reads, although not a rigorous
measure of abundance, was comparatively high in 2 samples
(Figure 2, samples P1 I1 B and P2 I2 B). In both cases, the non-
human reads were assigned to 1 predominant bacterial species
(Staphylococcus epidermis in sample P1 I1 B and Klebsiella
pneumoniae in P2 I2 B). These were also 2 of the 3 clinical samples
yielding 16S rRNA above the level of detection by qPCR (Figure 2).

In addition to S. epidermidis, sample P1 I1 B had about 300
(0.02%) reads assigned to a Staphylococcus phage StB20-like genome.
StB20 was previously described as a lysogenic bacteriophage isolated
from a coagulase-negative Staphylococcus capitis (Deghorain et al.,
2012). Sample P3 I1 B had 2000-3000 (0.1-0.2%) sequences mapped
to multiple torque teno virus (TTV) genomes. TTV has been
previously identified in CSF (Simner et al., 2018; Manso et al.,
2020), but its clinical significance is unclear. Our preliminary
findings from assembling the TTV reads indicate that the sample
contained potentially 5 or more strains of TTV and torque teno
mini virus.

Comparison of Identified Microorganisms
by Cultivation, 16S, and WGA
Identification of bacterial species by culture remains the gold
standard for the microbiological characterization of CSF. Of the
samples in this study, 6 were culture positive. We examined
August 2021 | Volume 11 | Article 699506
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whether WGA and 16S data were consistent with culture results
(Table 1). Culture made 7 bacterial species identifications in the
6 samples. Of these, WGA identified the same species as the most
or second-most abundant in 5 cases. In the remaining 2 cases, the
same species were present in the WGA data, but at an abundance
too low to be called out as positives. 16S results resembled those
from WGA, albeit at the genus and family levels. For example,
S. epidermidis and S. aureus could not be distinguished by 16S.

De Novo Genome Assembly
Aset of contigs of sufficient qualitywas assembleddenovo fromone
sample, P1 I1 B, yielding a draft S. epidermidis genome, which we
refer to hereafter as CLIMB1 (see below). Assembly of the non-
human reads from sample P2 I2 B yielded 55 contigs spanning 610
Kbp of DNA. 410 Kbp (68%) of this sequence showed over 99%
identity to multiple K. pneumoniae chromosomal sequences from
GenBank. 136 Kbp (22%) of the assembled sequence had a 100%
match to an unnamed plasmid of 239 Kbp total length from K.
pneumoniae KP14003. None of the 7 K. pneumoniaeMLST genes
were present in the assembled sequence. A possible explanation is
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
that the contigs represent only a partial assembly of a putative
K. pneumoniae genome, which missed the MLST genes by chance
due to low coverage (< 10%) of the chromosomal sequence.

Characterization of the S. epidermidis
CLIMB1 Genome
The S. epidermidis CLIMB1 assembly consisted of 76 contigs
comprising a total of 2.42 Mbp (Figure 3), in the range of typical
S. epidermidis genomes (Conlan et al., 2012). The contig N50 value
of 67.5 Kbp and L50 value of 12 reflects an acceptable quality of
assembly. There were a total of 2,337 predicted protein coding
sequences. Of these, 13 were annotated as putative antibiotic
resistance genes based on a CARD database search (Table 2).

The S. epidermidis CLIMB1 genome assembly contained all
seven MLST genes of S. epidermidis (arcC, aroE, gtr, mutS, pyrR,
tpiA, yqiL). MLST sequences of CLIMB1 assign this strain to
profile 16-2-1-2-2-15-1-1 or ST-16. The PubMLST database
contains 3 other previously described isolates with profile ST-
16, 2 from human(s) in the USA in 2001 and Russia in 2010 and
1 from an environmental source in Poland in 2007.
A

B

FIGURE 1 | Relative abundance of sequence reads in CSF samples across major domains of life. 12 CSF samples were analyzed in duplicate by WGA. The
samples came from 3 patients (P1, P2, P3), each having 2 infection episodes (I1, I2), with one sample collected near the beginning (B) and the other near the end (E)
of the episode. Control samples consisted of a mock bacterial community (Mock) and a negative, no-template sample (Negative). Assignment of sequence reads to
major domains of life was performed with Kraken: human (blue), bacteria (yellow), archaea (green), viruses (red), ambiguous, i.e. assignment to more than 1 domain
(white), and unclassified, i.e. not assigned to any domain (grey). The lower panel (B) is an expanded view of (A), showing the top percentile range and revealing 2
samples in which viral sequences were detected.
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A

B

D

C

FIGURE 2 | Distribution of bacterial species in sequence reads from 10 CSF samples. Sample labels are as in Figure 1. 2 samples with low human DNA
content were excluded. 21 species that yielded 5% or more bacterial reads in at least one sample are shown by name. Less frequent species assignments are
grouped into the “Other” category. Reads are plotted as percentages of bacterial reads (A) and counts (B, C). Panel C shows the same data as B, but scaled
to highlight the experimental samples, which had much lower counts than the mock positive control. qPCR measurements of 16S RNA are shown for
comparison (D) in units of genome equivalents per ml. The gray bar (Mock) represents a computed, non-experimental value. Measurements above the limit of
detection are marked with an asterisk.
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FIGURE 3 | Assembly of the S. epidermidis CLIMB1 genome. The circular display of the assembly shows, from outer to inner rings, the contigs, coding sequences
on the forward strand, coding sequences on the reverse strand, RNA genes, coding sequences of putative antimicrobial resistance genes, coding sequences of
putative virulence genes, GC content, and GC skew. The embedded table includes summary statistics of the assembly.
TABLE 1 | Comparison of taxonomic assignments of bacteria by microbiology lab culture, 16S, and WGA for 6 samples that were culture-positive.

Subject Infection
episode

Day of
infection

Cultivation 16S WGA

Taxonomic assignment Taxonomic
assignment

%
Reads

Rank Taxonomic
assignment

%
Reads

Rank

P1 I1 1 Staphylococcus epidermidis Staphylococcus 98 1 Staphylococcus
epidermidis

94 1

I2 2 Staphylococcus aureus Delftia 41 1 Staphylococcus aureus 78 1
Staphylococcus 22 3

P2 I1 1 Staphylococcus epidermidis Staphylococcus 77 1 Staphylococcus
epidermidis

41 1

I2 1 Klebsiella pneumoniae Enetrobacteriaceae 86 1 Klebsiella pneumoniae 83 1
Streptococcus mitis/oralis Streptococcus 0.01 22 Streptococcus mitis 0.002 110

P3 I1 2 Beta-hemolytic Streptococcus species,
Group A

Streptococcus 90 1 Staphylococcus aureus 46 1

Streptococcus
pyogenes

13 2

I2 1 Staphylococcus epidermidis Propionibacterium 31 1 Delftia acidovorans 16 1
Staphylococcus 5 8 Staphylococcus aureus 7 5

Staphylococcus
epidermidis

0.0004 446
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For 16S and WGA the most abundant taxon is shown as well as the closest matching taxon to the other methods. Abundance is given as 2 measures, averaged over replicates: percent
reads and rank when sorted by abundance.
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A phylogenetic tree was constructed with the S. epidermidis
CLIMB1 genome and the 100 most similar genomes from the
PATRIC database (Figure 4). Most of the included genomes
were annotated as S. epidermidis strains. 6 genomes were
described only as Staphylococcus strains. CLIMB1 belonged to
a compact clade of 26 S. epidermidis genomes, 9 of which
represented all strains with the ST-16 MLST profile. The clade
included a variety of clinical and environmental isolates. One
strain, NIHLM049, was described as a commensal strain that
clustered with nosocomial isolates in a pan-genome study of 28
genomes (Conlan et al., 2012). A group of 7 genomes (DE prefix)
were from environmental samples collected from the Duke
University campus (NCBI BioProject PRJNA543692). Another
6 genomes (SEPI) were ICU isolates from neonatal or critical
care units at the University of Washington Medical Center
(Roach et al., 2015). 4 genomes (APC) were from isolates from
human milk obtained in Ireland (Angelopoulou et al., 2020).
DISCUSSION

This proof of concept study showed the promise of WGA when
applied to CSF shunt infection samples. WGA results were
consistent with conventional microbiological culture and 16S.
Dominant bacterial species observed in this study have been
previously reported in CSF shunt infections (Simon et al., 2014a;
Simon et al., 2014b; Whitlock et al., 2021). S. epidermidis and S.
aureus are common occurrences, hypothesized to originate from
the normal skin flora. K. pneumoniae was previously found in 1
CSF shunt infection patient (Simon et al., 2014b).

Compared to 16S, WGA provided resolution at the species or
strain level for both bacteria and viruses. Compared to bacterial
culture, both 16S and WGA identified additional organisms of
potential clinical relevance. In some cases, the species recovered
by bacterial culture were identified in 16S and WGA at only low
relative levels. WGA data allowed us to assemble the entire
genomic sequence of an S. epidermidis strain from a CSF shunt
sample. Finally, WGA identified the presence of TTV viral
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
genomes in CSF shunt infection samples, which neither
bacterial culture nor 16S could detect.

WGA holds the promise of deta i l ed molecular
characterization of genomic DNA, which implies precise strain
identification, evaluation of putative antibiotic resistance genes,
and characterization of metabolic capacity. For example, the
S. epidermidis genome we assembled with WGA/SS data yielded
information about molecular strain type (MLST), antimicrobial
resistance gene content, and phylogenetic relationships to
previously identified strains. These results were achieved
without physical removal of the highly abundant human DNA
from CSF shunt infection specimens before processing for
sequencing. However, this analysis was only possible for a
sample with one predominant bacterial species, which yielded
a sufficient number of sequencing reads. Therefore, the utility of
WGA may be optimal at the beginning of CSF shunt infection,
before the bacterial infection is cleared by antibiotic treatment.

This work builds on an earlier report of the application of
WGA to a cohort of hospitalized patients with infectious
meningitis and encephalitis (Wilson et al., 2019). In contrast to
the earlier study, in which a minority (13%) of participants had
hardware present, all children in the current cohort had CSF
shunts. In addition, our study cohort had CSF shunt infection
documented by bacterial culture, while WGA both confirmed
culture diagnosis and identified potential additional bacterial
and/or viral organisms present.

Because reinfection occurs at high rates among patients with
CSF shunt infection, detailed genomic characterization of
microorganisms in CSF can help answer questions about the
etiology of infection and reinfection. We previously explored the
relationship between infection and reinfection using 16S
(Whitlock et al., 2021). In that study we showed that 16S
results were generally consistent with culture-based methods
and that 16S may detect organisms missed by culture at the end
of infection treatment but detected by culture at reinfection.
However, the CSF microbiota identified by 16S only weakly
correlated within patients at the end of infection and beginning
of reinfection. For this study, we explored whether WGA might
TABLE 2 | Predicted antibiotic resistance genes in the S. epidermidis CLIMB1 genome ascertained from CARD.

Gene Name [Organism] Drug Class

NorA [Staphylococcus epidermidis] acridine dye; fluoroquinolone antibiotic
two-component response regulator [Staphylococcus aureus str. Newman] acridine dye; fluoroquinolone antibiotic
aminoglycoside 3’-phosphotransferase (plasmid) [Campylobacter coli CVM
N29710]

aminoglycoside antibiotic

streptomycin aminoglycoside 6-adenyltransferase, partial [Streptococcus
oralis]

aminoglycoside antibiotic

dihydrofolate reductase [Staphylococcus epidermidis ATCC 12228] diaminopyrimidine antibiotic
multidrug efflux pump (plasmid) [Staphylococcus aureus] fluoroquinolone antibiotic
DNA gyrase subunit A [Staphylococcus aureus MRSA252] fluoroquinolone antibiotic; nybomycin
macrolide 2’-phosphotransferase [Staphylococcus equorum] macrolide antibiotic
Beta-lactamase [Staphylococcus aureus JH9] monobactam; cephalosporin; carbapenem; cephamycin; penam
MecA [Staphylococcus aureus] monobactam; cephalosporin; carbapenem; cephamycin; penam
streptothricine-acetyl-transferase [Campylobacter coli] nucleoside antibiotic
beta-lactamase (plasmid) [Staphylococcus aureus USA300_TCH959] penam
MarR family transcriptional regulator [Staphylococcus aureus ED98] tetracycline antibiotic; peptide antibiotic; fluoroquinolone antibiotic; penam; cephalosporin;

acridine dye
August 2021 | Volume 11 | Article 699506
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provide critical information about the microbiota present at the
end of infection. Instead, our results indicate that this method
only yields useful results when sufficient microbial DNA is
present, which occurs only at the beginning rather than the
end of infection.

We therefore suggest a more targeted approach to address the
question of microorganism persistence from one infection to
another, which relies on the high resolution information
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
provided by WGA and the enhanced sensitivity and specificity
of PCR. The approach would apply WGA to CSF samples at the
beginning of a reinfection to obtain the genomic sequence of the
principal infecting organism. The sequence information would
be used to develop strain-specific PCR primers, which would be
used to detect the strain in late samples of the previous infection.
A positive result would provide strong evidence for the
hypothesis that microorganisms present at low levels in CSF
FIGURE 4 | Phylogenetic tree of S. epidermidis, including CLIMB1 (red, center) and the most similar strains with known genomes, based on genomic sequence
comparison. MLST profiles are indicated in parentheses and by color coding.
August 2021 | Volume 11 | Article 699506
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during treatment of an infection can lead to reinfection. Such an
approach would be based on existing methodology. For example,
methods for designing specific primers based on bacterial
genomic sequence have been described in the literature
(Kechin et al., 2020). Nested PCR is a common technique for
increasing sensitivity and specificity of DNA sequence detection
(Green and Sambrook, 2019).

We acknowledge several limitations for this proof of concept
study. Extraction and sequencing of DNA from CSF samples is
challenging due to low DNA abundance. In addition, analysis of
microbial sequences is limited by the high proportion of human
DNA, even during an active infection. As a result, the sensitivity
of WGA is not better than that of 16S and worse than culture.
Only a small fraction of the CSF samples we analyzed produced a
sufficient number of bacterial reads to allow partial genomic
assembly of predominant species. An expanded study would be
needed to better understand the applicability of the approach.
WGAmay only be useful for CSF infections where one or a small
number of microorganisms dominate. Alternately, as has been
shown in aseptic meningitis (Wilson et al., 2019), WGA may
indicate the presence of other microorganisms, such as viruses
present in the setting of CSF shunt infection. An additional
consideration when choosing WGA is cost. Processing by 16S is
estimated at $80/sample, while WGA can cost twice as much or
more, depending on the depth of sequencing. Other factors that
contribute to an increased cost of WGA are a potentially longer
turn-around time for sequencing (3-6 days compared to 3 days
for 16S) and a more complex computational pipeline.

Despite these limitations, our findings demonstrate the
promise of WGA for research of CSF shunt infection. WGA
results: (1) were consistent with culture-based methods, (2)
identified all bacteria detected in culture to the species level,
while taxa were classified by 16S rRNA to only genus or family
level, and (3) provided additional insights regarding viruses
present and strain identity of predominant bacteria. Further
work is needed to better understand the utility of WGA in the
setting of CSF shunts and CSF shunt infection, including a
comparison between the effectiveness of the WGA with other
approaches to characterizing the microbiota such as strain-
specific PCR primers.
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